~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Aoife Gaflney
Student ID: x19217781

School of Computing
National College of Ireland

Supervisor: Dr. Majid Latifi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Aoife Gaffney
Student ID: x19217781
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Majid Latifi
Submission Due Date: 23/09/2021
Project Title: Configuration Manual
Word Count: 945
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 23rd September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U

Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | (I
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Aoife Gaffney
x19217781

1 Introduction

This configuration manual describes the software, environments and settings used in the
research project ’An Ensemble Learning Algorithm for ICU Patient Mortality Prediction’.
This document can be used to replicate the technical work carried out in the research
project.

2 Hardware Used

This research project was conducted on a Macbook Air with the following configuration:

e 1.6GHz dual-core Intel Core i5, Turbo Boost up to 3.6GHz, with 4MB L3 cache
e 8GB of 2133MHz LPDDR3 onboard memory
e Operating System: macOS

3 Environment

Python was used to create the models and Google Colab was used to write and run Python
code in an online browser that runs on a hosted online Jupyter Notebook platform. It
is cloud based and there is no requirement to install Python packages locally. The code
is written in Google Colab and saved to Google Drive. A google account is required for
using Google Colab.

4 Implementation

The following section outlines the technical implementation of the project.

4.1 Google Colab environment setup

Several packages were required in this project including: pandas, numpy, seaborn, sklearn,
scipy, plotly, mathplotlib and vecstack. These were loaded in as seen in Figure [1| using
the pip command if necessary.

import pandas as pd

import io

import plotly.express as px
import seaborn as sns

import matplotlib.pyplot as plt
import numpy as np

from
from
from
from
from
from
from

numpy import mean

numpy import std

pandas.plotting import scatter matrix

sklearn import preprocessing

sklearn.impute import SimpleImputer
sklearn.utils import resample

sklearn.model selection import train test split

import lightgbm

from
from
from
from
from
from
from
from
from
from
from
from
from

sklearn.model selection import RandomizedSearchCV
scipy.stats import randint as sp randint
scipy.stats import uniform as sp uniform
sklearn.metrics import #*

sklearn.ensemble import RandomForestClassifier
sklearn.linear model import LogisticRegression
sklearn.tree import DecisionTreeClassifier
sklearn.nae bayes import GaussianNB
sklearn.svm import SVC

sklearn.datasets import make classification
sklearn.model selection import cross wval score
sklearn.model selection import cross_validate
sklearn.model selection import EKFold

import plotly.graph objects as go
import wvecstack

from
from
from

vecstack import stacking
sklearn. feature selection import GenericUnivariateSelect
sklearn.feature selection import mutual info classif

Figure 1: Packages

4.2 Dataset

The data used in this project were the files 'training v2.csv’ and "WiDS Datathon 2020
Dictionary.csv’ downloaded from Kaggleﬂ in csv format. The files were stored on the
user’s computer and uploaded into Google Colab as seen in Figure 2l Once uploaded, the
csv files were read into a pandas dataframe for analysis.

Thttps://www.kaggle.com/c/widsdatathon2020/data

] # choose files to upload
from google.colab import files
uploaded = files.upload()

Choose files | No file chosen Upload widget is only available when the cell has been executed in the current browser
session. Please rerun this cell to enable.
Saving train data.csv to train data.csv
Saving WiDS Datathon 2020 Dictionary.esv to WiDS Datathon 2020 Dictionary.esv

] # convert to pandas df
train_full pd.read_csv(io.StringI0(uploaded['train data.csv'].decode{ 'utf-8')}))
dictionary = pd.read_csv(io.StringIO(uploaded['WiDS Datathon 2020 Dictionary.csv'].decode('utf-8
I

Figure 2: File upload

4.3 Data Pre-processing

After uploading, Exploratory Data Analysis was carried out using the pandas package to
get overall view of the data and plots were created of categorical variables, Figure

[1] # all plots
cat_plot(col name
cat_plot(col_name
cat plot(cel name
cat_plot(col name
cat_plot(cel_name
cat plot(col name
cat_plot(cel_name
cat plot(col name

'ethnicity', fig size=(20,10))

'age', fig size=(40,15))
'hospital admit source', fig size=(30,12))
'icu_admit_source', fig size=(30,12))
'icu_stay type', fig size=(30,10))
'ieu_type', fig_size=(20,10))

