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1 Introduction

The motive of this report is to provide details of the process followed during the coding
phase of the research project. Hardware and software configurations are defined to re-
produce the research in future. This contains the programming and employment stages
for glossy code execution and the steps taken for executing the code.

2 System Configuration

2.1 Hardware Configuration

The hardware description and specification is shown in Figure 1 on which the code is
executed:

Windows edition

Windows 10 Pro

il |\
© Microsoft Corporation. All rights reserved. .. Wl n d OWS 1 O

System
Processon Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz 2.60 GHz
Installed memory (RAM]):  8.00 GB (7.69 GB usable)
System type: B4-bit Operating System, x64-based processor

Pen and Touch: Touch Support with 2 Touch Points

Figure 1: Hardware configuration of the system

2.2 Software Configuration

This section provides the details of the software and its specifications.

2.2.1 Anaconda - Jupyter Notebook:

Anaconda is a open sourceﬂ Anaconda is a Python and R distribution (prebuilt and
preconfigured collection of packages) that is commonly used for data science. Anaconda
Navigator is a GUI tool that is included in the Anaconda distribution and makes it easy
to configure, install, and launch tools such as Jupyter Notebook. It can downloaded from
the official website of AnacondaP} The download options for Windows, MacOS and Linux

'https://www.anaconda.com/
Zhttps://www.anaconda.com/products/individual
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is shown in Figure 2

< C @ anaconda.com/products/individual
5 Apps @ Wondershare Filmo.. 3 Mytimetable —Pu.. @ Lbrayy T Moodle 32 ITNCI € lycatopup [ DateComp (@ NCICOVID-19Que.. 3 National Collegeof.. ¢F YouTubetoMp3C.. [ terig maamu
§ ’ ANACONDA.. Products Pricing Solutions Resources Blog Company Get Started

v

Individual Edition

YO u r d a ta SC l e n Ce Anaconda Individual Edition
toolkit

With over 25 million users worldwide, the open-source Individual For Windows
Python 3.8 « 64-Bit Graphical Installer » 477 MB

Edition (Distribution) is the easiest way to perform Python/R data
science and machine learning on a single machine. Developed for
solo practitioners, it is the toolkit that equips you to work with Get Additional Installers

thousands of open-source packages and libraries. == | 6 | é

Figure 2: Anaconda Installer Download Page

After installing the anaconda, the home page of Anaconda Navigator will display different
Integrated Development Environment (IDE) Figure 3. Jupiter Notebook IDE is launched
for code execution and development of various models using Python version 3.
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Figure 3: Anaconda Navigator Home Page

2.2.2 Other Softwares

For report documentation we used Overleaf, Figure 4 shows the overleaf home page for
report documentation.
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Figure 4: Overleaf Project

The data visualization is done by using Scikit-learn packageﬂ in Python as shown in
Figure 5. The line chart shows the comparison of all models based on ROC Curve plot.

ROC Comparision of All Models
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Figure 5: Data visualization of all models based on ROC Curve plot

3https://scikit-learn.org/0.24/visualizations.html
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3 Data Preperation

The dataset was taken from Kaggle repositoryEl as shown in Figure 6. The dataset has
one folder and a csv file is provided with category (0 as Normal women and 1 as PCOS

= kaggle Q, Ssearch

® Home

9P Competitions © paeat

@ Datasets Polycystic ovary syndrome (PCOS)

<> Code pcos dataset contains all physical and clinical parameters of patients

B Dbiscussions
- prasoon kottarathil « updated a year ago (Version 3)

) Courses "
Data Tasks Code Discussion (15 Activity  Metadata Download (137 KB} §

~ More

User Rankings @ Usability 2.7 & License Data files @ Original Authars % Tags “°

finn

Figure 6: Polycystic ovary syndrome (PCOS) dataset for research project

After this dataset was loaded into the python by using this code as shown in Figure 7.

Loading Dataset

H

R R Data Selection
# Reading the data from csv
dataset = pd.read_csv("C:\\Users\\2Pac\Downloads\\PCOSNEW.csv")

W

Figure 7: Loading the PCOS datset

Then we imported all the libraries as shown in Figure 8.

M 1 from _ future  import print_function
2 import lime
3 import lime.lime_tabular
4 import seaborn as sns
5 import matplotlib.pyplot as plt
6 import pandas as pd
7 import numpy as np
¢ from time import time
9 from collections import Counter
10 from sklearn.inspection import permutation_importance
11 import sklearn.datasets
12 import sklearn.ensemble
13 from sklearn.svm import SWC
14 from sklearn.tree import DecisionTreeClassifier
15 from sklearn.ensemble import RandomForestClassifier
16 from sklearn.neural_network import MLPClassifier
17 from sklearn.linear_model import LogisticRegression
13 from sklearn import model selection
19 from sklearn.ensemble import VotingClassifier
@ from sklearn.model selection import GridSearchCv
1 from sklearn.model_selection import cross_val_score

3 ## Libraries for Upsampling and splitting of dataset into train and test
24 from sklearn.model_selection import train_test split
25 from imblearn.over_sampling import SMOTE

## Libraries for Checking various model performances Like Confusion Matrix,Accuracy Score etc
22 from sklearn.metrics import confusion matrix

o from sklearn.metrics import accuracy score

36 from sklearn.metrics import recall_score

from sklearn.metrics import precision_score

32 from sklearn.metrics import f1_score

33 from sklearn.metrics import classification_report

34 from sklearn.metrics import roc_curve

35 from sklearn.metrics import roc_auc_score

Figure 8: Importing Libraries

Further, after checking the missing values in our dataset by using isna().sum() function.

“https://www.kaggle.com/prasoonkottarathil/polycystic-ovary-syndrome-pcos
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Univariate Feature selection methodﬂ were implemented to select the top 10 features by
using SelectKbest and Chi2 packages which will help us to detect the PCOS, code shown
in Figure 9.

Univariate feature selection method

M
# Feature Extraction with Univariate Statistical Tests (Chi-squared for classification,
X = dataset.drop('PCOS’, axis = 1)
5 y = dataset.PCOS
M from sklearn.feature_selection import SelectkBest

from sklearn.feature_selection import chi2, mutual_info_classif

test = SelectkBest(score func=chi2, k=18)
5 test.fit(X, y)

1]: SelectkBest(score func=cfunction chi2 at x@086827341805310>)

[l scores = []
num_features = len(X.columns)
3 for i in range(num_features):
score = test.scores_[i]
scores.append((score, X.columns[i]))

print (sorted(scores, reverse - True))

Figure 9: Implementation of Univariate Feature Selection Method

4 Data Transformation

After the data pre-processing data, new dataframe is created based on top 10 features as
shown in Figure 10.

New Dataframe based on top 10 features

M 1 |#Making a new dataframe after implementing feature selection
2 | x = dataset[['Avg. F size (R) (mm)', 'FSH(mIU/mL)", 'Follicle No. (R)",'Follicle MNo. (L)','AMH(ng/mL)","FSH/LH', 'Cycle(R/I
3y = dataset[["PCO5"]]

3

Figure 10: New Dataframe based on top 10 features

After making a new dataframe, the data is split into train and test having test size as
0.25 and random state as 27 as shown in Figure 11.

