~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Debratna Dhali
Student ID: 19201028

School of Computing
National College of Ireland

Supervisor: Dr. Majid Latifi

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Debratna Dhali

Student ID: 19201028
Programme: Data Analytics
Year: 2020

Module: MSc Research Project
Supervisor: Dr. Majid Latifi
Submission Due Date: 16,/08/2021

Project Title: Configuration Manual
Word Count: 894

Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Debratna Dhali
Date: 22nd September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Debratna Dhali
19201028

1 Introduction

The configuration manual covers various aspects of the implementation process. This
involves the hardware specification of the system on which the implementation was done
along with the software required. It also covers the different stages of the implementa-
tion process and the overall evaluation of the research ”Food Recommendation System
Considering Calorie Estimated From Food Images UsinglnceptionV3”.

The subsequent sections shed more light on the implementation stages and computa-
tional requirements used to realise the project.

2 System Configuration

In this section the details about the hardware and software configurations used in this
research is discussed.

2.0.1 Hardware Requirements

e Processor Intel(R) Core(TM) i5-8265U CPU @ 1.80GH
e RAM 8.00 GB

e System Type 64-bit Windows Operating System

e GPU Intel(R) UHD Graphics Family

e Storage 512 GB SSD

2.0.2 Software Requirements

e Microsoft Excel 2010: This is a microsoft product which is used to store the dataset
which for this research is the calorie information dataset and the data is stored as
csv format.

e Anaconda Distribution-Jupyter Notebook: It is an open source platform down-
loaded from the anaconda website. It houses a lot of design frameworks integrated
into it such as Jupyter Notebook, Spyder, R Studio etc. The in-system Jupyter
notebook was used mainly to split the original dataset into training and testing
sets.

e Google Colab Pro: Google offers Colab which is a free cloud service having an
integrated Jupyter notebook. Most of the implementation starting from exploratory
data analysis, implementation of image classification model, constructing calorie
dataset and recommender system to evaluation of implemented model has been
done on Colab Pro. This service provides a RAM of 24 GB and GPUs either one
of K80, P100, T4 based on usage.

3 Constructing Calorie Dataset

The calorie dataset was constructed by scraping the Nutritionix Database and storing
the results in a csv file. In figure (1}, the steps followed to implement this has been shown.

Calorie Estimation: Constructing Calorie Dataset

[i]

rape data using AP key

x(app_id="403365¢6", api_key="falbca3bsd75859eascad70a00da72f5")

nformation of the food labels to a csv to be later used with predicted food items

n()
J+cal['nf_cholesterol' J+cal['nf_protein' J+cal['nf_sugars']+cal['nf_total_carbohydrate"]+cal['nf_total fat']
Mybrive/food101/menu. csv'
es']),",",cal['nf_cholesterol'],",", cal['nf_protein'],",",cal['nf_sugars'],",", cal['nf_total carbohydrate'],",", cal['nf_total fat'])

Figure 1: Calorie Dataset Construction

4 Dataset Description

The food image dataset to perform food detection was downloaded from El

This dataset contained food images from 101 different food labels. A total of 101,000
images are included in the dataset. Also, 750 images per class label were kept for training
the data while 250 images per class were kept for testing the model. Figure [2 provides a
sneak peak into the dataset used in the research.

&7

16

= |

Y
@riipMe
)

a0

I
6

AL SO [l
c A BlOEHAL J6

Ole L2
ks
€Qay

Y
e

Figure 2: Food Dataset

The second part of the research focusses on getting the calorie of the detected food
item. Hence, a calorie dataset was constructed by scraping the Nutritionix database.
This data was stored in a csv file for further use. Figure [3] shows the calorie data which
has columns like "Item”, ” Calorie”, ” Cholesterol”, ”Protein”, ”Fat” etc.