'apache_3j bod; stem', fig size=(25,12))
'apache 2 bodysy-tem', fig size=(25,12))

ahnicty

0000

Adrican American CenerfUnknean Hizpans: deaan Mative American
ity

Figure 3: EDA

Feature Engineering was computed on a selection of variables to remove irrelevant
features or tidy up groupings within features. BMI was computed with BMI formula due
to a high volume of missing values, Figure

tidy up apahece 2 bodysystem
train_full['apache_2 bodysystem'] = train full['apache 2 bodysystem'].replace({'Undefined diagno

compute bmi using bmi formula teo fill in missing bmi values

train_full['new_bmi'] = (train_full['weight']*10000)/(train_full['height']*train_full['height'])
train_full['bmi'] = train_full['bmi'].fillna(train_ full['new bmi'])

train_full = train_full.drop(['new bmi'], axis = 1)

drop unneccessary features such as id and stay types that are duplicate features
train_full.drop(['icu_admit_source', 'icu id', 'icu_stay type', 'patient_id', 'hospital_id'],axi

Figure 4: Feature Engineering

Correlation was computed with the corr() function on non categorical features and
all those features with correlation greater than 0.9 were removed, Figure

tidy up apahce 2 bodysystem
train full['apache 2 bodysystem'] = train full['apache 2 bodysystem'].replace({'Undefined diagno

compute bmi using bmi formula to fill in missing bmi values

train full['new bmi'] = (train full['weight']*10000)/(train_full['height']*train full['height'])
train full['bmi'] = train full['bmi'].fillna(train full['new bmi'])

train full = train full.drop(['new bmi'], axis = 1)

drop unneccessary features such as id and stay types that are duplicate features
train full.drop(['icu admit source', 'icu id', 'icu stay type', 'patient id', 'hospital id'],axi:

Figure 5: Correlation

A search for missing values was computed and all features with greater than 60%
missing values were removed. MICE imputation was performance using sklearn package
and SimpleImputer() on the rest of missing values using the 'mean’ strategy for non
categorical features and 'most frequent’ strategy for categorical features, Figure [f]

apply MICE for numerial values with most frequent strategy

imputer = SimpleImputer(missing values=np.nan, strategy='most frequent')
apply to data

train cat = pd.DataFrame(imputer.fit transform(train cat))

train cat.columns =cat column names;

Figure 6: MICE

One Hot encoding was preformed on categorical features to get dummy variables with
pandas package using get.dummies() function, Figure [7]

apply one hot encoding to categorical features to get dummy varibles
train encoded=pd.get dummies{train, columns=['ethnicity', 'gender',
'icu_type', 'apache 3j bodysystem’',
'apache 2 bodysystem', 'hospital admit source'])
#list dummy variables
train encoded.columns

Figure 7: One Hot Encoding

Standardisation was applied to all numerical data to scale using StandardScaler()
from sklearn, Figure

W e w2 W
apply scaling to numerical data

features_info = pd.DataFrame()

features_info['unique values'] = train encoded.nunique()

scale numerical data only and remove dummy/cat features

columns_to scale = features_ info[features_ info['unigue values'] > 2].index.values

scaler = preprocessing.StandardScaler()

scaled columns = scaler.fit transform(train_encoded[columns to_scale])

scaled features df = pd.DataFrame(scaled columns, index=train encoded.index, columns=columns_to
replace with scaled features

train_scaled = train encoded.drop(columns to_scale, axis=1)

train = train scaled.join(scaled features df)

Figure 8: Scaling

Oversampling was applied to minority set (death) by using SMOTE resample() func-
tion in sklearn, Figure [0

apply SMOTE to oversample minority class

train minority upsampled = resample(train minority,
replace=True, # sample with replacement
n_samples=83798, # to match majority class
random_state= 303) # reproducible results

combine upsampled minority with majority class
train upsampled = pd.concat([train majority, train minority upsampled])

new class counts
train upsampled.hospital death.value counts()

Figure 9: SMOTE

4.4 Feature Selection

A filter feature selection method GenericUnivariateSelect() from sklearn was used to select
the top 20 features for prediction of ICU mortality. This was applied to the dataset and
a new separate dataset with only the top 20 features was created, Figure

T v & 3 B
apply festure selection to dataset using k best = 20
trans = GenericUnivariateSelect(score_func=mutual info_classif, mode='k best', param=20)
apply to dataset
feature selection X trans = trans.fit transform(feature selection X, feature selection y)
print("We started with {0} features but retained only {1}".format(feature selection .shape[l] -