Splitting

M ## Divide framingham dataset into train and test set as 75X and 25 X ratio respectively by using split function
#X = dotaset ilocf['I beta-HCG(mIU/mL)’, "LH(mIU/mL) ", 'FSH(mIU/mL)}", ‘Follicle No. (R)','Follicle No. (L)', 'AMH(ng/mL) ",
3 #y = dataset.iloc[['PCOS']]
1 x_train, x test, y_train, y test = train_test split(x, y, test_size=8.25,random_state=27)
5 print (x_train.shape, y_train.shape)
> print (x_test.shape, y_test.shape)

(4@5, 1) (4@5, 1)
(136, 10) (136, 1)

Figure 11: Spliiting of dataset into train and test set

Furthermore, SMOTE was used to solve the imbalance problem by randomly increasing

Shttps://github.com/solegalli/feature-selection-for-machine-learning/blob/master/
05-Filter-Statistical-Tests/05.3-Univariate-selection.ipynb
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minority class examples by replicating them. It was used on training and testing set
separately as shown in Figure 12.

SMOTE

M ## Upsampling the Training set

sm = SMOTE(random_state=23, sampling_strategy='minority"}
¥_train sm, y train_sm = sm.fit_resample(x_train, y_train)
print(len(x_train_sm), len(y_train_sm))

| ## Upsampling the Testing set
sm_test = SMOTE(random_state=23, sampling strategy='minority')
x_test_sm, y test sm = sm test.fit resample(x test, y test)
print(len(x_test_sm), len(y_test_sm})

Figure 12: SMOTE on training and testing set

5 Implementation of Baseline Models

After data pre-processing and data transformation, data can be used for implementation
using the baseline models such as Graident Boosting, Random Forest, Logistic Regression,
HRFLR, SVM, Decision Tree, MLP.

5.1 Gradient Boosting
5.1.1 Model Building

After importing the Gradient Boosting classifier, as it helps to minimize the loss, or
the difference between the actual class value of the training example and the predicted
class value. The hyper parameter settings were (n_estimators = 20,learning_rate =
0.5, maz_features = 2, max_depth = 2, random_state = 0). The code for model develop-
ment of Gradient Boosting is shown in Figure 13. Moreover, Data were prepared for start
and end time by using fit() function and prediction were made on training and testing
time.

Gradient Boosting Classifier |

M 1 #from sklearn.metrics import mean squared error,r2 score
from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier(n_estimators=20, learning rate = 8.5, max_features=2, max_depth = 2, random state = ©)
gb.fit(x_train, y_train)
results = {}

C:\Users\2Pac\anaconda3\1ib\site-packages\sklearn\utils\validation.py:63: DataConversionharning: A column-vector y was passe
d when 2 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel()
return f(*args, **kuargs)

M #Training the model
> start - time()
gb.Fit(x_train_sm, y_train_sm)
end = time()
results[‘training_time'] = end - start

7 #Testing the model
5 start = time()

GB_Prediction = gb.predict(x_test_sm)
o end - time()
1 pesults['testing_time'] = end - start

Figure 13: Model building of Gradient Boosting



5.1.2 Model Evaluation

The evaluation matrices were accuracy, precision, recall, f1,score, ROC curve plot and
AUC score. Further, confusion matrix and classification report is generated using sk-
learn.metricd’l The code and calculation for these matrices is shown in Figure 14

## Accuracy Score
GB_Accuracy = accuracy score(y_test_sm, GB_Prediction)
print("The accuracy score for Gradient Boosting in percentage is: "+"{:.2f}".format(GB_Accuracy*1e8))

3 ## Precision
1 GB_Precision = precision_score(y_test_sm, GB_Prediction)
print("The precision score for Gradient Boosting is: "+"{:.2f}".format(GB_Precision))

## Recall Feature

GB_Recall = recall score(y_test_sm, GB_Prediction)

print("The recall score for Gradient Boosting is: "+"{:.2f}".format(GB_Recall))
38 | #F F1 Score
31 GB_Fl1Score = f1_score(y_test_sm, GB_Prediction)
2 print(“"The F1 Score for Gradient Boosting is: "+"{:.2f}".format(GB_FlScore))

34 | ## Confusion Matrix
GB_Confusion_Matrix=confusion_matrix(y_test sm,GB_Prediction)
print(“"Confusion_Matrix: \n\n",GB_Confusion_Matrix, "\n" )
## Classification Report

39 target_names =['class @', 'class 1°]
12 print(classification_report(y_test_sm,GB_Prediction,zero_division=1,target_names=target_names))

Figure 14: Model evaluation of Gradient Boosting

After implementing the above code we got the output for all the matrices as shown in
Figure 15.

The accuracy score for Gradient Boosting in percentage is: 82.78
The precision score for Gradient Boosting is: .85

The recall score for Gradient Boosting is: 8.80

The F1 Score for Gradient Boosting is: ©.82

Confusion_Matrix:

[[77 13]

[18 72]]
precision  recall fl-score  support
class @ .81 8.86 .83 9%e
class 1 .85 ©.80 .82 9e
accuracy 0.83 1ge
macro avg .83 .83 ©.83 18e
weighted avg 9.83 9.83 9.83 18@

Figure 15: Confusion matrix and Classification report of Gradient Boosting

Now we will check how the model is expected to perform in general when used to make
predictions on data not used during the training of the model by using the K- fold Cross
validation accuracy selecting k=10,20,30,40.The code is shown in Figure 16.

Shttps://scikit-learn.org/0.15/modules/model_evaluation.html
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## Cross Validation
#for K=18

| GB_accuracies = cross_val_score(estimator = gb, X= x_train_sm, y = y_train_sm, cv = 18)
print("Cross Validation Accuracy: {:.2f} %".format(GB_accuracies.mean()*1e8})
print("Cross Validation Standard Deviation: {:.2f} %".format(GB_accuracies.std()*10@))

48 | #for K=28
49 GB_accuracies = cross_val score(estimator = gb, X= x_train_sm, y = y train_sm, cv = 28)

print("Cross Validation Accuracy: {:.2f} %".format(GB_accuracies.mean()*188))
print("Cross Validation Standard Deviation: {:.2f} %".format(GB_accuracies.std()*16@))

#for K=36

GB_accuracies = cross_val_score(estimator = gb, X= x_train_sm, y = y_train_sm, cv = 38)
print("Cross Validation Accuracy: {:.2f} %".format(GB_accuracies.mean()*108))

print("Cross Validation Standard Deviation: {:.2f} %".format(GB_accuracies.std()*16@))
#for K=48
GB_accuracies = cross_val_score{estimator = gb, X= x_train_sm, y = y_train_sm, cv = 48)

print("Cross Validation Accuracy: {:.2f} %".format(GB_accuracies.mean()*18e})
print("Cross Validation Standard Deviation: {:.2f} %".format(GB_accuracies.std()*168))

Figure 16: Model evaluation of K fold cross validation of Gradient Boosting

After implementing the above code we got the output of K fold cross validation ac-
curacy for Gradient Boosting as shown in Figure 17.