Thttps://data.vision.ee.ethz.ch/cvl/datasets.xtra/ food — 101/

Item Serving Size Calories TotalFat Cholesterol Sodium Carbohydr Sugars Protein

Macaron 100 404 13 0 247 72 71 36
Beignet 100 452 25 19 326 51 27 4.9
Samosa 100 262 17 27 423 24 16 35
Tiramisu 119 392 30 210 206 24 14 5.7
Tostada 100 148 8 33 387 13 7
Dumpling 52 120 2.8 18 440 20 0.8 3.2
knish 100 403 17.8 30 1040 53.5 3.4 7.1
croquette 70 105 3.9 2 249 14 0.9 4
couscous 100 112 0.2 0 5 23 0.1 38
porridge 100 50 0.2 0 6 1 0 14
seaweed_salad 93 106 7.3 0 1144 8 3.2 2.9
chow_mein 100 459 18 0 847 67 0.9 1
rigatoni 101 160 0.9 0 1 31 0.6 5.9
beef_tartare 224 552 44 340 403 5.7 18 33
cannoli 59 108 3.8 15 48 13 10 5.5
foie_gras 100 462 a4 150 697 4.7 1
cupcake 100 305 3.7 0 413 67 43
ramen 100 436 16 0 2036 63 16 10
chicken_kiev 153 454 322 0 B 211 14 19.4
apple_pie 100 237 1 0 266 3 19
risotto 337 413 13 36 1451 54 4.7 14
fruitcake 100 324 9 5 101 62 27 2.9
chop_suey 164 582 30 86 790 48 7.5 31
scrambled_eggs 100 148 1 277 145 16 14 10
pizza 100 266 10 17 598 33 3.6 1
omelette 100 154 12 313 155 0.6 0.3 1
baby_back_ribs 242 668 a5 176 531 13 11 a8
baklava 76 306 20 21 213 29 16 5.5
beef_carpaccio 78 181 13 54 266 2 0.7 13

Figure 3: Calorie Dataset

5 Data Modelling for Food Classification

This section describes how the data was prepared before applying the model. Also, since
transfer learning is used, the preparation for fine tuning the InceptionV3 model is also
described in this section.

5.1 Dataset Sampling

The train and test dataset was sampled with 500 and 200 images from each category
respectively. This was done because of computational boundaries. Figure [] shows the
sampling of training of images and figure 5/ shows the sampling of testing images.

Sampling: Sampling train and test data. Using 500 images from each class for training and 200 images
from each class for testing

[] # sampling for training dataset
source = "/content/drive/MyDrive/food1@1/training_data"
destination = "/content/drive/MyDrive/food1el/train sample”

for food_item in range(len(food list)):
dir = os.path.join(source,food_list[food_item])
os.chdir(dir)
print("Copying images into",food list[food item])
os.makedirs(os.path.join(destination, food list[food item]))
for ¢ in random.sample(glob.glob('*.jpg"),50@):
shutil.copy(c,os.path.join(destination, food list[food_item]))

Copying images into apple pie
Copying images into baby back ribs
Copying images into baklava
Copying images into beef_carpaccio
Copying images into beef tartare
Copying images into beet_salad
Copying images into beignets
Copying images into bibimbap
Copying images into bread_pudding
Copying images into breakfast_burrito
Copying images into bruschetta
Copying images into caesar_salad
Copying images into cannoli

Figure 4: Sampling Training Data

[1 # sampling for test dataset
source = "/content/drive/MyDrive/food101/test data"
destination = "/content/drive/MyDrive/food101/test sample”

for food_item in range(len(food list)):
dir = os.path.join(source,food list[food item])
os.chdir(dir)
print("Copying images into",food list[food item])
os.makedirs(os.path.join(destination, food list[food item]))
tfor ¢ in random.sample(glob.glob('*.]jpg"'),200):
shutil.copy(c,os.path.join(destination, food list[food item]))

Copying images into french_onion_soup
Copying images into french toast
Copying images into fried_calamari
Copying images into fried rice

Copying images into frozen yogurt
Copying images into garlic_bread
Copying images into gnocchi

Copying images into greek salad

Copying images into grilled cheese sandwich
Copying images into grilled_salmon
Copying images into guacamole

Copying images into gyoza

Copying images into hamburger

Copying images into hot_and_sour_soup
Copying images into hot_dog

Copying images into huevos rancheros
Copying images into hummus

Copying images into ice cream

Copying images into lasagna

Copying images into lobster bisque
Copying images into lobster roll sandwich
Copying images into macaroni_and cheese

Figure 5: Sampling Test Data

5.2 Image Pre-processing

In this research, image pre-processing was done using the ImageDataGenerator which is
a Keras library. It pre-processedl images in real time while the model is running. Figure
[6] shows the implementation of data processing. As highlighted, the images are rescaled
or normalized so that the pixels range from [0-1] instead of [0-255] and resized to size
299X299 before feeding into the model.