We started with 120 features but retained only 20

Figure 10: Feature Selection

The datasets are spilt in 30% test and 70% train using train_test_split function from
sklearn, Figure

~ Spilt

[1] # Split original dataset into training and test set
X_train, X test, y_train, y test = train test split(X, y, test_size = 0.3, random state = 1)

[1] # Split top 20 features dataset into training and test set
X_train new, X test_new = train_ test_split(X new, test_size = 0.3, random state = 1)

Figure 11: Data Spilt

4.5 Models

The RF base model was computed using Sklearn package. Randomised search 10-fold
cross validation (CV) was then computed to get their optimised parameters with Ran-
domisedSearchCV(). The model with optimised parameters was applied to full dataset
without feature selection. Then, a second RF model was then computed with randomised
search 10-fold CV for optimised parameters on the dataset with feature selection. Sample
code in Figure [12]

hyperparamter search

n_estimators = [100, 300, 500]

max_depth = [5, 8§, 15]

min_samples_split = [2, 5, 10, 15]

min_samples_leaf = [1, 2, 5]

create hyperpraramter dict

rf param = dict(n_estimators = n_estimators, max depth = max depth,
min_samples_split = min samples_split,
min_samples_leaf = min samples_leaf)

apply randomsearch

rfl search = RandomizedSearchCV(rfl, rf param, cv = 10, verbose = 1,

n_jobs = -1)
#£it
rfl best = rfl search.fit(X_train, y_train)

examine the best model

print (rfl best.best_score)

print (rfl best.best params_)
print(rfl best.best_estimator)

rf best = rfl best.best estimator

Figure 12: Sample Random Forest code

Each single classifier, DT, SVM, LR and DT were computed using Sklearn package
functions. Randomised search 10-fold CV was then computed to get their optimised para-
meters with RandomisedSearchCV/(). NB is excluded as it does not have hyperparmeters
to optimise. For each single classifier, the model with optimised parameters was applied
to full dataset without feature selection. Then, for each single classifier a second model
was then computed with randomised search 10-fold CV (with the exception of NB) was
applied on the dataset with feature selection. Sample code for DT and SVM in Figure
and Figure [14]

examine the best model
print(svml_best.best_score)
print(svml_best.best params)
print({svml best.best estimator)
svml_best = svml_best.best estimator

1. 794 1TRARTRAIRRT 74

parameters

svm param = {'C': [0.1,1, 10]}

randomsied search with 10 cross validation

svm2_search = RandomizedSearchCV(svm2,svm_param, verbose=2, cv=10, n_jobs=-1)
fit

svm2_best = svm2_search.fit(X train new,y train)

Figure 13: Sample SVM Code

parameter grid based
dt_param = {
'max_depth': [2, 3, 5, 10, 20],
'min_samples leaf': [5, 10, 20, 50, 100],
'eriterion': ["gini", "entropy"]
}
#randomsied search with 10 fold cv
dt_search = RandomizedSearchCV(dtl, dt_param, cv=10, n_jobs=-1, verbose=1)
fit
dt_best = dt_search.fit(X train, y_train)
Fitting 10 folds for each of 10 candidates, totalling 100 fits
[Parallel(n jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.

[Parallel(n jobs=-1)]: Done 46 tasks | elapsed: 2.0min
[Parallel(n_jobs=-1)]: Done 100 out of 100 | elapsed: 4.0min finished

examine the best model

print(dt_ best.best score)
print(dt_best.best params)
print(dt_best.best estimator)
dtl_best = dt_best.best_estimator_

Figure 14: Sample DT Code

Stacking was computed of the 4 base single classifiers using the vecstack package and
stacking() function. Each model with optimised parameters was applied first to the full
dataset without feature selection, Figure The best model (DT) was then reapplied to

the stacking function to get the final prediction, Figure[I6] This same process is repeated
for the dataset with feature selection.

L L I e T TR T I S

models = ([dtl best,
nbl best,
svml_best,
1rl best])

Stacking model

S train, S5 test = stacking(models,
¥ train, y _train, X test,
regression=False,
mode="'oof pred bag',
needs proba=False,
save dir=None,
metriec=roc_auc score,
n_folds=10,
stratified=True,
shuffle=True,

random state=0,

verbose=2)

Figure 15: Stacking

| #Best base model
model2 = dt2 best
fit
model? = model2.fit(S_train new, y_train)

stack2 pred = model2.predict(S5_test_new)
print('Final prediction score: [%.8f]' % accuracy_score(y_test, stack2 pred))

Final prediction score: [0.80954275]