Cross Walidation Accuracy: 85.86 %
Cross Validation Standard Deviation: 5.82 %

Cross Walidation Accuracy: 86.73 %
Cross Validation Standard Deviation: 6.92 %

Cross Walidation Accuracy: 85.96 %
Cross Validation Standard Deviation: 8.87 %

Cross Validation Accuracy: 86.86 %
Cross Validation Standard Deviation: 18.21 %

Figure 17: Output of K fold cross validation accuracy

5.2 Random Forest
5.2.1 Model Building

After importing the Random Forest classifier, as it builds multiple decision trees and
merges them together to get a more accurate and stable prediction. The hyper parameter
settings were (n_estimators = 10, eriterion = entropy, random_state = 0).The code for
model development of RF Classifier is shown in Figure 18.



Random Forest Classifier

M 1 |RF_classifier =

w o

results = {}

4 | #Training the model
5 start = time()
RF_classifier.fit(x_train_sm,
end = time()

8 | results['training_time'] =

_train_sm)
end - start]

18 #Testing the model
11 | start = time()
RF_Prediction =
end = time()

14 | results['testing_time'] = end - start

RandomForestClassifier{n_estimators = 18, criterion =

RF_classifier.predict(x_test sm)

Figure 18: Model building for Random Forest

5.2.2 Model Evaluation

‘entropy’ ,random_state =

)

The RF model is evaluated in a same way as explained in Gradient Boosting. The code
is same for RF as well using the RF _classifier.fit() and RF _classifier.predict() function for
evaluating the matrix as shown in Figure 19. Figure 20 shows the output of confusion
matrix, classification report, and cross validation accuracy when k=10,20,30,40.

## Accuracy Score

## Precision
RF_Precision =

RF_Accuracy = accuracy_score(y_test_sm, RF_Prediction)
print("The accuracy score for Random Forest in percentage is:

precision_score(y_test_sm, RF_Prediction)

print(“The precision score for Random Forest is: "+"{:.2f}".format(RF_Precision))

## Recall Feature

RF_Recall = recall_score(y_test_sm, RF_Prediction)
print("The recall score for Random Forest is: "+"{:.2f}".format(RF_Recall))

## F1 Score
RF_FiScore =
print("The F1 Score for Random Forest is:

## Confusion Matrix

## Cross Validation

#for K=1@

AF_accuracies = cross_val_score(estimator =
print("Cress Validation Accuracy: {:.2f} %".
print("Cress Validation Standard Deviation:

#for K=28

RF_accuracies =
53 print("Cress validation Accuracy: {:.2F} %".
54 print("Cross Validation Standard Deviatien:

cross val score(estimator =

#for K=38

RF_accuracies = cross_val_score(estimator =
print("Cross Validation Accuracy: {:.2f} %".
print("Cross Validation Standard Deviation:

#for K=48

RF_accuracles = cross_val_score(estimator =

63 print("Cross Validation Accuracy: {:.2f} %".
o4 print("Cross Validation Standard Deviation:

f1_score(y_test_sm, RF_Prediction)
ST

.2f}" . format(RF_F1Score))

RF_Confusion Matrix=confusion_matrix(y_test sm,RF_Prediction)
print(“"Confusion Matrix: \n\n",RF_Confusion_Matrix, "\n" )

RF_classifier, X= x_train_sm, y =
format(RF_accuracies.mean()*10@))
{:.2f} %" .format(RF_accuracies.std()*180))

y_train_sm,

RF_classifier, X= x train sm, y = y train_sm,
format(RF_accuracies.mean()*108))
{:.2f} %" .format{RF_accuracies.std()*1e2))

RF_classifier, X= x_train_sm, y = y_train_sm,
format(RF_accuracies.mean()*10@))
{:.2f} %" .format(RF_accuracies.std()*1e@))

RF_classifier, X= x_train_sm, y = y_traln_sm,
format(RF_accuracies.mean()*16@))
{:.2f} %" .format(RF_accuracies.std()*188))

Figure 19: Model evaluation for Random Forest

“4+"{:.2f}".format(RF_Accuracy*1ee))

18)

20)

28)

40)



The accuracy score for Random Forest in percentage is: 85.00
The precision score for Random Forest is: .88

The recall score for Random Forest is: @.81

The F1 Score for Random Forest is: .84

Confusion_Matrix:

[[86 18)
[17 73]]

precision recall fl-score support

class @ 8.82 0.89 0.86 %9
class 1 .88 e.81 8.84 %8
accuracy 0.85 180
macro avg 8.85 8.85 0.85 188
weighted avg .85 0.85 .85 180 -

Cross Validation Accuracy: 86.52 %
Cross Validation Standard Deviation: 5.38 %

Cross Validation Accuracy: 88.18 %
Cross Validation Standard Deviation: 7.0 %

Cross Validation Accuracy: 87.83 %
Cross Validation Standard Deviation: 7.88 %

Cross Validation Accuracy: 88.806 %
Cross Validation Standard Deviation: 9.44 %

Figure 20: Model evaluation output for Random Forest

5.3 Logistic regression
5.3.1 Model Building

After importing the logistic regression classifier, as it is used to predict the categorical
dependent variable using a given set of independent variables. The hyper parameter
setting are (max_iter=10000,random_state = 0). The code for development of Logistic
Regression is shown in Figure 21.

LOGISTIC REGRESSION

M 1 LR _classifier = LogisticRegression(max_iter=18e86,random_state = 8)

results = {}

#Training the model

start = time()
LR_classifier.fit(x_train_sm, y train_sm)
end = time()

results['training time'] = end - start

#Testing the model

start = time()
12 LR_Prediction = LR_classifier.predict(x_test_sm)
13 end = time()

results[ 'testing time'] = end - start

Figure 21: Model Building for Logistic Regression

5.3.2 Model Evaluation

The model is evaluated by using the two variables such as LR _classifier.fit() and LR_classifier.predict().
The code for accuracy, precision, recall, fl-score, cross validation accuracy is shown in

Figure 22. The output confusion matrix, classification report and cross validation accur-

acy is shown in Figure 23.
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## Accuracy Score
LR _Accuracy = accuracy score(y_test_sm, LR Prediction)
print("The accuracy sc

for Logistic Regression in percentage

“{:.2f}" .format(LR_Accuracy*160))

## Precision
LR_Precision = precision _score(y_test_sm, LR Prediction)
print(“The precision score for Logistic Regression is: "+"{:.2f}".format(LR_Precision))
## Recall Feature
LR_Recall = recall_score(y_test_sm, LR_Predicti
print("The recall score for Logistic Regression is: "

“.format (LR_Recall))

## F1 Score
LR_F1Score = fl_score(y_test_sm, LR_Prediction)
5 print("The F1 Score for Logistic Regression is

2F)". format (LR_F1Score))

## Confusion Matrix
LR_Confusion_Matrix=confusion_matrix(y_test_sm,LR Prediction)
) print(“confusion_Matrix: \n\n",LR_Confusion_Matrix, “\n" )

42 ## Classification Report

3 |target_names -['class @, "class 1°]

44 print(classification_report(y_test_sm,LR Prediction,zero division-1,target_names-target names))
## Cross Validation
#for K=18
LR_accuracies = cross_val_score(LR_classifier, X = x train_sm, y = y train_sm, cv = 18)
print(“Cross Validation Accuracy: {:.2f} %".format(LR accuracies.mean()*168))
print("Cross Validation Standard Deviation: .2f} X".format(LR_accuracies.std()*1ee))

