~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Marcelo Fischer
Student ID: 20118872

School of Computing
National College of Ireland

Supervisor:  Rejwanul Haque




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Marcelo Fischer
Student ID: 20118872
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Rejwanul Haque
Submission Due Date: 16,/08/2021
Project Title: Configuration Manual
Word Count: 688
Page Count: [36]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Marcelo Fischer
20118872

1 Introduction

This configuration manual lists all hardware and software requirements to reproduce this
research. The steps taken from data acquisition to model implementation are shown in

this document.

2 Hardware and Software Requirements

Table [If shows the hardware specifications used in the research. Table [2] shows the pro-
gramming language used, the libraries used and their respective versions.

Table 1: Hardware Specifications.

RAM 32GB
Processor Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
oS Windows 10 and Ubuntu 20.04

Table 2: Python Libraries and Versions.

Library Version

Python 3.8.5
Jupyter Lab  3.0.14
pandas 1.2.4
numpy 1.19.2

re 2.2.1
tensorflow 2.3.0
keras 2.4.3
scikit learn 0.24.2
nltk 3.6.2

3 Dataset

3.1 Folder Structure

The files need to be inside the project folder as shown in Figure (1] for the paths in the
code to work correctly. Also, the paths must be changed if executing inside a Linux or

1



Windows machine. Each file shown in Figure [1| will be explained in this manual.

l Fake.br-Corpus-master
H complete_dataframe 2112 nte Python

82 Fake br-Corpus-master 02113 Wi P archive

B fakeBR_df
&) FakeBR_DNM_no_SW
FakeBR_DMNM_SW
FakeBR_stacking_tf
FakeBR_stacking_tf trunc
stacking_tfidf
FakeBR_stacking_tfidf trunc
ﬂ useful_funcs 43 Arquivo Fonte Python

Figure 1: Structure of the project folder. All shown files must be inside this folder for
the files and paths to work.

3.2 Dataset Creation

The dataset was download from a Github repository which can be found at
https://github.com/roneysco/Fake.br-Corpus. The downloaded zip file contains
three folders and a README file. The full_texts folder contains the full texts of the
news, and also the metadata information about each label. The size_normalized_texts
folder contains the truncated texts so that each fake-real pair has the same text length.
The preprocessed folder contains a .csv file with three columns: index, label, and the pre-
processed text. Pre-processed text means the removal of diacritic, accent, and Portuguese
stopwords. Only the original full texts (the first folder) was used in this research.

Figure [2| shows the complete script to generate the master dataframe. For the code
to work it is needed to have the Fuake.br-Corpus-master folder inside the project folder.
The necessary imports are shown at the top of the script.

4 Preprocessing

Before dealing with the actual data, some functions were defined to make the code cleaner
and more organized. Figure [3] shows the necessary imports for the script. Figure [4]
shows the function used to clean the texts. Figure [5| shows the function used to remove
Portuguese stopwords from the texts. Figure [6] shows the function used to evaluate the
models. Figure [7] shows the function used to save the models if wanted.

5 Experiments

5.1 Term Frequency - Full Texts Experiments

Figure |8 shows the necessary imports for these experiments. All TF experiments did not
remove stopwords from the texts. Figure [9] shows how to load the data. Figure [I0] shows
the pre-processing steps and the creation of the train and test sets.


https://github.com/roneysco/Fake.br-Corpus

collections defaultdict
pathlib Path
pandas pd

W R =

L9 I

FAKE_FOLDER_PATH " . AN\proj \\Fake. orpus-master\\full_ texts\\fake"
TRUE_FOLDER_PATH = "..\\proj \\Fake. rpus-masteri\full texts\\tr
SAVE _DF_FOLDER ject\\fak F.osv’

(3]

|

fakes = defaultdict( )]
file Path(FAKE_FOLDER_PATH}.1i
(file, "r", Encodlng
fakes['filﬁ name"] .
fakes ext™ ].J__h"h{f hch{))
fake_df pd.f.13='a':{fakes}

trues = defaultdict( )]
file Path(TRUE_FOLDER PATH).iterdir():
(file, "r", EﬂCDdlﬂg "ut -B'}
trues["file nams"]. (file.name)
trues["text" ].3__h"h{F ad())

true_df = pd.DataFrame(trues)

