===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Komal Riddhish Bharadva
Student ID: x19213051

School of Computing
National College of Ireland

Supervisor: Paul Stynes, Anu Sahni, and Pramod Pathak

Student Name:
Student ID:
Programme:
Module:
Supervisor:
Submission Due

Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet
School of Computing

Komal Riddhish Bharadva...........cccooiiiiiniii e
Dd S 1 G 10 1 PSRRI
Data Analytics.....cocovieiiiciceceec e Year: 2020-21.........
MSC ReSearch Project. ...
Paul Stynes, Anu Sahni, and Pramod Pathak.........c.cccccoooiiiiiiiiiinnnnnn.
16/08/202 1. ettt nreare s

A Machine Learning framework to Detect Student’s Online
Engagement

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Komal Riddhish Bharadva.........cccoueiiioiiiieeee e
Date: 16/08/ 2021 bt b et e e b e e saeas

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

copies)

Attach a completed copy of this sheet to each project (including multiple

O

Attach a Moodle submission receipt of the online project |
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

O

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

A Machine Learning Framework to Detect Student’s Online
Engagement

Komal Riddhish Bharadva
x19213051

1 Introduction

This document gives a brief overview of all the steps undertaken in implementing this research
project. The aim of this project is to detect student’s engagement in an online environment
using novel combination of machine learning model and eye-tracker device. The performance
of machine learning model was evaluated, and the best model was selected for detection. The
tools, techniques and libraries used is included in the other sections of this document.

This document is divided into following sections: the hardware specifications required for the
implementation of this project is listed in Section 2 followed by software specifications
required in Section 3. The environment setup for installing required tools is described in
Section 4. The data gathering which is a crucial step in this project is illustrated in Section 5.
The various steps involved in implementation of this project is shown in Section 6. Finally, the
Section 7 concludes this document.

2 Hardware Specifications

The configuration of the system on which this project has been implemented is as mentioned
below:

e Operating System: Windows 10 Home

e Hard Drive: 1024 GB HDD

e RAM:8.0GB

e Processor: Intel i5-10210U

3 Software Specifications

For the implementation of this project, Jupyter notebook has been used as the Integrated
Development Environment (IDE) and the programming language used is Python. The
visualizations have been performed using seaborn and matplotlib libraries. Below are the
specific versions of these software.

e Python: 3.9.0

e Jupyter Notebook: 6.0.3

4 Environment Setup

This section includes the steps and guidelines that needs to be followed in order to setup the
required tools, and software.

e The latest version of python can be downloaded and installed using following link®.

e The jupyter notebook can be installed with the help of steps provided on the following
link?. To start the jupyter notebook, below command as shown in Fig. 1 needs to be
executed in command prompt.

Command Prompt

C:\Users\Admin>jupyter notebook

Fig. 1. Starting Jupyter notebook

e Various other required packages and libraries can be directly installed within Jupyter
notebook using below command.
$ pip install <package name>

5 Data Gathering

The dataset has been prepared using data from an eye-tracker device, post-questionnaires, and
calculating face time. The data from eye-tracker device consist of 38 features out of which only
8 variables were used for the analysis®. The Fig. 2 below shows brief description of these 38
variables.

Selection Summary

This template shows one row for all trials, compute values over all selected

trials.
Parameter Dimension |Description
unit
Export Start Trial [[ms] Export start time, normally zero
Time
Export End Trial |[ms] Export end time
Time

L https://www.python.org/downloads/release/python-390
2 https://jupyter.org/install
3 https://psychologie.unibas.ch/fileadmin/user_upload/psychologie/Forschung/N-
Lab/SMI_BeGaze_Manual.pdf
2

Parameter

Dimension
unit

Description

Number of fixations of all selected trials.

Number of fixations of all selected trials
divided by the sum of trial durations of all
selected trals in seconds.

Sum of duration of all fixations of all
selected tnals.

Sum of duration of all fixations of all
selected trials divided by the number of
fixations of all selected trials.

Longest fixation duration of all selected
trials.

Shortest fixation duration of all selected
trials.

Sum of all fixation dispersions on X and
Y of all selected trials.

Sum of dispersion of all fixations of all
selected trials divided by the number of
fixations of all selected trials.

[px]

Largest value for the sum of Xand Y
dispersions of fixation of all selected
trials.

[px]

Smallest value for the sum of Xand Y
dispersions of fixation of all selected
trials.

Number of saccades of all selected trials.

[count/s]

Number of saccades of all selected trials
divided by the sum of trial durations of all
selected trals in seconds.

Parameter

Dimension

Description

Sum of all saccade duration of all
selected trials.