#for K=20

LR_accuracies = cross_val score(LR_classifier, X = x_train_sm, y = y_train_sm, cv = 20)
print("Cross Validation Accuracy: {:.2f} %".format(LR_accuracies.mean()*168))
print("Cross Validation Standard Deviation: {:.2f} %".format(LR_accuracies.std()*160))

#for K=30

LR_accuracies = cross_val_score(LR_classifier, X = x_train_sm, y = y_train_sm, cv = 3@)
print(“Cross Validation Accuracy: {:.2f} %".format(LR_accuracies.mean()*168))
print("Cross Validation Standard Deviation: {:.2f} X".format(LR_ accuracies.std()*188))

#for K=40

LR_accuracies = cross_val_score(LR_classifier, X = x_train_sm, y = y_train_sm, cv = 40)
print("Cross Validation Accuracy: {:.2f} %".format(LR_accuracies.mean()*108))
print("Cross Validation Standard Deviation: {:.2f} %".format(LR_accuracies.std()*160))

Figure 22: Model evaluation for Logistic Regression

The accuracy score for Logistic Regression in percentage is: §7.78
The precision score for Logistic Regression is: 0.88

The recall scare for Logistic Regression is: 0.88

The F1 Score for Logistic Regression is: 0.88

Confusion_Matrix:

179 11]
{11 791
precision  recall fi-score support
class @ 0.8 .88 .88 %
class 1 0.88 .88 .83 %
accuracy .88 180
o avg 0.88 .88 .88 188
weighted avg 6.88 .88 .88 188

Cross Validation Accuracy: 85.04 %

Cross Validation Standard Deviation: 4.87 %
Cross Validation Accuracy: 84.87 %

Cross Validation Standard Deviation: 7.16 %

Cross Validation Accuracy: 85.20 %
Cross Validation Standard Deviation: 8.17 %

Cross Validation Accuracy: 84.92 %
Cross Validation Standard Deviation: 9.98 %

Figure 23: Model evaluation output for Logistic Regression

5.4 Hybrid Random Forest and Logistic Regression (HRFLR)
5.4.1 Model Building

First the sub model were created using the estimators = [|, than logistic model were
defined using hyper parameter setting as (random_state = 0,C=1, max_iter=10000).
After this three Random Forest models were defined such as modell21, 122 and 123.
At last HRFLR model were ensemble using the voting classifier package taking voting =
soft. The code is shown in Figure 24.
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M| 1 # Create the sub-model
2 HRFLR_estimators = []

1 # Defining 1 Logistic Regression Model
5 modelll = LogisticRegression(random_state = 8,C=1, max_iter=18888)
5 HRFLR_estimators.append(('logisticl’, modelll))

# Defining 3 Random Forest Models
model2l = RandomForestClassifier(random_state = @)
HRFLR_estimators.append(( RF1', model21})

13 model22 = RandomForestClassifier(random_state = 8)
14 HRFLR_estimators.append(('RF2', model22})

16 model23 = RandomForestClassifier(random_state = @)
’ HRFLR_estimators.append(( RF3', model23))

# Defining the HRFLM ensemble model
HRFLR_ensemble = VotingClassifier(HRFLR_estimators,voting="soft')

23 results = {}

24 #Training the model

start = time()
HRFLR_ensemble.fit(x_train sm, y_train_sm)
end = time()

results[training time'] = end - start

#Testing the model
31 start = time()
'’ HRFLR_Prediction = HRFLR_ensemble.predict(x_test_sm)
5 end = time()

results[ 'testing_time'] = end - start

Figure 24: Model evaluation for HRFLR

5.4.2 Model Evaluation

The model is evaluated by using the two variables such as HRFLR _ensemble.fit() and
HRFLR_ensemble.predict(). The code for accuracy, precision, recall, fl-score, cross val-
idation accuracy is shown in Figure 25. The output confusion matrix, classification report
and cross validation accuracy with cross validation time is shown in Figure 26.
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## Accuracy Score
4 HRFLR_Accuracy = accuracy_score(y_test_sm, HRFLR Preﬂ)(t)ony
45 print("The accuracy score for HRF

in percentage is 2F)" . fornat (HRFLR_Accuracy*100))
## Precision

HRFLR_Precision
print("The prec:

precision_score(y_test_sa, HRFLR Prediction)
ion score for HRFLR is Format (HRFLR_Precision))

## Recall Feature
HRFLR Recall = recall_score(y_test_sm, HRFLR Prediction)
print("The recall score for HRFLR is as follows: "+"{:.2f}".format(HRFLR Recall))

## F1 Score
HRFLR_F1Score = f1_score(y_test_sm, ey _Prediction)
print("The F1 Score for HRFLR is: "+"{:.2f}".format(HRFLR_FiScore))

## Confusion Matrix
HRFLR_Confusion_Matrix-confusion_matrix(y_test_sm,HRFLR Prediction)
print("Confusion Matrix: \n\n",HRFLR_Confusion Matrix, “\n" )

## Classification Report

target_names lass @', ‘class 1°
print(classification_report(y_test_sm,HRFLR_Prediction,zero_division=1,target_names-target_names))
## Cross Validation

cross_val_score(HRFLR ensemble, X = x train_sm, y = y_train_sm, ¢v - 18)
i - Format (HRFLR accuracies.mean())
+1idation Standard Daviation: {:.2F} %' format(HRFLR_accuracies.std()*160))

2 end - tine()
results[ ‘Cross_Validation tine']

£ print("Cross_validation time: "+

end

1" format (results[ ‘Cross_Validation time']))

#for k=20

start - time()

& HRFLR_accuracies = cross_val_score(HRFLR_ensemble, X = x_train_sm, y = y_train_sm, cv = 20)
ross Validation Accuracy . format (HRFLR_accuracies.mean()))

ross Validation Standard Deviation: {:.2f} %".format(HRFLR accuracies.std()?16e))

end start
2f)" . format (results[ ‘Cross_validation time']))

#far K=30
86 start = time()
57 HRFLR_accuracies = cross val _score(HRFLR_enserble, X = x_train_sn, y = y train_sm, cv = 30)

print("Cross Validatio
dation Staniara

21} ".format (HRFLR_accuracies.mean()))
viation: {:.2f} %'.format(HRFLR_accuracies.std()*160))

1 results['Cross_Validation time'] = end - start
2 print(“Cross_Validation time: "+'{:.2f}".format(results[ ‘Cross_Validation time']))

#for k40

5 start - time()

HRFLR_accuracies - cross_val_score(HRFLR ensemble, X - x_train_sm, y = y_train_sm, cv - 48)
print("Cross Validation Accuracy: {i.2f} ".format(HRFLR accuracies.mean())

& print("Cross Validation Standard Deviation: {:.2f} %.format(HRFLR_accuracies.std()"10))

end - start
“+"(:.2f)" . format {results[ ‘Cross_Validation time']))

print("Cross_val

Figure 25: Model evaluation for HRFLR

The sccuracy score for HRFLR in percentage is: 87.22
Toe precisin. score for HRELR 15, 8.5
Tio PRl St B LN I i folDeEpEE