LERI O I i % ]

I

(4]

fake_df["label’]
true df["label’]

B

ca

1]

2
2
-
“
2
2
25
2
2
2
2
3

2]

fakeBR_df = pd.concat([fake_df, true_df])

L
=

of the
of the

Ll
ka2

Ll

I_“ I_“
onoB

the dataframe to {SAVE_DF_FOLDER}...°
~sv(SAVE_DF_FOLDER, index )]

]
2]

Figure 2: Full Python script to generate the master dataframe.

collections Counter

stopwords

sklearn.metrics accuracy_score, precision_score, f1_score, recall score

joblib dump

Figure 3: Necessary imports for the useful_funcs script.




Clean_text
Clean_text

Figure 4: Function used to clean the texts.

stop_words = stopwords.words({'por
stopwords_dict = Counter(stop_words)
text ' '.join(
[word word text.split() stopwords_dict])

text

Figure 5: Function used to remove the Portuguese stopwords from the text.

(accuracy_score(y_test, predictions), 4)}")

(f1l_score(y_test, predictions), 4)}")

(recall_score(y_test, predictions), 4)}")

(precision_score(y_test, predictions), 4)

Figure 6: Function used to evaluate the models.



(model, model file path):

fJEavi“g the {model} model in {model file path} for later use...
dump (model, model file path)
(f"The {model} model

Figure 7: Function used to save the models.

pandas pd

numpy np
useful funcs cleanText, modelEval, saveModels

sklearn. train test split
sklearn. LogisticRegression
sklearn. RandomForestClassifier, StackingClassifier
cklearn. DecizionTreeClaz=zifier
sklearn. KNeighborsClassifier
sklearn. MultinomialNB
zsklearn. SVC, LimearSvC
sklearn. GridsearchCV, RandomizedSearchCv
sklearn. . CountVectorizer
xgboost xghb

matplotlib.

Figure 8: Necessary imports for the TF experiments.

path linux
path windows

fakeBR _df - pd. {path windows)
fakeBR_df. ()

Figure 9: Loading the dataframe inside the environment.



2 fakeBR _df[ text"] = fakeBR df[ "text']. {cleanText)

5 x = fakeBR _df[ 'text']
& y - fakeBR df['labesl"]

8 tf wvectorizer - CountVectorizer()
cv = tf vectorizer. (x)

16 x_traim, x test, y train, y test - train test split(cv, y, test size-0.2, random state-42)

F the ta: {x_train. 1)
{x_test. )
{y_train. 1)
I

Figure 10: Pre-processing steps and creation of train and test sets for the full texts.

Next, all machine learning models were trained. Their code snippets are shown below.
For all models, the parameters were optimized with the use of grid search and the code
snippets for these are also shown. Figure depicts an example of the output of the
modelFval function.

The KNN model was not optimized by the use of grid search but by the use of the
elbow method. Figure [24] shows the method.

5.2 Term Frequency - Truncated Texts Experiments

All models and the code flow were exactly the same as shown for the Section [5.1l The
only difference was in the CountVectorizer parameter max_features that was set to 200,
which can be seen in Figure |37

5.3 Term Frequency-Inverse Document Frequency Experiments

All models were trained and optimized exactly like shown in Section [5.1. The only
differences are in the imports (Figure and in the pre-processing steps (Figure .
The only difference when considering truncated texts is that the maz_features parameter
of the TfidfVectorizer is set to 200.

5.4 Neural Networks

Figure [40] shows the necessary imports for these experiments. Figure shows how to
load the dataframe and define the path to the folder where the models will be saved.
Figure {42 shows the pre-processing for these experiments. Two different scenarios were
tried, with and without stopwords. The only difference in the code from one to the other
is the third line in Figure 42| which is removed when the stopwords are not removed from



Logistic Regression

Ir = LogisticRegression{random state-42, max_iter-584)
lr.fit{x train, y train)
Ir_predictions = lr.predict{x_test)

modelEval("Logistic Regression”, y_test, lr predictions)

accuracy for the Logistic Regression model is: 8.9694
fl score for the Logistic Regression model is: 8.9694
recall for the Logistic Regression model is: 8.9721

precision for the Logistic Regression model is: 8.9668

Figure 11: Standard logistic regression model.

time
1r params = {'C': [@.81, 9.1, 1, 18, 1@a]}
Ir search = GridSearchfV(LogisticRegression(random state-42, max iter-=588),
param_grid = lr_params,
n_jobs 1,
cv 5y
verbose=1)

Ir search.fit{x train, y train)

Figure 12: Grid search for the logistic regression.