Sum of all saccade duration of all
selected trials divided by the number of
saccades of all selected trials.

Longest saccade duration of all selected
trials.

Shortest saccade duration of all selected
trials.

Sum of all saccades amplitude of all
selected trials.

Sum of all saccades amplitude of all
selected trials divided by the number of
saccades of all selected trials.

Max. saccade amplitude of all selected
trials.

Min. saccade amplitude of all selected
trials.

Sum of all saccades welocities of all
selected trials. (%)

Sum of all saccades welocities of all
selected trials divided by the number of
saccades of all selected trials. (*)

Max. value of the saccade velocity of all
selected trials. ()

Parameter

Dimension
unit

Description

[*/s]

Min. value of the saccade velocity of all
selected trials. (*)

[/s]

saccade latency = time between the end
of a saccade and the start of the next
saccade.

Saccade latency average = total saccade
latency for all saccades / saccade count
in all selected trials

Number of blinks of all selected trials.

Number of blinks of all selected trials
divided by the sum of trial durations of all
selected trials in seconds.

Sum of duration of all blinks of all
selected trials.

Sum of duration of all blinks of all
selected trials divided by the number of
blinks of all selected trials.

Longest blink duration of all selected
trials.

Shortest blink duration of all selected
trials.

Number of left button mouse clicks in all
selected trials.

Frequency of left button mouse clicks in
all selected trials: number of clicks
divided by sum of trial duration.

Number of right button mouse clicks in
all selected trials.

Parameter

Dimension
unit

Description

Right Mouse Click
Frequency

[count/s]

Frequency of right button mouse clicks in
all selected trials: number of clicks
divided by sum of trials duration.

Scanpath Length

[Px]
to end) of all

Sum of the lengths (distance from start

scanpaths of all selected trials.

the saccades in the

(*) parameter is available only for recordings with sampling rate higher

than 30 Hz.

Fig. 2. Eye tracker data

Apart from data received from eye tracker, some other variables were also used for the
analysis as shown below in Table 1.

Parameter Units Description

Video Test Score out of 12 Test based on video shown

Face Time Minutes Time for which student looked at
instructor’s face

Mind Test Score out of 36 Reading the mind from the eyes test

for cognitive process evaluation

Extraversion

Ranging between 0 to 7

Personality questionnaire variable 1

Agreeableness

Ranging between 0 to 7

Personality questionnaire variable 2

Conscientiousness

Ranging between 0 to 7

Personality questionnaire variable 3

Emotional stability

Ranging between 0 to 7

Personality questionnaire variable 4

Openness to Experiences

Ranging between 0 to 7

Personality questionnaire variable 5

Target

Either 1 or 0

Indicates whether a student is
engaged or not.

Table 1: Other variables used

6 Implementation

This section describes the various steps involved in implementation of this research project.

6.1 Data Preparation

The data obtained from eye-tracker device is in text format for each student. All the data for
each student has been stored in dataframe and then concatenated. Finally, a subset of required
features are considered for further analysis as shown in Fig 3 below. A dataset.csv file is also
read in results dataframe that contains post questionnaire results and other variables considered.

als = pd.read_csv('./SampleData/al5.txt’, delimiter = "\t")
al6 = pd.read_csv('./SampleData/al6.txt’', delimiter = "\t")
al7 = pd.read_csv('./SampleData/al7.txt', delimiter = "\t")
al8 = pd.read_csv('./SampleData/al8.txt"', delimiter = "\t")
al9 = pd.read_csv('./SampleData/a19.txt’', delimiter = "\t")
a20 = pd.read_csv('./SampleData/a20.txt’', delimiter = "\t")

gazedf = pd.concat([al, ale, all, al2, al3, al4, al5, ale, al7, al8, al9, a2, a2, a3, a4, as, a6, a7, as, ag,
ki, kie, ki1, k2, k3, k4, ks, ke, k7, k8, k9], axis = @, ignore_index = True)

gazedf = gazedf[['visual Intake Duration Average [ms]',
'visual Intake Dispersion Average [px]',

'Saccade Duration Average [ms]',

'Saccade Amplitude Average [°]’,

'Saccade Velocity Average [°/s]',

'Saccade Latency Average [ms]’,

'Blink Duration Average [ms]’,

'Scanpath Length [px]']]

results = pd.read_csv("Dataset.csv")

Fig. 3. Data Preparation

This is followed by preparation of data obtained from post questionnaires and face time
variable. The personality questionnaire given to students consist of Ten item personality
measure (TIPI) scale which uses reverse scoring®. Out of these 10 personality traits, 5 variables
are obtained using reverse scoring as per the TIPI scale. This has been implemented in python

as shown in Fig. 4 below.