The F1 Score for HRFLR 1s: 0.87

Confusion_Matrix

e s
[s75]
precision  recall fl-score support
Class 0 085 o9 0.8 %
class 1 e 08 0.8 %
accuracy 0.5 180
racro a 08 0w 180
velghted avg es7 e 150

Cross Valtdation Accuracy: .89
ross Velidation Standard Deviation: 5.19 %
Cross_validation t

Cross Validation Accuracy: 0.89

Cross Validation standard Deviation: 5.3 %
Cross_validation tine:

Cross Validation Accuracy: 0.89
Cross Validation Standard Deviation: 6.63 %
Cross_Validation tine: 23.46

ross Validation Accuracy: 0.9
Validation Standard Deviation: .08 %
Cross.Velioetion sises 3348

Figure 26: Model evaluation output for HRFLR

5.5 Feature Importance

By using the permutation_importance() function with (HRFLR_ensemble, x_train_sm,
y_train_sm, n_repeats=10,random state=0) as hyper parameter which will improve the
efficiency and effectiveness of a predictive model on the problem. The code with output
is shown in Figure 27.
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Feature importance |

M 1 result - permutation_importance(HRFLR ensemble, x train_sm, y train sm, n_repeats-16,
random_state=8)
3 ## Feature names in training set
feature_names= ['Avg. F size (R) (mm)', FSH(mIU/mL)’,’'Follicle No. (R)', 'Follicle No. (L)', AMH(ng/mL)’,"FSH/LH', 'Cycle(
## Printing the features based on their importance
for 1 in result.importances_mean.argsort()[::-1]:
if result.importances_mean[i] - 2 * result.importances_std[i] > o:
print(£"{feature_names[1]:¢8)"
£"{result. inportances_mean[1]:.3f}"
£ +/- {result.importances_std[1i]:.3f}")

Follicle No. (R).238 +/- 0.016
Follicle No. (L)@.874 +/- 0.012
Cycle length(daysye.es3 +/- e.e07
Cycle(R/1)8.843 +/- 6.686

BHI 0.042 +/- 0.084
AMH(ng/mL)8.848 +/- 0.684

Avg. F size (L) (mm)e.031 +/- 0.004
Avg. F size (R) (mm)@.021 +/- 0.0@3
FSH/LH 0.019 +/- @.004
FSH(mIU/mL)B.018 +/- ©.604

Figure 27: Feature Importance based on HRFLR

5.6 Support Vector Machine

5.6.1 Model Building

SVM is developed by using the Support Vector Classifier SVC() function having ran-
dom _state = 0,probability=True as hyper parameter. SVM algorithm creates a line or a
hyperplane which separates the data into classes. The code is shown in Figure 28.

Support Vector Machines

M SVM_classifier = SVC(random_state = @,probability=True)
results = {}
1 #Training the model
start = time()
5 SVM_classifier.fit(x_train_sm, y_train_sm)
7 end = time()
2 results[’'training_time'] = end - start
18 #Testing the model
11 start = time()
12 SVM_Prediction = SVM_classifier.predict(x_test_sm)
: end = time()
results['testing_time'] = end - start

Figure 28: Model building for SVM

5.6.2 Model Evaluation

The model is evaluated by using SVM _classifier.fit() and SVM classifier.predict(). The
code for accuracy, precision, recall, f1-score, cross validation accuracy is shown in Figure
29. The output confusion matrix, classification report and cross validation accuracy with
cross validation time is shown in Figure 30.
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## Accuracy Score
SVM_Accuracy = accuracy_score(y_test_sm, SVM_Prediction)
print("The accuracy score for SVM in percentage is as follo

:.2f}" . format (SVM_Accuracy*10e))

## precision
SVM_Precision = precision_score(y_test_sm, SVM Prediction)
print("The precision score for SV as follows: "+"{:.2f}".format(SVM_Precision))

## Recall Feature
SVM_Recall = recall_score(y_test_sm, SVM_Prediction)
print(“The recall score for SV as follows: “+"{:.2f}".format(SVM_Recall))

## F1 Score
SWM_F1Score = f1_score(y_test_sm, SVM Prediction)
print("The Fi Score for SVM is as follows: "+"{:.2f}".format(SVM_FiScore))

## Confusion Matrix
SVM_Confusion_Matrix=confusion_matrix(y_test_sm,SVM_Prediction)
print("Confusion Matrix: \n\n",SVM_Confusion Matrix, "\n" )

## Classification Report
target_names =['class @', "class 1°]
print(classification report(y_test sm,SVM Prediction,zero division-1,target names-target names))

## Cross Validation
#for K=10

SVM_accuracies
print("cross
print(“Cross

cross_val_score(estimator = SUM classifier, = x train_sm, y = y train_sm, cv = 18)
datlon Accuracy: {:.2f} %".format(SVM accuracles.nean()*108)
dation Standard Deviation: {:.2f} %".format(SVM_accuracies.std()*108))

#for k=28

SWM_accuracies
print(“Cross Va
print(“Cross Val

cross_val_score(estimator = SVM classifier, X= x_train_sm, y = y_train_sm, cv = 20)
dation Accuracy: {:.2f} %".format(SVM_accuracies.mean()*108))
idation Standard Deviation: {:.2f} %".format(SVM_accuracies.std()*1ee))

#for K=30

SWM_accuracies = cross val score(estimator = SVM classifier, X= x_train_sm, y = y train_sm, cv = 3@)
print("Cross Validation Accuracy: [:.2f} %°.format(SVM accuracies.mean()*160

print(“Cross Validation Standard Deviation: {:.2f} %".format(SVM_accuracies.std()*160))

#for K=40

SWH_accuracies
print(“cross Va
5 |print("Cross Va

cross_val_score(estimator = SVM_classifier, X= x_train_sm, y = y_train_sm, cv = 48)
dation Accuracy: {:.2f} %.format(SVM_accuracies.nean()*108
dation Standard Deviation: {:.2f} %".format(SVM accuracies.std()*10))

Figure 29: Model evaluation for SVM

The accuracy score for SV in percentage is as follows: 85.00
The precision score for SVH is as follows: 0.85

The recall score for SV is as follows: .84

The F1 Score for SVM is as follows: .85

Confusion_Matrix:

(77 13)

(14 76]]
precision  recall fi-score support
class @ 0.85 .86 e.85 %
class 1 0.85 0.84 6.85 %
accuracy 0.85 188
macro avg .85 .85 e.85 188
ueighted avg .85 .85 6.85 188

Cross Validation Accuracy: 84.68 %
Cross Validation Standard Deviation: 4.81 %

Cross Validation Accuracy: 85.76 %
Cross Validation Standard Deviation: 8.75 X

Cross Validation Accuracy: 84.83 %
Cross Validation Standard Deviation: 9.78 %

Cross Validation Accuracy: 84.92 %
Cross Validation Standard Deviation: 11.17 %

Figure 30: Model evaluation output for SVM

5.7 Decision Tree
5.7.1 Model Building

The model is created by using the DecisionTreeClassifier() function having criterion=entropy
and random_state = 0. It is an framework to quantify the values of outcomes and the
probabilities of achieving them because DT handles non-linear data sets effectively. The
code is shown in Figure 31.
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Decision Tree

M 1 DT_classifier = DecisionTreeClassifier(criterion = ‘entropy’', random_state = @)

results = {}

#Training the model

start = time()
DT_classifier.fit(x_train_sm, y_train_sm)
end = time()

results['training_time'] = end - start

16 #Testing the model

11 start = time()

DT_Prediction = DT_classifier.predict(x_test sm)
end = time()

14 results['testing time'] = end - start

Figure 31: Model building for Decision Tree

5.7.2 Model Evaluation

The model is evaluated by using DT _classifier.fit() and DT classifier.predict(). The code
for accuracy, precision, recall, fl-score, cross validation accuracy is shown in Figure 32.
The output confusion matrix, classification report and cross validation accuracy with
cross validation time is shown in Figure 33.

