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A Comprehensive Study to Forecast the Delhi and
Bangalore Cities Air Pollution using Machine
Learning Models

Darekar
19212739

1 Introduction

Pollution is a big issue in today’s world of rapid development. Increased traffic is a
result of population growth, while tree loss increases NO2 and SO2 levels, resulting in
air pollution. To anticipate the future, time series models like VAR,VARMAX ARFIMA
and SARIMA, as well as neural network model LSTM, have been used.This handbook
pertains to the critical configurations completed for this forecasting project. It contains
all of the data for the system settings and the numerous applications utilized in this
study. The program’s code has been showcased and explained in the below section

2 System Specification

The project was completed and executed on a laptop that met the following requirements:

Item Value

OS Name Microsoft Windows 10 Home Single Language
Version 10.0.19043 Build 19043

Other OS Description Not Available

OS Manufacturer Microsoft Corporation

System Name LAPTOP-37V2SFPU

System Manufacturer LENOVO

System Model 81WJ

System Type x64-based PC

System SKU LENOVO_MT_81WJ_BU_idea_FM_IdeaPad S340-14IIL
Processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz, 1190 ...
BIOS Version/Date LENOVO CUCN62WW!(V3.04), 03-01-2020

SMBIQOS Version 32

Embedded Controll.. 3.62

BIOS Mode UEFI

BaseBoard Manufact... LENOVO
BaseBoard Product LNVNB161216
BaseBoard Version SDK0Q55722 WIN

Figure 1: System Configuration



3 Software’s Involved

Python is the primary software for running the models and obtaining the results. The
well-known Anaconda tool was used to provide Python. The model creation and visu-
alization of the graph were done using Excel and Lucid Chart. The following links will
help you set up the software mentioned below:
url:-https://www.anaconda.com/distribution/#download-section

In (1]: from platform import python version

print (python version() \

3.6.3

Figure 2: Python Version

* —
jupyter
—

-
notebook

5.0.0
web-based, interacktive computing
notebook environmenk. Edit and run
human-readable docs while describing the
data analysis.

Figure 3: Jupyter Version

4 Data Preparation and Feature Selection

4.1 Importing the Dataset

The data was obtained from Kaggle a well-known website, for the student researcher
project. The dataset was published by Central Pollution Control Board of India(CPCB).
The dataset consist of different pollutants which will be used for predicting the air quality
index of Delhi and Bangalore cities with the help of implementing different machine


https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section

learning models on the dataset.The dataset was in .csv format,which was loaded in jupyter
for further process.

# Loading the data
data = pd.read_csv("D:/Projects/ResearchProject/original/Final.csv",encoding="150-8859-1")

Figure 4: Loading the dataset

4.2 Requires libraries

# Importing the dependencies

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import *

from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
import math

from sklearn.metrics import mean_absolute_error

Figure 5: Libraries required for implementing the model

All of the essential libraries for this project are shown in the diagram above. To handle
the dataframe for the pollution data exported in the file, the Pandas library is used. The
Numpy library was used to turn data into an n-dimensional array for the pollutants n02
and s02.The Matplotlib package is being used to construct a graph of expected pollution in
India by testing and training the dataset. Here’s a good example of the finished product.
The Warning library is the major library used here, and it suppresses all warnings in the
console for all problems caused by the code.

4.3 Data Cleaning and Data Transformation

In this section the data had many cities in the in the city column.But for our research
work we will be working on Delhi and Bangalore cities as shown inf figure(6).For that
we used data.loc and data.unique function to segregate the data only for Bangalore and
Delhi cities.Further the date column was converted into required data and time format
as shown in below figure(8).At the end we also checked for if there exist any null values
and the missing values in the dataset as shown in Figure(7) and Figure(9)



< [12] # Storing the new data into a dataframe

dataframe = data.loc[(data["location"] == 'Delhi') | (data["location"] ==

7 [13

dataframe. shape

(15218, 13)

< [14

stn_code

25
26
27
28

29

~ [15]

7 [16]

dataframe.head()

sampling_date

144 January -
M011992

January -

148 MO11992
145 January -
MO11992

January -

56 MO011992
January -

& M011992

Figure 6: Segregating data for Delhi and Bangalore
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dataframe[ 'location'].unique()
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412
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294

rspm

NaN

NaN

NaN

NaN

NaN

array([ 'Delhi’, 'Bangalore'], dtype=object)

# Checking for the null values
data.isnull().sum()

stn_code
sampling date

state

location
agency

type
s02
no2
rspm
spm

location_monitoring_station

pm2 5
date

dtype: int64

144874
a

a

a
145478
5398
34643
16238
48219
237388
27488
426421
a

Figure 7: Checking Null values
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~ [17] Hconverting date column into Date-time format
dataframe[ 'date’]=pd.to_datetime(dataframe[ 'date’])