1r search.best params
: 8.1}
1r best - LogisticRegression(C-9.1, max iter-500, random state-42)

Ir_best.fit({x_train, y train)

1r_best _predictions = 1lr_best.predict(x_test)

modelEval ("best Logistic Regression”, y test, 1r best predictions)

Figure 13: Optimized parameters for the logistic regression.



Decision Tree 1

dt = DecisionTreeClassifier(random_ state-42)
dt. (x_train, y train)
dt_predictions - dt. (x_test)

modelEval(“"Decision Tree", y test, dt predictions)

Figure 14: Standard decision tree model.

the texts. The rest of the images show the neural networks architectures, parameters and
callbacks.

5.5 mBERT

The mBERT model was run using an online interface at https://platform.peltarion.com/.
From Figure to Figure it is possible to see the necessary steps to reproduce the
model.


https://platform.peltarion.com/

time
criterion
splitter
max_features
max_depth
min_samples split

min_samples leaf

dt_params ‘criterion’: criterion,
"spl : splitter,
ires": max_features,
: max_depth,
= split’: min samples split,
: min_samples leaf}

dt_search = GridSearchCV(DecisionTreeClassifier(random_state-42),
param_grid - dt params,
n_jobs 1,
cv S
verbose=1)

dt_search. (x_train, y_train)

Figure 15: Grid search for the decision tree.



1 dt search.best params

{"criterion’: "entropy’,
'max_depth': 5,
‘'max_features®: None,
'min_samples leaf": 2,
‘min_samples split': 2,
‘splitter': "best'}

dt_best - DecisionTreeClassifier(splitter best
min_ samples split
min_ samples leaf
max_features
max_depth
criterion

dt_best.fit(x _traim, y train)

dt_best predictions

modelEval({"best Decisior

Figure 16: Optimized parameters for the decision tree.

Support Vector Machine
linear svc - LinearSVC(random state-42)
linear svc.fit{x train, y train)

linear svc predictions - linear svc.predict(x test)

modelEval( LinearsVC', y_test, linear swvc predictions)

Figure 17: Standard LinearSVC model.

10



time

C values [2.88]

linear svc_params - {'C': C wvalues}

linear svc_search - GridSearchCV({LinearSVC(random state-42, max iter-5
param_grid - linear swvc params,
n_jobs=-1,
v 8
verbose-1)

linear swvc_search. (x train, y train)

Figure 18: Grid search for the LinearSVC.

linear_swvc_search.

linear_swvc_best - LinearSVC(C - ©8.006, random_state-42)
linear svc_best. (x_train, y _train)
linear svc_best predictions - linear svc best. (x_test)

modelEval(” inearsvC", y test, linear svc best predictions)

Figure 19: Optimized parameters for the LinearSVC.

swc = SVC{random state-42)
(x train, y train)

svc_predictions = swvc. (x_test)

modelEval( ' 5VC', y test, svc_predictions)

Figure 20: Standard SVC model.

11



time

SVC_params ‘'C': € values,

rbf' I}

svc_search = GridSearchCV(SVC(random state-42),
param_grid - svc_params,
n_jobs 1,
cv =8
verbose-1)

svc_search. (x_train, y_ train)

Figure 21: Grid search for the SVC.

svc_search.
: 8.81, "kernel’: 'linear’}

svc_best = SWC(C = ©.81, kernel linear ', random state-42)

svc_best. (x_train, y train)

svc_best predictions - svc_best. (x_test)

modelEval (“best SVC", y test, svc best predictions)

Figure 22: Optimized parameters for the SVC.