22 | ## Accuracy Score
3 DT_Accuracy = accuracy_score(y test_sm, DT_Prediction)
print("The accuracy score for Decission tr

:.2f}".format (DT_Accuracy*10e))

## Precision
DT_Precision = precision_score(y_test_sm, DT_Prediction)
print("The precision score for Decission tree is: "+"{:.2f}".format(DT_Precision))

) ## Recall Feature
DT_Recall = recall_score(y_test_sm, DT_Prediction)
print("The recall score for Decission tree is: "+"{:.2f}".format(DT_Recall))
## F1 Score
DT_FiScore = f1_score(y_test_sm, DT_Prediction)
print("The F1 Score for Decission tree is: "+"{:.2f}".format(DT_FiScore))

## Confusion Matrix
DT_Confusion_Matrix=confusion_matrix(y_test_sm,DT_Prediction)
print("Confusion_Matrix: \n\n",DT_Confusion_Matrix, “\n" )

## Classification Report
target_names =['class @', "class 1°]
print(classification_report(y_test_sm,DT_Prediction,zero_division=1,target_names=target_names))
45 | ## Cross Validation
#for k=16
DT_accuracies - cross_val_score(estimator -
print(“Cross Validation Accuracy: {
print(“cross validation Standard Dev

DT_classifier, X - x_train_sm, y - y_train_sm, cv - 18)
" format(DT_accuracies.mean()*188
¢ {:.2f} %"_format(pT_accuracies.std()*10e))

51 #for k=20

52 DT_accuracies = cross_val_score(estimator = DT_classifier, X = x_train_sm, y = y_train_sm, cv = 28)
print(“Cross Validation Accuracy: {:.2f} %".format(DT_accuracies.mean()*108))

print(*cross Validation Standard Deviation: {:.2f} X".format(DT_accuracies.std()*108))

56 | #for k=36

57 DT_accuracies - cross_val_score(estimator - DT_classifier, X = x_train_sm, y - y train_sm, cv = 30)
58 print("cross validation Accuracy: {:.2f} %".format(DT_accuracies.mean()*10@))

o print("Cross Validation Standard Deviation: {:.2f} ¥".format(DT_accuracies.std()*16))

#for K=46

DT_accuracies = cross_val_score(estimator = DT_classifier, X = x_train sm, y = y_train sm, cv = 48)
print(“Cross Validation Accuracy: {:.2f} %".format(DT_accuracies.mean()"16@))

print(“Cross Validation Standard Deviation: {:.2f} %".format(DT_accuracies.std()*18e))

Figure 32: Model evaluation for Decision Tree
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The accuracy score for Decission tree in percentage is: 76.67
The precision score for Decission tree is: 8.79

The recall score for Decission tree is: 8.73

The F1 Score for Decission tree is: .76

Confusion Matrix:

[[72 18]
[24 6617

precision  recall fl-score support
class & 0.75 .80 0.77 %
class 1 0.79 e.73 .76 %
accuracy 0.77 130
macro avg 0.77 0.7 0.77 180
ueighted avg 0.77 0.77 0.77 120

Cross Validation Accuracy: 83.58 %

Cross Validation Standard Deviation: 6.50 %
Cross Validation Accuracy: 84.92

Cross Validation Standard Deviation: 2.90 %
Cross Validation Accuracy: 85.58 %

Cross Validation Standard Deviation: 9.85 ¥%
Cross Validation Accuracy: 84.4 %

Cross Validation Standard Deviation: 18.93 %

Figure 33: Model evaluation output for Decision Tree

5.8 Multi layer Perceptron
5.8.1 Model Building

MLP classifier is used for building Multi layer Perceptron with three 8 8.8 hidden layer,
RELU as activation, 500=iterations and random_ state=0. It is suitable for classification
prediction problems where inputs are assigned a class or label. Code is shown in Figure
34.

Multi layer Perceptron (MLP)

M MLP_classifier = MLPClassifier(hidden_layer sizes=(8,8,8), activation= 'relu’,max_iter=58@, random_state=8)

results = {}
#Training the model
start = time()
7 MLP_classifier.fit(x_train_sm, y_train_sm)
end = time()
results[ "training_time'] = end - start

11 #Testing the model

2 start = time()
MLP_Prediction = MLP_classifier.predict(x_test_sm})
end = time()
results[ "testing_time'] = end - start

Figure 34: Model building for MLP

5.8.2 Model Evaluation

The model is evaluated by using MLP _classifier.fit() and MLP classifier.predict(). The
code for accuracy, precision, recall, f1-score, cross validation accuracy is shown in Figure
35. The output confusion matrix, classification report and cross validation accuracy with
cross validation time is shown in Figure 36.
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23 |## Accuracy Score
24 | MLP_Accuracy = accuracy_score(y_test sm, MLP Prediction)
25 | print("The accuracy score for MLP in percentage is as follows:"+"

}".format (MLP_Accuracy*109))

## Precision

MLP_Precision = precision_score(y_test_sm, MLS

print(“The precision score for MLP is: "+"{:.2f
) ## Recall Feature

MLP_Recall = recall_score(y_test_sm, MLP_Prediction)

print(“The recall score for MLP is as fol

ediction)
‘ormat (MLP_Precision))

}".format(MLP_Recall))

## F1 Score
MLP_F1Score = f1_score(y_test_sm, MLP_Prediction)
print(“The F1 Score for MLP is: "+"{:.2f}".format(MLP_F1Score))

## Confusion Matrix
MLP_Confusion_Matrix-confusion_matrix(y_test_sm,MLP_Prediction)
print(“Confusion Matrix: \n\n",MLP_Confusion Matrix, "\n" )

42 ## Classification Report
13 | target_names =['class 8', 'class 1°
print(classification_report(y_test_sm,MLP_Prediction,zero_division=1,target_names-target_names))

## Cross Validation

ss_val_sco stimater = MLP_classifier, X = x_train sm, y = y train_sm, cv = 18)
ation Accuracy: {:.2f} %".format(MLP_accuracies.mean()*100))
ation Standard Deviation: {:.2f} %".format(NLP accuracies.std()*168))

print("Cross Val

#for k=20

MLP_accuracies - cress_val_scere(estimater - MLP_classifier, X - x_train_sm, y - y_train_sm, cv - 20)
int("Cross Validation Accuracy: {:.2f} %.format(MLP accuracies.mean()*100))

print("Cross Validation Standard Deviation: {:.2f} %".Format(MLP_accuracies.std()*160))