Jusr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

v [18] # dropping the columns which are not useful
dataframe.drop(['stn_code', 'sampling_date', 'location_monitoring station’,'agency'],axis=1,inplace=True)

Jusr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4174: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydats.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

errors=errors,

~ [19] dataframe.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 15210 entries, 25 to 435768
Data columns (total 9 columns):

#  Column Non-Null Count Dtype

@ state 15210 non-null object
1 location 15218 non-null object
2 type 15210 non-null object
3 aan EPEV=-S R LI )

Figure 8: Converting Date column into Date-Time format

[21] # Filling the null values with the mean of that particular feature
dataframe.fillna(dataframe.mean(),inplace = True)

Jusr/local/1ib/python3.7/dist-packages/ipykernel_launcher.py:2: Futurelarning: DataFrame.mean and DataFrame.median with numeric_only=None will include datetime64 and

/usr/local/lib/python3.7/dist-packages/pandas/core/series.py:4536: SettingWithCopyWarning
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
downcast=downcast,

[22] # Here we observe there are no missing values
dataframe.isnull().sum()

state
location
type

so2

no2

rspm

spm

pm2_5

date

dtype: int64

® oo

ceeee®

Figure 9: Filling the null values with the mean of the features selected

4.4 Feature Selection and Splitting the Data

As we are working with time-series model which handles a univariate variable so we will
choose s02 as the feature.We will split the data into 80:20 ratio 80% into training and
20% into testing.Similarly for LSTM model we will split the data into 95:5 ratio,where
95% will be training and 5% will be testing as shown in Figure(11).Hence we will be
taking no2, so2, spm, rspm and pm2.5 as our feature and for the label part we will be
sending the so2 data into label. Here in our dataset, we will split the data by considering
the past 1 day data of the above 5 features and will try to predict the 2nd day so2 air
pollutant volume.



7 [28] # Splitting the data into train and test as we are working with time-series model which handles a univariate variable so we will choose so2 as the feature
# We will split the data into 80:20 ratio 80% into training and 20% into testing
split = len(dataframe) - int(®.2*len(dataframe))
train, test = dataframe['so2'][@:split], dataframe['so2'][split:]

Figure 10: Feature Selection and splitting of Data for Timeseries models

[40] # TRANSFORMING OUR DATASET TO A STANDARD SCALER

Scaler = StandardScaler()
o Scaler = Scaler.fit(df_for_training)
[42] df_for_training_scaled = Scaler.transform(df_for_training)

[43] len(df_for_training_scaled)

15218

[44] x_train
y_train

[1
[1

[45] # We will split the data into 95% training and 5% testing
training_size = int(len(df_for_training scaled)*@.95)
test_size = len(df_for_training_scaled)-training_size
train_data,test_data=df_for_training_scaled[®:training_size,:],df_for_training_scaled[training_size:len(df_for_training_scaled),:7]

[46] print(train_data.shape,test_data.shape)

(14449, 4) (761, 4)

Figure 11: Feature Selection and splitting of Data for LSTM

4.5 Parameter Calibration to find the p,q,d values for our time-
series model

Parmeter clibrtin is a tehnique in which we must analyze the proprite ,q,d vlus that
must be ssed when implementing our univrite time series mdels like SARIMA, VAR
and ARFIMA which we shall 1k into further.We had performed the Augmented-Dickey-
Fuller(ADF) test to check our data is stationary or not.From the ADF we got the p-value
less than 0.05,ie 0.00 as shown in figure(12),which specifies that our data is stationary
and we can proceed for implementing the time series models.We also performed hust test
to check wheter our data is stationary or not.From the Figure(13) we can specify the
thurst value is between 0 and 1,i.e 0.2746,which indicates that our data is stationary.

© # The next step is to check whether the time series we are dealing with is stationary or not using the ADF test (Augmented Dickey-Fuller)

sa.stattools import adfuller

' % result[0])
sult[1])

|
sult[4].items():
' % (key, value))

Critical Values
1%: -3.431
S%: -2.862
10%: -2.567

Figure 12: Augmented Dickey Fuller Test



[35] # e can also confirm the stationarity and non-stationarity of the time-series feature using hurst exponent
import hurst
H, c,data = hurst.compute_Hc(train)
print("H = {:.4f), ¢ = {:.4f)}".format(H,c))

H = 8.2746, ¢ = 1.0803

Figure 13: Augmented Dickey Fuller Test

5 Implementation and Evaluation of the Models

5.1 SARIMA

The below Figure(14) and Figure(15) showcase the SARIMA model.From the Figure(15)Quantile
Quantile plot is showing the almost the same distribution with the predicted line,which
showcased that our model is fitted and forecasting better predictions.