def revCod(x): for 1 in Eange(len@@sults?): _
3 atr2 = revCod(results.iloc[i, 5])
if x > @ and x < 6: atr4 = revCod(results.iloc[i, 7])
return x atré = revCod(results.iloc[i, 9])
elif x==6: atrg = revCod(results.iloc[i, 11]
return 1 atrle = revCod(results.iloc[i, 13
: 7. atrl = results.iloc[i, 4]
e atr3 = results.iloc[i, 6]
. return 2 atr5 = results.iloc[i, 8]
elif x==8: atr7 = results.iloc[i, 1@]
return 3 atro = results.iloc[i, 12]
elif x==90: results.iloc[i, 14] (atr1 + atre) /
return 4 results.iloc[i, (atr2 + atr7) /

elif x==10:

15]
results.iloc[i, 16]
results.iloc[i, 17]
return 5 results.iloc[i, 18]

Fig. 4. TIPI reverse scoring

(atr3 + atrg) /
(atrda + atro) /
(atrs + atr9) /

R I L ST LS S

Finally, both these dataframe: gazedf and results are merged from which a final dataframe is
obtained as shown in Fig. 5 below. The face time variable is calculated manually looking at
the video obtained from eye-tracker device having eye movements of the students.

Merging the dataframes

df = gazedf.merge(results, left index = True, right index = True)
Moving target column at last for simplicity

col _to_move = df.pop("Target")

df.insert(16, "Target", col_to_move)

Checking the first 5 rows

df.head()

Fig. 5. Final merged dataset

4 https://gosling.psy.utexas.edu/scales-weve-developed/ten-item-personality-measure-tipi/

7

6.2 Exploratory Data Analysis (EDA):

Before starting with the data cleaning and data pre-processing steps, it is important to
understand the distribution, type, and behaviour of the dataset. To check the distribution of
target variable, a bar graph was plotted using the seaborn package in python as shown in Fig.
6 below.

Looking at the distirbution of the target variable
sns.countplot(df[' Target'])

To diplay the plot

plt.show()

2.0
175
15.0 4
125

count

10.0
75
5.0
25

00

0 1
Target

Fig. 6. Bar plot of Target variable

As there are large number of variables considered in the final dataset, there is a possibility that
there is a correaltion between variables. In order to verify that, below correlation plot was done
with the help of seaborn package in python. The Fig. 7 shows the correlation matrix plot
between all the variables included in the dataset.

plt.figure(figsize = (12, 5))

mask = np.triu(np.ones_like(df.corr(), dtype = np.bool))

heatmap = sns.heatmap(df.corr(), mask = mask, vmin = -1, vmax = 1, annot = True, cmap = 'coolwarm')
heatmap.set_title('Triangle Correlation Heatmap', fontdict = {'fontsize':8}, pad = 10)

plt.show()

Fiangle Correlation Heatmap

Visual Intake Dispersion Average [px] - e
Saccade Amplitude Average [°] - 02
Saccade Velocity Average [°/s] SUGEN 022 075
Scanpath Length [px] Skl 0.18 JU:E)
Visual Intake Duration Average [s] -0.23 0.014 0.23 0.28 - 050
Saccade Duration Average [s] 031 m 0.22
Saccade Latency Average [s] - 0.38 048 045 027-0.007 -025
Blink Duration Average [s] -0.059 029 0089 0.04 0.26 046
Face_Time(in mins) 0.00820.018-0.0410028 01 0.063-0.049.0.041 -0.00
Video_test(Out of 12) - 031 0052 033 031 0058 03 021 015 0.057
Mind_test(Out of 36) - 0.13 /045 012 016 0098 013 022 0074 016 021 --0.25

Extraversion- 03 0.22 023 03 013 01 0036-0.03 019 0.0770.35
Agreeableness --0.14 0.37 016 0.17 011 0.1 0150011 031 0.18 Fi1] 013