#for k=20

MLP_accuracies
print("Cross
print("Cross V.

ress_val_score(estimator = MLP_classifier, X = x_train_sm, y = y_train_sm, cv = 38)
ation Accuracy: {:.2f} %".format(MLP accuracies.mean()*100))
ation Standard Deviatien: {:.2f} %".Format(NLP accuracies.std()*168))

#for K=-48
MLP_accuracies

ross_val_score(estimator = MLP_classifier. X = x_train_sm. y = y_train_sm. cv = 48)
ation Accuracy: {:.2f} %".format(MLP_accuracies.mean()*100))
ation Standard Deviation: {:.2f} %".format(HLP accuracies.std()*168))

Figure 35: Model evaluation for MLP

The accuracy score for HLP in percentage is as follows:83.33
The precision score for MLP is: 0.85
The recall score for MLP is as follows:0.81

The F1 Score for HLP is: 0.83

Confusion_Matrix:

[[77 13]

(17 731
precision  recall fi-score support
class @ 0.82 .86 .84 %
class 1 .85 .81 .83 %
accuracy .83 )
macro avg .83 .83 .83 180
weighted avg .83 .83 .83 130

Cross Validation Accuracy: 84.31 %
Cross Validation Standard Deviation: 4.83 %

Cross Validation Accuracy: 83.94 %
Cross Validation Standard Deviation: 7.27 %

Cross Validation Accuracy: 84.67 %
Cross Validation Standard Deviation: 8.43 %

Cross Validation Accuracy: 83.80 %
Cross Validation Standard Deviation: 10.57 %

Figure 36: Model evaluation output for MLLP

5.9 Comparison of all baseline models based on ROC curve plot

We used a majority class no skill prediction code where 0 for_1 range is used on test data.
Lables were generated as true positive rate and false negative rate and ROC comparison
were made of baseline approach models. This graphical way tells us the connection
between sensitivity and specificity for every possible cut-off of a data test. Code is shown
in Figure 37. Output is shown in Figure 38.
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Comparison of all baseline models based on ROC curve plot 1

M # generate @ no skill prediction (majority class)
ns_probs = [@ for _ in range(len(y_test_sm))]
ns_auc = roc_auc_score(y_test_sm, ns_probs)
fpr_NS, tpr NS, thresholds NS = roc_curve(y_test_sm, ns_probs)

plt.figure(figsize=(10,1@))
plt.plot(fpr_SvM, tpr SVM, marker='.', label="SwM', color="violet')

3 plt.plot(fpr_DT, tpr_DT, marker='.', label-'Decision Tree', color="yellow')
plt.plot(fpr_MLP, tpr MLP, marker='.', label="MLP', color='blue')

8 plt.plot(fpr_RF, tpr_RF, marker='.', label='Random Forest', color='pink')
plt.plot(fpr_HRFLR, tpr_HRFLR, marker='.', label='HRFLR', color='red")
plt.plot(fpr_gb, tpr_gb, marker='.', label='GB', color="green’)

15 # axis Labels
plt.xlabel('False Positive Rate')
plt.ylabel( ' True Positive Rate')
plt.title('ROC Comparision of All Models')
# show the Legend
plt.legend()

1 # show the plot
plt.show()

Figure 37: ROC curve code for all baseline models

ROC Ci of All Models

Figure 38: output of ROC comparision of all models

6 Implementation of Newly Proposed Models

Hybrid ensemble of Extreme Boosting with Random Forest(XGBRF) and CatBoost is
novelty of this research project. These two models is never used for PCOS detection.

Both models deals with handling the classification problem if the data is categorical in
nature. The code is referred from (Bhatele and Bhadauria; [2020))(Li et al.; [2020)).

6.1 Multi Hybrid ensemble of Extreme Boosting with Random
Forest Perceptron

6.1.1 Model Building

First, XGBRFClassifier is imported having hyper parameters as (max_depth=3, ran-
dom _state=8) then xgb_clf.fit() is used on pre-trained data. They are assigned to all
independent varaibles and are fed into decision trees to predict the results. Figure 39
shows us the code for XGBRF.
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Extreme Gradient Boosting and Random Forest (XGBRF)

M import xgboost
from xgboost import XGBRFClassifier
M # xgbrf classifier

xgb_clf = xgboost.XGBRFClassifier(max_depth=3, random_state=8)
xgb_clf.fit(x_train,y_train)

acc_xgb_clf train = round(xgb_clf.score(x_train, y_train)*1@e,2)
acc_xgh_clf_test = round(xgb_clf.score(x_test,y test)*1ee,2)
#cv_result.append(acc_xgb clf train)

print("Training Accuracy: % .format(acc_xgb_clf_train))
print("Testing Accuracy: % {}".format(acc_xgb clf test))

9  #Training the model

start = time()

xgb_clf.fit(x_train_sm, y_train_sm)

end = time()

results['training_time'] = end - start

#Testing the model

start = time()

XGBRF_Prediction = xgb_clf.predict(x_test_sm)
12 end = time()

19 results['testing_time'] = end - start

Figure 39: Model bulding of XGBRF

6.1.2 Model Evaluation

acc_xgb_clf_train() and acc_xgb_clf_test() is used to get the accuracy of the model. xgb_clf.fit()
and xgb_clf.predict() is used for precision, recall, fl-score, cross validation accuracy is
shown in Figure 40. The output confusion matrix, classification report and cross valida-
tion accuracy with cross validation time is shown in Figure 41.

## Precision
XGBRF_Precision = precision_score(y_test_sm, XGBRF_Prediction)
print(“The precision score for XGBRF Classifier is: "+"{:.2f}".format(XGBRF_Precision))

## Recall Feature
XGBRF_Recall = recall _score(y_test_sm, XGBRF_Prediction)
print("The recall score for XGBRF Classifier is: "4"{:.2f}".format(XGBRF_Recall))

## F1 Score
XGBRF_F1Score = f1_score(y_test_sm, XGBRF_Prediction)
print(“The F1 Score for XGBRF Classifier is: "+"{:.2f}".format(XGBRF_F1Score))

## Confusion Matrix
XGBRF_Confusion_Matrix=confusion_matrix(y_test_sm,XGBRF_|
print(“Confusion_Matrix: \n\n",XGBRF_Confusion Matrix, "

diction)

## Classification Report

target_names =['class @', ‘'class 1°]

44 | print(classification_report(y_test_sm,XGBRF_Prediction,zero_division=1,target_names-target_names))
## Cross Validation

47 #for K=1@

19 XGBRF_accuracies = cross_val_score(estimator = xgb_clf, X= x_train_sm, y = y_train_sm, cv = 18)

49 | print(“Cross Va ation Accuracy: {:.2f} %".format(XGBRF_accuracies.mean()*180))

print(“Cross Validation Standard Deviation: {:.2f)} X".format(XGBRF_accuracies.std()*108))