#augmentation configuration for both train and test datasets
generate_train_data = ImageDataGenerator(rescale=1. / 255,shear_range=0.2,

zoom_range=0.2,horizontal_flip=True)
generate_test_data = ImageDataGenerator(rescale=1. / 255)

this is a generator that will read pictures found in subfolers of 'training directory’
and 'test directory’ and indefinitely generate batches of augmented image data

train_generator = generate_train_data.flow_from directory(training_directory, # target directory
target size=(img_height, img width), # desired image size
batch_size=batch_size, # batch size
class_mode="categorical") # since we use classification_crossentropy loss,

we need classification labels

test_generator = generate_test_data.flow_from_directory(test_directory,target_size=(img_height, img width),batch_size=batch_size,
class_mode="categorical ")

Figure 6: Data Augmentation

5.3 Downloading Pre-trained InceptionV3 Model

The base model is downloaded with weights of the imagenet dataset. The model is further
initialized by adding a global spatial average pooling layer, a fully connected layer and a

logistic layer for 120 classes as shown in figure [7]

Pre-Trained Model: Downloading pre-trained inception v3 model

[] base_model = Inceptionv3(weights='imagenet', include_top=False) # create the base pre-trained model

x = base_model.output # add a global spatial average pooling layer
x = GlobalAveragePooling2D() (x) # adding a fully-connected layer

x = Dense(12@,activation="relu’)(x) # and a logistic layer for 120 classes

X = Dropout(@.2)(x)

Figure 7: Downloading base InceptionV3 model

5.4 Fine Tuning InceptionV3

After downloading the base model, it was further fine tuned mainly to reduce overfitting
by using L2 regularization and the lambda value was set to 0.005. The fine tuned model
was then trained and compiled using SGD with a learning rate of 0.001 as shown in figure
13

Fine Tuning Inception Model

[1 # L2 regularization to reduce overfitting.
pred = Dense(number_of_labels,kernel_regularizer=regularizers.12(0.005), activation='softmax')(x) #0.005 is the value of lambda
model = Model(inputs=base_model.input, outputs=pred) #training the model
model. compile(optimizer=SGD(1r=0.0001, momentum=0.9), loss="categorical crossentropy’, metrics=['accuracy']) # compiling the model using SGD with learning rate @.61

Jusr/local/1ib/python3.7/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:375: UserWarning: The "1 argument is deprecated, use "learning_rate™ instead.
“The “1r" argument is deprecated, use "learning_rate” instead.")

Figure 8: Fine Tuning InceptionV3 model

5.5 Setting up Checkpoints and Model Implementation

While training deep neural networks, it is important to set up model checkpoints so that
in case of interruptions, the model can be restarted or reused from the last saved point.

Setting Up Checkpoints to retrieve model in case of interruptions

[1 model checkpoint = MedelCheckpoint(filepath="/content/drive/MyDrive/foodiel/best model.hdf5', verbose=1, save best_only=True)
logs = CSVLogger('/content/drive/MyDrive/foodie1/logs.log')

Figure 9: Model Checkpoint

Post this the final model was implemented for 42 epochs as shown in figure below.

6 Model Evaluation

The food classification model was mainly evaluated based on the accuracy and loss met-
rics. Multiple cases were examined to conclude the best performing model as shown in
[10] Finally, [I2] was chosen as the final model configuration as it gave the highest
accuracy.