© # Fitting our model on a time-series model Named SARIMAX
import statsmodels.api as sm
model = sm.tsa.statespace.SARIMAX(train,order=(0,0,1), seasonal_order=(0,2,0,12))
results = model.fit()
print(results. summary(). tables[1])

# Use plot diagnostics with results calculated from above
results.plot_diagnostics(figsize =(15,8))
plt. show()

fusr/local/1ib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:219: ValueWarning: A date index has been provi
* ignored when e.g. forecasting.', ValueWarning)

coef std err z P>z| [e.025 0.975]
ma.l1 0.2389 @.005 44.831 0.000 0.228 0.249
signa2 208.5893 1.228  169.828 0.000 206.182 210.997

Figure 14: Implementing SARIMA
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Figure 15: SARIMA Model Prediction

[ 1 from sklearn.metrics import mean_squared_error,mean_absolute_error
from math import sqrt
mae_sarima = mean_absolute_error(test,prediction_sarima)
mse_sarima = mean_squared error(test,prediction_sarima)
print(mae_sarima)
print(mse_sarima)
rms = sqrt(mean_squared_error(test, predictien_sarima))
print(rms)

549.5979384832791

844773.18187@534
919.1154346291181

Figure 16: SARIMA Evaluation



5.2 LSTM Model

LSTM mdel reles the hidden lyer neurns f the RNN by unique set f memry ells, nd the stte
f the memry ells t s its key. The LSTM mdel mintins nd udtes the stte f memry ells using
the gte struture by filtering infrmtin.In below Figure(17) we have used relu activation for
executing the model.From Figure(17),we also build a sequential LSTM architecture which
consists of 3 hidden LSTM layers and in each layer there are 60 LSTM units and 2 fully
connected layer,where one layer consists of 64 hidden neurons and the output layer consist
of only 1 neuron as we have to predict only 1 outcome.The Figure(18) specifies that for
compiling the LSTM model we have used adam optimizer,as well as for calculating the
loss function and the metrics we have used MAE(Mean Absolute Error) and MSE(Mean
Squared Error).The Figure(19) showcased the trained model executed for 20 epochs and
batch size of 32.After running 20 epochs we see that the Mae is 0.70.

q
pout = 0.2))

rain. shape[1], x_train.shape[2]), return_sequences=True,dropout = 0.2, recurrent_dropout = 0.2))
opout = 0.2, recurrent_droy

1stm (LSTH) (tone, 365, 60) 15600

Tetn 1 (LsT) (lione, 365, 60) 29048

stz (LsT) (lione, 60) 29040
(lione, 64) 304
(lione, 1) &

Figure 17: Building of LSTM Model

[54] # Compiling the model

model_unilstm.compile(optimizer = 'adam',loss = 'mse’,metrics = ['mae’])

Figure 18: LSTM Model

[52] %*%time
# FITTING THE MODEL FOR TRAINING
history = model unilstm.fit(x_train,y train , epochs=20, batch_size = 32)

Epoch 1/20

252/452 [ ] - 85 6ms/step - loss: @.8915 - mae: ©.7045
Epoch 2/20
452/452 [ 1 - 3s 6ms/step - loss: 8.8915 - mae: ©.7045
Epoch 3/20
452/452 [ ] - 3s 6ms/step - loss: 8.8915 - mae: ©.7045
Epoch 4/20
452/452 [ ] - 3s 6ms/step - loss: ©.8915 - mae: ©.7045
Epoch 5/20
452/452 [ ] - 3s 6ms/step - loss: @.8915 - mae: ©.7045
Epoch 6/20
452/452 [ ] - 35 6ms/step - loss: ©.8915 - mae: ©.7045
Epoch 7/20
252/452 [ ] - 3s 6ms/step - loss: @.8915 - mae: ©.7045
Epoch 8/20
452/452 [ 1 - 3s 6ms/step - loss: 8.8915 - mae: ©.7045
Epoch 9/20
452/452 [ ] - 3s 6ms/step - loss: 8.8915 - mae: ©.7045
Epoch 10/20
452/452 [ ] - 3s 6ms/step - loss: ©.8915 - mae: ©.7045
Epoch 11/20
452/452 [ ] - 3s 6ms/step - loss: @.8915 - mae: ©.7045
Epoch 12/20
452/452 [ ] - 35 6ms/step - loss: ©.8915 - mae: ©.7045
Epoch 13/20
252/452 [ ] - 3s 6ms/step - loss: @.8915 - mae: ©.7045
Epoch 14/20
452/452 [ 1 - 3s 6ms/step - loss: 8.8915 - mae: ©.7045
Epoch 15/20
452/452 [ ] - 3s 6ms/step - loss: 8.8915 - mae: ©.7045
Epoch 16/20
452/452 [ ] - 3s 6ms/step - loss: ©.8915 - mae: ©.7045
Epoch 17/20
452/452 [ ] - 3s 6ms/step - loss: @.8915 - mae: ©.7045
Epoch 18/20
452/452 [ 1 - 35 6ms/step - loss: ©.8915 - mae: ©.7045