Figure 16: Stacking

The LGBM base model was computed using Sklearn package. Randomised search
10-fold CV was then computed to get the optimised parameters using Randomised-
SearchCV(). The model with optimised parameters was applied to full dataset without
feature selection, Figure As second model was then computed with randomised search
10-fold CV on the dataset with feature selection. Sample code in Figure

#set parameters

lgbm params ={'cat smooth' : sp randint(l, 50),
'learning rate': [0.08, 0.85, 0.09],
'num leaves': sp_randint(500, 5000),
'max_bin': sp_randint(100, 1500),
'max_depth': sp_randint(1l, 15),
'min_data_in leaf': sp_randint(500,3500)}

set fit parameters
fit_params={"early stopping rounds":2,
"eval _metrie" : 'auec',
"eval set" : [(X_train, y train),(X test,y_test)],
'eval_names': ['train','valid'],
'verbose': 300,
'categorical feature': 'auto'}

#Random search
lgbm search = RandomizedSearchCV(lgbml, lgbm params, scoring='roc_auc',cv=10, refit=True,random_

Figure 17: LGBM Parameters

#CV
CV_NUMBER = 10

excl = ["Class", "datetime"]

features = [f for £ in X.columns if f not in excl]
auc_list = []

recall list = []

precision_list = []

accuracy list = []

F1_list = []

Cross Validation
for idx in range(CV_NUMBER):

Create dataset for lightgbm
lgb train = lightgbm.Dataset(X train, y train)
lgb eval = lightgbm.Dataset(X test, y test, reference=lgb train)

bst = lightgbm.train(params=final params, train set=lgb train, num boost round=500,
valid sets=lgb eval, early stopping rounds=2)

y_pred = bst.predict(X test, num iteration=bst.best iteration)

y_pred = np.round (y pred, 0)

auc list.append(roc_auc_score(y test, y pred))

recall list.append(recall score(y_test, y pred))
precision list.append(precision score(y test, y pred})
accuracy_list.append(accuracy score(y_test, y pred))
Fl list.append(fl score(y test, y_pred))

Figure 18: LGBM

5 Evaluation
The evaluation metrics applied to each model were Accuracy, AUC, Recall, Precision and

F1 Score using sklearn package. These metrics were computed on both test sets with and
without feature selection, sample code in Figure

10

evaluate model

svmZ_best predict = svm2 best.predict(X_test_new)
print("Confusion Matrix")

print (confusion matrix(y_test, svm2_best predict))
print("AUC Score")

print(roc_auc_score(y_test, svm2 best predict))
print("Accuracy")

print (accuracy score(y_test, svm2_best_predict })
print{"Recall")

print(recall score(y_test, svm2_best_predict))
print("Precision")

print(precision_score(y_test, svm2_best predict))
print("Fl Score")

print(fl score(y test, svm2 best predict))

plots

predictedLabels = (svm2_best predict).astype(int)

plt.figure(figsize=(13,10))

plt.subplot(221)
sns.heatmap(confusion matrix(y test,predictedLabels),annot=True,fmt = "d",linecelor="k",linewidt
plt.title("SVM TOP 20 FEATURES CONFUSION MATRIX",fontsize=10)

predicting probabilites = svm2_best predict

fpr,tpr,thresholds = roc_curve(y_test,predicting_probabilites)
plt.subplot(222)

plt.plot(fpr,tpr,label = ("Area under the curve :",auc(fpr,tpr)),coleor = "r")
plt.plot([1,0],[1,0],1linestyle = "dashed",color ="k")

plt.legend(loc = "best")

plt.title("SVM TOP 20 FEATURES AUC",fontsize=10)

plt.show()

Figure 19: Evaluation metrics

Plots of confusion matrix and AUC curve were computed for each model on both test
sets with and without feature selection, sample code in Figure Example of plot below
in Figure

LGBM CONFUSION MATRIX LGBM AUC
- 25000
10] -
.
)”’
- 20000 -
- 25234 038 -
,
1’(
-
15000 056 -~
S
-
-
#
10000 04 4 L
f’,
,
— 25045 024 e
5000 : L
.
t(’
0.0 #? = ['Area_under the curve ', 0.9909581806406234)
0
0 1 0o 02 04 06 08 10

Figure 20: Plots

11

	Introduction
	Hardware Used
	Environment
	Implementation
	Google Colab environment setup
	Dataset
	Data Pre-processing
	Feature Selection
	Models

	Evaluation