Epoch @0009: val_loss improved from 4.24247 to 4.02802, saving model to /content/drive/MyDrive/best_model 10.hdf5
Epoch 10/10
404/404 [] - 1431s as/step - loss: 4.1220 - accuracy: ©.2437 - val loss: 3.8289 - val_accuracy: ©.3264

Epoch ©0010: val_loss improved from 4.02802 to 3.82894, saving model to /content/drive/MyDrive/best_model_10.hdfs

Figure 10: Loss and Accuracy on 10 Epochs for 101 Categories

Epoch ©0014: val_loss improved from 2.06707 to 1.98278, saving model to /content/food-101/best_model 3class.hdfs
Epoch 15/15
480/480 [] - 837s 2s/step - loss: 2.3318 - accuracy: ©.5294 - val loss: 1.8887 - val accuracy: ©.6446

Epoch ©0015: val_loss improved from 1.98278 to 1.88866, saving model to /content/food-101/best_model_3class.hdfs

Figure 11: Loss and Accuracy Plots on 15 Epochs for 72 Categories

Epoch ©0042: val_loss improved from 1.20476 to 1.18934, saving model to /content/drive/MyDrive/best_model 3class.hdfs

Epoch 43/45

480/480 [1 - 7845 2s/step - loss: 1.2070 - accuracy: ©.7830 - val loss: 1.1809 - val accuracy: @.
7786

Epoch 80043: val_loss improved from 1.18934 to 1.18088, saving model to /content/drive/MyDrive/best_model 3class.hdfs

Epoch 44/45

480/480 [1 - 790s 2s/step - loss: 1.1899 - accuracy: ©.7880 - val loss: 1.1748 - val _accuracy: ©.
7792

Epoch 60044: val_loss improved from 1.18088 to 1.17479, saving model to /content/drive/MyDrive/best_model_3class.hdfs

Epoch 45/45

480/480 [1 - 787s 2s/step - loss: 1.1705 - accuracy: ©.7917 - val loss: 1.1694 - val accuracy: @.
7803

Epoch e@e45: val loss improved from 1.17479 to 1.16938, saving model to /content/drive/MyDrive/best model 3class.hdfs

Figure 12: Loss and Accuracy on 45 Epochs for 72 Categories

The metrics were plotted so as to understand the accuracy and loss based per epoch
and the code implemented to do that has been shown in figure [13]

Plotting the accuracy and loss graph

[1] print(fit.fit.keys())
"Accuracy”
plt.plot(fit.fit['acc'])
plt.plot(fit.fit['val acc'])
plt.title('model accuracy")
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc="upper left')
plt.show()
"Loss"
plt.plot(fit.+it['loss'])
plt.plot(fit.fit['val loss'])
plt.title('model loss')
plt.ylabel('loss’)
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()

Figure 13: Model Evaluation Code

The evaluation output of the InceptionV3 model is shown in figure

FOOD101-Inceptionv3

0.8 -
0.7 1
06 1
05

0.4 1

accuracy

0.3 A
0.2 1

0.1 1 — ftrain_accuracy
* validation_accuracy

0.0 1

T T T T T

0 10 20 30 40
epoch

FOOD101-Inceptionv3

— ftrain_loss
45 \ - wvalidation_loss
40 4

35

3.0 1

loss

25 1

2.0 1

15

10 r T . . T

epoch

Figure 14: Model Evaluation Of InceptionV3 Model

7 Model Validation

To validate the model, random images from the internet were chosen and feeded into the
network. Then they were visualized to see the final output of the system. The output is
seen in figure below

calories Fat Cholesterol Sodium Carbohydrate Protein

254 1.5 37 18 52 s
Recommended Products : cannoli gnocchi prime_rib

Figure 15: Output 1: Model Correctly Classifying Gnocchi

Calories Fat Cholesterol Sodium Carbohydrate Protein

163 2.3 23 396 31 4.7
Recommended Products : gnocchi rigatoni Fruit 'n Yogurt Parfait

Figure 16: Output 2: Model Correctly Classifying Fried Rice

	Introduction
	System Configuration
	Hardware Requirements
	Software Requirements

	Constructing Calorie Dataset
	Dataset Description
	Data Modelling for Food Classification
	Dataset Sampling
	Image Pre-processing
	Downloading Pre-trained InceptionV3 Model
	Fine Tuning InceptionV3
	Setting up Checkpoints and Model Implementation

	Model Evaluation
	Model Validation