Figure 19: LSTM Model



5.3 ARFIMA Model

Arfima models was implemented using 'Rugarch’ library.As we can see in Figure(20) the
likelihood for the optimal parameter section is less than 0.5 which is -21.6,this justifies
that our novel model has done a decent work. Whereas the Weighted Lunj box test specifies
that p-value is less than the statistical value.The overall performance of the model was

GaRCH Model Fit w

conditional variance oynamics

GARCH Model : SGARCH({L,1)
mean Mmodel : ARFIMALL . d,0)
oistribucion : norm

oprimal Parameters

Estimate 5ud. Error t value Pri=It|)

fiu 5. 297010 7.919500  0.79513 0.42654
arl =0, 377230 0.013276 -28.41399 0. 00000
arfima 1.000000 A M MA
omega 1,123942 0.195624 5.74541 0.00000
alphal 0.083278 0.008190 10.16822 0.00000
betal 0,®03303 0. 009595 94.16709 0. 00000

robust standard Errors:
Estimate std. Error t value Pri=|Tt|)

L] &, 297010 28. 863370 0.21817 0.827300
arl =0.377230 0.013907 -27.12%27 0.000000
arfima 1.000000 LY LT ha
omega 1.123542 0. 510384 2.20215 0.027655
alphal ©.083278 0.021390 3.89330 0.000099
betal 0. 903503 0.026455% 34.15300 O.000000

LogLikelihood : -21166.87

Information Criteria

akaike 6.B385
Bayes . B430
shibata 6.B3IB5

Hannan-guinn 6. B403

welighted Ljung-80x Test on Standardlzed residuals

statistic p-value

Lag(1] 39,7 2.955e-10
Lagf2=(psql={p+q)-1][2 368.5 0.000e+00
Lagle=(p+q)+(p+q)-1] [5] G1l8.7 0. 000w+00
d.o, f=1

HO : Mo serial correlation

weighted Ljung-Box Test on standardized Squared mesiduals

statistic p-value

Lagl[1] 2.134 0,1441
Lag[2*(p+q)+{p+q)-1][5] 3.240 0.383%
tanld®inenleinenli=1704a1 118 0 A13%

Figure 20: Arfima Model

5.4 VAR Model

We performed Vector Auto Regressive Model(VAR) model our second novel approach
to forecast the air pollution of Delhi and Bangalore cities.The code implementation for
model is shown in Figure(21).As we can see VAR model in Figure(22) it was attempting
to capture the underlying time series pattern for the so2.Similarly we performed VARMA
(Vector Auto regression Moving-Average) another variant of VAR, by using similarpackage
which was used for VAR model as well with the help of statsmodels package. The model

prediction graph is shown in Figure(23).




[56] from statsmodels.tsa.vector_ar.var_model import VAR

from random import random

[57] # Common code for display result

def

[58] def

show_graph(dfl,df2,title):
data = pd.concat([df1, df2])
it ras=t Sy Amlneme, dres=im)
for col in data.columns:
if col.lower().startswith('pred'):
data[col].plot(label=col,linestyle="dotted")
else:
data[col].plot(label=col)
plt.title(title)
plt.legend()
plt.show()

VAR_model(train,test):

# fit model

model = VAR(train)

model_fit = model.fit()

# make prediction

yhat = model_fit.forecast(model fit.y, steps=len(test))

res=pd.DataFrame({"Predl":[x[8] for x in yhat], "Pred2":[x[1] for x in yhat],
"Act1":test["Act1"].values, "Act2":test["Act2"].values})

return res

df_train = pd.DataFrame({'Act1':[x + random()*10 for x in range(8, 100)],

'Act2':5@+np.sin(np.linspace(@, 2*np.pi, 100))*50})

df_test = pd.DataFrame({'Actl':[x + random()*10 for x in range(101, 201)],

"Act2' :5@+np.sin(np.linspace(@, 2*np.pi, 100))*50})

df_ret = VAR_model(df_train, df_test)

show_graph(df _train, df _ret, "Vector Autoregression (VAR)")

Figure 21: VAR Model Implementation

150

100

0bj = getattr(results, attr)

Vector Autoregression (VAR)

T
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Figure 22: VAR Model Output
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Vector Autoregression Moving-Average (VARMA)

0 % % B 00 15 150 115 20

Figure 23: VARMA Model Output
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