#for K=20

XGBRF_accuracies = cross_val _score(estimator = xgb_clf, X= x_train_sm, y = y_train_sm, cv = 20)
print(“Cross Validation Accuracy: {:.2f} %".format(XGBRF_accuracies.mean()*100))

print("Cross Validation Standard Deviation: {:.2f} %".format(XGBRF_accuracies.std()*1e@))

#for k=38

XGBRF_accuracies = cross_val score(estimator = xgb_clf, X= x_train_sm, y = y train_sm, cv = 38)
print(“"Cross Validation Accuracy: {:.2f} X".format(XGBRF_accuracies.mean()*10@))

68 print("Cross Validation Standard Deviation: .2f} %".format(XGBRF_accuracies.std()*108))

52 #for K=48

XGBRF_accuracies = cross_val_score(estimator = xgb_clf, X= x_train_sm, y = y_train_sm, cv = 48)
print(“Cross Validation Accuracy: {:.2f} %".format(XGBRF_accuracies.mean()*18@))

print(“Cross Validation Standard Deviation: {:.2f} X".format(XGBRF_accuracies.std()*10@))

Figure 40: Model Evaluation of XGBRF
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Training Accuracy: % 89.63
Testing Accuracy: % 87.5

The precision score for XGBRF Classifier is: 0.89
The recall score for ¥GBRF Classifier is: .82
The F1 Score for XGBRF Classifier is: .86
Confusion_Matrix:

(81 9]

[16 74]]
precision recall fl-score support
class & a.84 .90 0.87 £
class 1 .80 0.8 0.86 E
accuracy 0.36 120
macro avg 0.26 0.6 0.26 120
weighted avg .86 .86 0.86 180

Cross Validation Accuracy: 83.95 %
Cross Validation Standard Deviation: 4.80 %

Cross Validation Accuracy: 83.95 %
Cross Validation Standard Deviation: 7.26 %

Cross Validation Accuracy: 84.12 %
Cross Validation Standard Deviation: 8.87 %

Cross Validation Accuracy: 84.20 %
Cross Validation Standard Deviation: 10.03 %

Figure 41: Model Evaluation output of XGBRF

6.2 CatBoost
6.2.1 Model Building

After importing CatBoostClassifier with np.set_printoptions(precision=4) having hyper
parameters as (iterations=199, learning rate=0.1). cat_clf.fit() is used on pre-trained
data. CatBoost is very effective algorithm of handling categorical features. It is fast and
easy to use. Code is shown in Figure 42.

CatBoost

M| 1 import os
2 import pandas as pd
import numpy as np
np.set_printoptions(precision=4)

import catboost
print(catboost._ version_ )
2 from catboost import CatBoostClassifier

M| 1 #cCatBoost Classifier

cat_clf = CatBoostClassifier(iterations=199,
learning_rate=8.1,)

cat_clf.fit(x_train,y train)

acc_cat clf_train = round{cat_clf.score(x_train, y_train}*iee,2)

acc_cat_clf_test = round(cat_clf.score(x_test,y test)*16e,2)

#cv_result.append(acc_cat_clf train)

print("Training Accuracy: % {}".format(acc_cat_clf train))

print("Testing Accuracy: % {}".format(acc_cat_clf_test))

18  #Training the model

11 start = time()

12 cat_clf.fit(x_train_sm, y_train_sm)

13 end = time()

results['training_time'] = end - start

#Testing the model

start = time()

cat_Prediction = cat_clf.predict(x_test_sm)
end = time()

results["testing time'] = end - start

Figure 42: Model Building of CatBoost
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6.2.2 Model Evaluation

acc_cat_clf_train() and acc_cat_clf_test() is used to get the accuracy of the model. cat_clf.fit()
and cat_clf.predict() is used for precision, recall, fl-score, cross validation accuracy is
shown in Figure 43. The output confusion matrix, classification report and cross valida-
tion accuracy with cross validation time is shown in Figure 44.

## Precision
cat_Precision = precision_score(y_test_sm, cat_Prediction)
print("The precision score for CatBoostClassifier is: "+"{:.2f}".format(cat_Precision))

W NN

31 ## Recall Feature
cat_Recall = recall score(y_test_sm, cat_Prediction)
print(“The recall score for CatBoostClassifier is: "+"{:.2f}".format(cat_Recall))

## F1 Score
16 cat_F1Score = f1_score(y_test_sm, cat_Prediction)
17 print("The FL Score for CatBoostClassifier is: "+"{:.2f}".format(cat_FiScore))

## Confusion Matrix
cat_Confusion_Matrix=confusion_matrix(y_test_sm,cat_Prediction)
print(“Confusion_Matrix: \n\n",cat_Confusion_Matrix, “\n" )

## Classification Report
target_names =['class 8", 'class 1']
print(classification_report(y_test_sm,cat_Prediction,zero_division=1,target_names=target_names))

## Cross Validation

#for K=1@

cat_accuracies = cross_val_score(estimator = cat_clf, X= x _train_sm, y = y_train_sm, cv = 1@)
print("Cross Validation Accuracy: {:.2f} X".format(cat_sccuracies.mean()*109))

print("Cross Validation Standard Deviation: {:.2f} %".format(cat_accuracies.std()*1e8))

®

#for K=20

cat_accuracies = cross_val_score(estimator = cat_clf, X= x_train_sm, y = y_train_sm, cv = 28)
print(“Cross Validation Accuracy: {:.2f} X".format{cat_accuracies.mean()*100))

print("Cross Validation Standard Deviation: {:.2f} X".format(cat_accuracies.std()*160))

#for K=30
cat_accuracies = cross_val_score(estimator
60 print("Cross Validation Accuracy: {:.2f} ¥
1 | print(“"Cross Validation Standard Deviation

= cat_clf, X= x_train_sm, y = y_train_sm, cv = 30)
.format(cat_accuracies.mean()*100))
{:.2f} %".format(cat_accuracies.std()*16@))

#for K=40

cat_accuracies = cross_val_score(estimator = cat_clf, X= x_train_sm, y = y_train_sm, cv = 48)
print(“Cross Validation Accuracy: {:.2f} %" .format(cat_accuracies.mean()*1e@))

print("Cross Validation Standard Deviation: {:.2f} X".format(cat_accuracies.std()*100))

Figure 43: Model Evaluation of CatBoost

Training Accuracy: % 95.31
Testing Accuracy: % 86.83

The precision score for CatBoostClassifier is: 0.89
The recall score for CatBoostClassifier is: .81
The F1 Score for CatBoostClassifier is: 0.85
Confusion_Matrix:
(s o]
[17 73]]
precision  recall fl-score support
class © 0.83 0.9 0.86 El
class 1 0.89 .81 0.85 %
accuracy .86 180
macro avg 0.86 0.26 0.86 180
weighted avg 0.86 .86 .86 180

Cross Validation Accuracy: 89.86 %
Cross Validation Standard Deviation: 4.66 %

Cross Validation Accuracy: 88.55 %
Cross Validation Standard Deviation: 6.97 %

Cross Validation Accuracy: 89.43 %
Cross Validation Standard Deviation: 7.18 %

Cross Validation Accuracy: 89.15 %
Cross Validation Standard Deviation: 8.0 %

Figure 44: Model Evaluation output of CatBoost

The scripts and functions mentioned above are all provided in the ICT solution along
with this project.
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