12



K-Nearest Neighbours

error_rate = []

i (1,49):

knn = KNeighborsClassifier(n_neighbors-i)
knn. (x _traim, y train)
pred i - knn. (x test)
(pred i y_test))

error_rate. (np.

Figure 23: Standard KNN model.

(figsize-(18,5))
( (1,48),error_rate,color
markerfacecolor="red’, markersize-18)

‘blue’, linestyle

Error Rate vs. K

0.0875 _’
oo
0.0850 - J!sr‘
?'1. .- ’.r.‘j
0.0825 Y
ht o 2e®? %

00800 -

Error Rate

Figure 24: Elbow method for the KNN.

13



knn = KNeighborsClassifier({n neighbors-c)
knn. (x train, y train)

knn_predictions knn. (x_test)

modelEval({"KNN", y test, knn predictions)

Figure 25: Optimized parameters for the KNN.

Random Forest

rfl = RandomForestClassifier(n_jobs-4, random state-42)
rfl. (x_traim, y_train)

rfl predictions rfl. (x test)

modelEval (' Random =t", y_test, rfl predictions)

Figure 26: Standard random forest model.

14



time
n_estimators (10, 168, 28))
max_features auto®, "sqrt']

max_depth LA ¢ ) (6)]
max_depth. '

bootstrap

rf _params 'n_estimators"': n_estimators,
: max_features,
: max_depth,
: bootstrap}

rf_search = GridSearchCV({RandomForestClassifier(random_state-42),
param_grid - rf_params,

n_‘jobs 1,
v 5
verbose=1)

rt search. {x train, y train)

Figure 27: Grid search for the random forest.

15



1 rf search.best par

{ "bootstrap': False,
‘'max_depth': None,

‘'max_features": "auto’,
'n_estimators®: 158}

rf best - RandomForestClassifier(n estimators
max_features
max_depth
bootstrap
random_state
rf_best.fit(x train, y train)

5 rf_best predictions = rf best.predict(x test)

18 modelEval(’'best Random Forest®, y test, rf _best predictions)

Figure 28: Optimized parameters for the random forest.

Multinomial Naive Bayes

nb = MultinomialNB()
nb.fit{x traim, y train)

nb_predictions = nb.predict{x test)

modelEval( 'Multinomial Naive Bayes ;. » nb_predictions)

Figure 29: Standard Naive Bayes model.

16



time
nb_params ‘alpha’: [0.9681, 8.801, 9.883, 8.
nb_search = GridSearchCV({MultinomialNB(),

param grid - nb params,

n_jobs 1,

v = 5,
verbose=1)

nb_search. (x_train, y_train)

Figure 30: Grid search for the Naive Bayes.

nb_search.
{"alpha": 8.1}
nb best = MultinomialNB(alpha-2.
nb_best. (x traim, y train)
nb_best predictions = nb_best. (x_test)

modelEval (b ultinomial Maive Bayes', y test, nb best predictions)

Figure 31: Optimized parameters for the Naive Bayes.

Stacking

1 time
2 estimator lst [
("1r", 1r_best),
("dt", dt_best),
('r rf_best}),
("linear_svc”, limear swvc_best),
('svC', svc_best),
("knn", knn),
('nb’, nb_best)

]

stack model - StackingClassifier(estimators-estimator lst,
final estimator-LinearSVC(random state-42, max_iter-508

n_jobs 1)

stack model. (x_train, y train)

Figure 32: Stacking model.

17



stack model predictions - stack model. (x_test)

modelEval(“Stacking Model™, y test, stack model predictions)

Figure 33: Predictions for the stacking model.

XGBoost

xgboost - xgb. (random_state - 42,
use_label encoder

n_jobs 1)
xgboost. (x_train, y train)
xgboost_predictions - xgboost. (x_test)

modelEval( " XGBoost', y test, xgboost predictions)

Figure 34: XGBoost model.

xgb_search - RandomizedSearchCV(estimator - xgb. (random_state - 42, use label encoder
param_distributions - xgb params,
v i
n_iter
n_jobs
verbose
random state - 42)

19 xgb_search. (x_train, y train)

Figure 35: Grid search for the XGBoost.