—-0.50
Conscientiousness - 0.2 0.26 0.18 0.19 0.0540.21 031 015 0027 04 028 033 035
Emotional_stability —0.099-0.14 0.19 0.12 0.094 0.17 0.17 0.074 0.16 046 039 04 045 026 075
Openness_to_Experiences —0.0550.13 0.057 0.1 -0.130.07600140.0190098 0.44 019 041 022 04 041
Target - 02500053 03 026 037 022 0037 0.14 011 045 044 012 01 012 024 02 1:00
i] i i i] | | | i " | \ V V ' | -
o o o £ & o © o E % % 5§ & G | T @
¢ &€ & § £ 8 € € £ & =5 2 2 3 % ¢
e]] c @ @]] =3 S =] ? -] 2 % g
2 2 ¢ 8§ 2 2 I 3 g 8 ¢ 8 ¢ € ® K
< u L = c c > c S a @ o 5 o 5 ",
s § 2 § § £ 2 8 © & & T i 8 =
€ § 2 B8 8 8 E § g @ § E ¢
§ 8§ 53 2 523 ¢ & § 5§
g i o v v ¥ x = S
=] v B - 2 ® £ é
g B B g § § @
8 8 ¥ = 8B &
Eig 2 3@
g s>
>

Fig. 7. Correlation Matrix Plot
8

Moreover, pandas profiling package was used to get the basic statistics of the dataset. It
summarizes each variable and also indicates if there is any missing value as shown in Fig. 8
below.

Shows all the basic statistics of the dataset
df.profile_report()

Summarize dataset: 100% ([30130 [00:32<00:00, 1.67s/it, Completed]
Generate report structure: 100% ([111 [00:07<00:00, 7 21s/if]
Render HTML: 100% [111 [00:07<00:00, 7.17sfif]

Pandas Profiling Report Overview Variables Interactions Correlations ~ Missing values Sample

Fig. 8. Pandas Profiling

6.3 Data Pre-processing and Transformation:

Before applying machine learning models to the dataset, data should be cleaned and
transformed. The variables which are highly correlated (p-value greater than 0.90) with each
other are dropped as shown in Fig 9. Also, any redundant features are dropped as shown in
Fig. 10 below. These are the 10 original personality traits parameters obtained which are
already converted into 5 new columns.

Dropping highly correlated features|
df = df.drop(['Scanpath Length [px]'], axis = 1)

Fig. 9. Dropping highly correlated features

Redundant Features|

results = results.drop(['Extraverted enthusiastic.', ' Critical quarrelsome.’, 'Dependable self-disciplined.’,
"Anxious_easily upset.', 'Open to new experiences_complex', 'Reserved_quiet', 'Sympathetic_warm’,
'Disorganized_careless', ' Calm emotionally stable', 'Conventional_uncreative'], axis = 1)

Fig. 10. Dropping redundant features

Some columns were in milliseconds, and some were in seconds. Therefore, all the
milliseconds’ columns are converted into seconds and redundant columns are dropped as
shown in Fig. 11 below.

Converting ms columns to seconds

gazedf['Visual Intake Duration Average [s]'] = gazedf['visual Intake Duration Average [ms]'] * @.001
gazedf['Saccade Duration Average [s]'] = gazedf['Saccade Duration Average [ms]'] * @.ee1
gazedf['Saccade Latency Average [s]'] = gazedf['Saccade Latency Average [ms]'] * @.001

gazedf['Blink Duration Average [s]'] = gazedf['Blink Duration Average [ms]'] * ©.e01

Dropping duplicate columns
gazedf = gazedf.drop(['visual Intake Duration Average [ms]', 'Saccade Duration Average [ms]', 'Saccade Latency Average [ms]’,
'Blink Duration Average [ms]'], axis = 1)

Fig. 11. Converting milliseconds column to seconds

Finally, all the data are converted to a common scale using Standard Scaler library in python.
A helper function is defined that uses a pipeline which includes a Simple Imputer and Standard
Scaler as shown in Fig. 12 below.

numeric transformer = Pipeline(steps=[("imputer”, SimpleImputer(strategy="mean")), ("scaler”, StandardScaler())])

Fig. 12. Pipeline

6.4 Feature Selection:

The feature selection is an important step which reduces the number of input variables by
selecting the most relevant features contributing for good model. Recursive Feature
Elimination and Cross-Validation Selection (RFECV) technique is used which removes
irrelevant features based on validation scores. The implementation of this is as shown in Fig.
13 below.

Splitting the dataframe in X and y
= df.drop('Target', axis = 1)
= df['Target']

Feature selection using RFECV

min_features_to_select = 8

rfecv = RFECV(estimator=LinearsvC(), step=1, cv=StratifiedkFold(2), scoring='accuracy', n_jobs=-1,
min_features to_select = min_features_to select)

Fitting on X and y

rfecv.fit(X, y)

Optimal features

print("optimal number of features : %d" % rfecv.n_features_)

print(X.columns[rfecv.support_])

Plot number of features VS. cross-validation scores

plt.figure()

Labelling x-axis

plt.xlabel("Number of features selected")

Labelling y-axis

plt.ylabel("Cross validation score (nb of correct classifications)")

Plotting Number of features and CV scores

plt.plot(range(min_features_to select, len(rfecv.grid scores_) + min_features_to_select), rfecv.grid_scores_)

To display the plot

plt.show()

Using only selected features in the dataframe

cols = np.array(X.columns[rfecv.support_]).tolist()

X = X[cols]

Fig. 13. Feature Selection Code

6.5 Sampling Technique:

Once feature selection is done, the next step is sampling of the dataset. Since the target variable
is highly imbalanced, it may lead to overfitting. Synthetic Minority Oversampling Technique
(SMOTE) which overcomes the overfitting problem by random oversampling of the minority
class is used. Below Fig. 14 shows the implementation of the same.