18



1 xgb search

{'n_estimators': 700,
‘'min_child weight": 2,
‘'max_depth®: 2,
‘learning rate’: 8.05,
‘booster’: "gbtree’}
xgboost best - xgb.XGBClassifier(n_estimators
min_child weight
max_depth - 2,
learning rate
booster
random_state
use_label encoder

n_jobs = &)
xghboost best.fit(x train, y_train)
xgboost best predictions - xgboost best.predict{x_test)

=t", y_test, xgboost best predictions)

x = fakeBR df[ ' text’]
¥

@ tf _vectorizer - CountVectorizer(max_features-20a)
cv = tf_vectorizer.f

x_traim, x test, y train, y test - train_ test split(cwv, y, test size-08.2, random state-42)

{(f"sh
{(f"sh
{f"sh
{f"sh

o o o o
T O

=]
m m m m

m m m m

L O P T T ¥

Figure 37: Pre-processing steps and creation of train and test sets for the truncated texts.




pandas pd

numpy np
useful funcs

sklearn.
zklearn.
zklearn.
zklearn.
zklearn.
sklearn.
sklearn.
sklearn.
sklearn.
xgboost xgh

matplotlib.

cleanText, modelEval, saveModels

train_test split
LogisticRegression
RandomForestClassifier, StackingClassifier
DecisionTreeClassifier
KNeighborsClassifier
MultinomialNB
SVIC, LimearSwC
GridsearchCV, RandomizedSearchCV
TfidfVectorizer

Figure 38: Pre-processing steps and creation of train and test sets for the truncated texts.

TakeBR_df[ " text']

x = TakeBR df['te
y = fakeBR_df[’

tfidf vectorizer

tfidf - tfidf wvectorizer.

%_train, x_test, y train, y_ test

fakeBR_df[ "t

ext']. (cleanText)

TfidfVectorizer()

(x)

train_test split(tfidf, y, test size-o

.2, random_state-42)

{x_train. )

_{x_test. )

: {y_train. )
{y_test. )

Figure 39: Pre-processing steps and creation of train and test sets for the full texts and

the TF-IDF technique.

20



pandas pd
numpy np

useful funcs cleanText, modelEval, saveModels, removeStopwords
os

sklearn. train_test split

tensorflow tf
keras. Sequential, load model
keras. Embedding, Dense, Dropout, GlobalMaxPoolinglD, ConvlD, GRU, LSTM
keras. . Tokenizer
keras. - pad sequences
keras callbacks
tensorflow. . - KerasClassifier

matplotlib.

Figure 40: Necessary imports for the NN experiments.

MODELS FOLDER_LINUX
MODELS FOLDER _WINDOWS

path linux
path_ windows

fakeBR df - pd. {path windows)
fakeBR_df. ()

Figure 41: The folder to save the models and how to load the dataframe.

21



fakeBR_df[ fakeBR_df[ . (cleanText)
fakeBR_df[ fakeBR_df[ - (removeStopwords)

x_text - fakeBR_df[’
y - fakeBR _df[’
dnn_text_train, dnn_text test, y train, y test - train test split(x text, y, test size-0.2, random state-42)

maxlen
embedding dim

tokenizer - Tokenizer()

tokenizer. (dnn_text_train)

X_train - tokenizer. {dnn_text_train)
X_test - tokenizer. (dnn_text test)

vocab_size (tokenizer.

X _train - pad_sequences(X_train, padding t', maxlen-maxlen)
X_test - pad sequences(X_test, padding 1", maxlen-maxlen)

Figure 42: Pre-processing steps for the NN experiments.

22



Convolutional Neural Network

Sequential()

.add{ Embedding({vocab_size, embedding dim,
input length-maxlen,
trainable 1)

-.add{Dropout(@.3))

.add{ConviD{128, 4, activation='relu'})

.add{GlobalMaxPoolinglD())
.add{Dropout(@.3))
.add{Dense({128, activation
.add{Dense(1, activation

cnn.summary()

: "sequential 8"

.-E;T 1)

id"))

Layer (type) Output

Shape

Param #

embedding 8 (Embedding) (None,

300, 100)

6818188

dropout_18 (Dropout) (None,

300, 100)

convld 2 (ConvlD) (None,

297, 128)

global max poolingld 2 (Glob (None,

128)

dropout_11 (Dropout) (None,

128)

dense_13 (Dense) (None,

128)

dense_14 (Dense) (None,

1)

Total params: 6,878,869
Trainable params: 6,873,869
Non-trainable params: @

Figure 43: CNN architecture.




cnn.compile(optimizer

6 mc_cnn - callbacks t(T'{MODELS_FOLDER WINDOWS}cnn_be h5°, monitor
7 «cb list cnn = [es_cnn, mc_cnn]

5 es cnn - callbacks monitor-"val accuracy', patience min_delta verbose-1)

» save_best only » verbose=1)

history cnn - cnn.fit(X train, y train, epochs-3@, batch_size - 8, validation split-0.3, callbacks-cb list cnn)

Figure 44: CNN callbacks and fit.

1 cnn_predictions = (cnn.predict({X _test)
2 cnn_predictions

array([[1],
[1].,
[@].,
[H]l
[1]l
[11D)

1 modelEval("cnn”, y test, cnn_predictions)

Figure 45: CNN predictions.

best _cnn_predictions - (best_cnn.predict(X_test)

modelEval({“"best CHNN™, y test, best cnn predictions)

1 best cnn load model(f"{MODELS FOLDER WINDOWS }crimn

Figure 46: Best CNN model being loaded.

24



acc - history cnn.

val acc - history_cnn.
loss = history_cnn.

val loss = history cnn.
epochs { {acc))

fig, ax - plt. (1, 2, figsize-(16,8))
ax[@]. (epochs, acc, 'r', label-"Trainin
ax[@]. (epochs, val acc, 'b’, label-'

ax[@]. {('Training and 5_::31::".- C

ax[@] . (loc-8)

(epochs, loss, 'r', label
(epochs, val loss, 'b’, label-'
(" Trainin 1i
(loc-8)

Figure 47: Code snippet to plot the loss and accuracy of the CNN.

25



Gated Recurrent Unit

gru - Sequential()

gru.add(Embedding(vocab size,
embedding dim,
input_length-maxlen,
trainable 1)

(i T 5 N - Y Y Ty =1

gru.add{GRU({128))
gru.add({Dropout(2.25))
gru.add(Dense(1l, activation

gru.summary ()

"sequential 2"
Layer (type)
embedding 2 (Embedding)
gru 1 (GRU)
dropout 3 (Dropout)
dense 3 (Dense)
Total params: 6,898,549

Trainable params: 88,449
Non-trainable params: 6,810,180

Figure 48: GRU architecture.

1 gru.compile{optimizer

loss

metrics
5 es gru - callbacks. ng(monitor="val_accurac)
6 mc_gru - callbacks. oint(f’{MODELS_FOLDER WINDOWS }gr ', monitor
7 cb list _gru - [es_gru,

'y patie n_delta-2.9 erbose-1)
r » save_best only » verbose=1)

1 history gru - gru.fit(X train, y train,
epochs - 20,
batch _size

validation split-8.3,
callbacks=cbh list gru)

Figure 49: GRU callbacks and fit.

26



1 gru predictions = (
2 gru predictions

array([[1].
[1],
[E]J
[e],
[1]J
[111)

1 modelEval("GRU", y test, gru predictions)

Figure 50: GRU predictions.

best gru - load model(f"{MODELS FOLDER WINDOWS}gru best.hs”

best gru predictions = (best gru.predict(X test)
modelEval("best GRU", y test, best gru predictions)

Figure 51: Best GRU model being loaded.

27



Long-short Term Memory

Sequential()

.add (Embedding(vocab size, embedding dim,
input_length-maxlen,
trainable M)

.add (LSTM{256, return_sequences 1)

.add (Dropout(2.3))

.add (L5TM{&4))

.add(Dense(32, activation

.add(Dense(1l, activation

[ T (R Sy WV [ . T =]

Model: “sequential &"

Layer {(type) Param #

embedding & (Embedding) 6310100
l1stm 5 (LSTM) 3 25 365568
dropout_7 (Dropout)

1stm 6 {LSTM)

dense 9 (Dense)

Total params: 7,259,957
Trainable params: 7,259,957
Non-trainable params: @

Figure 52: LSTM architecture.

28



(optimizer

loss t
metrics=["a 1

5 es_lstm - callbacks. (monitor-"val accuracy', patience-4, min_delta-o

6 mc_lstm - callbacks. (f {PICI)ELS_I_:OLDER_HINDONS};:-'.'- b 5', monitor="val accuracy’, save best_only: » verbose-1)

7 «¢b_list 1stm - [es_lstm, mc_lstm]

1 history lstm - lstm. (X_train, y train,
epochs=28,
batch_size
validation split-0.3
callbacks=cbh_list lstm)

Figure 53: LSTM callbacks and fit.

1 1stm predictions - (lstm.
2 lstm predictions

array([[1],
[1],
[e].,
[@].
[1]J
[111)

1 modelEval("L5TM", y_test, lstm predictions)

Figure 54: LSTM predictions.

1 best lstm = load model(f"{MODELS FOLDER WINDOWS}lstm best

2 best lsim predictions (best lsim. (X test)
modelEval(“L5TM", y test, best lsitm predictions)

Figure 55: Best LSTM model being loaded.

[ New project

Figure 56: Create a project. It is locate din the top left of the page.

29



Start with our free datasets Use your own data

Find inspiration on how to solve your problems while 1. Prepare data Insupported formats (2ip, csv, npy) (3
prototyping on data similar to your own. 2. Drag and drop or use the button below

Import free datasets &, Upload file

& BigQuery ¢ AzureSynapse I Data APl & URLImport

Figure 57: Upload the dataset as a csv file.

Dataset name

fakeBR_df

~" fakeBR_df.csv
100%

+ Add more columns

Figure 58: Click in "done”.

30




< All my datasets

fakeBR_df

That's your dataset

Take a look in Table view or Feature view to get
further details.

We've set the parameters for each feature, but

they are easy to change; Click the Y icon to
change a feature parameter.

IT you want more editing possibilities, click
Show advanced settings.

[% Use in new experiment

57 Show advanced settings

Figure 59: Click in ”"Use in new experiment”.

31



Experiment wizard

Experiment name
Experiment 1

Dataset Inputs / target

Select the data you want to use.

Problem type

Dataset
fakeBR_df

vEMsIO

#1

Split

Default split

Create custom experiment

Figure 60: Choose these settings for the first tab.

32




Experiment wizard X

Experiment 1

Dataset Inputs / target Problem type

Select the input(s) and target features you want 1o use.

For similarity search you may not need a specific target feature if you are
not tuning the model. In that case, you can pick any valid one in the list
and then add an output block in the model to extract the embeddings you

need.
[=] | Search feature (o} Search feature Q
[ ] file_name () file_name
text () text
[] label @ label

Previous Create custom experiment m

Figure 61: Choose these settings for the second tab.

33




Experiment wizard X

Experiment 1

Dataset Inputs / target Problem type

Select problem type.

[ Problem ty
Single-label text classification

Single-label text classification is when a deep learning model predicts
one class for each example.

Previous Create custom experiment m

Figure 62: Choose these settings for the third tab and click in ”create”.

34




Build Settings

£ Dataset

Dataset
fakeBR _df

Version
H#1

split
Default split

> Run settings

Batch size Fpochs
32 2

Optimizer
Adam

Learning rate
0.00002

Learning rate schedule

Triangular
Warm-up epochs Decrement per epoch
0.5 0.000008

Early stopping
Run full number of epﬂghs

Figure 63: The parameters used are shown in this figure.



Input

text

Multilingual BERT
128
768

Dense

Target
label

true

Figure 64: Click in "run” on the top right corner to run the model.

& Datasets g% Modeling [l Evaluation & Deployment

Figure 65: Go to the evaluation tab and check the results after the model ran.

36



	Introduction
	Hardware and Software Requirements
	Dataset
	Folder Structure
	Dataset Creation

	Preprocessing
	Experiments
	Term Frequency - Full Texts Experiments
	Term Frequency - Truncated Texts Experiments
	Term Frequency-Inverse Document Frequency Experiments
	Neural Networks
	mBERT