10

Oversampling

sm = SMOTE(random_state = 42, k_neighbors = 2)

Fitting X and y

X_sm, y_sm = sm.fit_resample(X, y)

Checking the shape of X and y before and after SMOTE
print(f"''shape of X before SMOTE: {X.shape}

Shape of X after SMOTE: {X_sm.shape}''’)

Checking the distribution X of both the classes
print(‘\nBalance of positive and negative classes (%):')
print(y_sm.value_counts(normalize=True) * 100)

Splitting the dataset into train and test sets

X_train, X_test, y train, y test = train_test_split(X_sm, y_sm, test_size = .20, random_state = 123)
Checking the number of samples in train and test sets
print("\nTraining set has {} samples."”.format(X_train.shape[©]))
print("Testing set has {} samples.”.format(X_test.shape[@]))

Shape of X before SMOTE: (31, 8)
Shape of X after SMOTE: (42, 8)

Balance of positive and negative classes (%):
1 50.000

<] 50.000

Mame: Target, dtype: floate4d

Training set has 33 samples.
Testing set has 9 samples.

Fig. 14. Oversampling of the dataset

6.6 Data Modelling:

Five different machine learning models were applied like Logistic Regression, Random Forest
Classifier, Linear SVC, Bernoulli Naive Bayes, and K-Neighbors Classifier. A helper class
named ModLazyClassifier was defined for performing classification. This is a modified
version of predefined package available named LazyClassifier. The implementation of this
class is as shown in Fig. 15. The machine learning models were then evaluated using different
evaluation metrics such as accuracy, balanced accuracy, AUC-ROC score, and F1-score.

Creating an object of the class defined in helper functions

clf = LazyClassifier(verbose = @, ignore_warnings = True, custom_metric = None)
Fitting train and test samples

models, predictions = clf.fit(X_train, X_test, y_train, y_test)

Running models on the samples

model_dictionary = clf.provide_models(X train,X_test,y train,y_test)

Showing the results

models

1007 | [N R A R RN NRMANRMNMNRNN | /5 [00:00<00:00, 8.00it/s]

Accuracy Balanced Accuracy ROC AUC F1 Score Time Taken

Model
RandomForestClassifier 0.889 0.900 0.900 0.889 0.481
KNeighborsClassifier 0.778 0.800 0.800 0.772 0.041
LinearSVC 0.778 0.800 0.800 0.772 0.032
BernoulliNB 0.778 0.775 0.775 0.778 0.037
LogisticRegression 0.667 0.675 0.675 0.667 0.031

Fig. 15. Modelling of the dataset

The learning curve method was also defined which track the learning of the machine learning
models. This shows how efficiently the model is able to learn from the training data provided.
The Fig. 16 shows the implementation of this learning curve method.

11

Function of see learning curve of the model
def plot_learning_curve(estimator):

Plot learning curve

train_sizes, train_scores, test_scores, fit_times, _ = learning_curve(estimator, X, vy,
scoring="accuracy', return_times=True)

Create means and standard deviations of training set scores

train_scores_mean = np.mean(train_scores, axis=1)

train_scores_std = np.std(train_scores, axis=1)

Create means and standard deviations of test set scores

test_scores_mean = np.mean(test_scores, axis=1)

test scores std = np.std(test scores, axis=1)

Create means and standard deviations of fitting times

fit_times_mean = np.mean(fit_times, axis=1)

fit times std = np.std(fit times, axis=1)

Plot n_samples vs score
fig = plt.figure(2)

plt.grid()

plt.fill between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=6.1,
color="r")

plt.fill between(train_sizes, test_scores_mean - test_scores_std, test scores_mean + test_scores_std, alpha=6.1,
color="g")

plt.plot(train sizes, train scores mean, ‘o-', color="r", label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score™)
plt.legend(loc="best")

Labelling x-axis

plt.xlabel("Training examples™)

Labelling y-axis

plt.ylabel("Scores™)

Adding title to the plot

plt.title("Learning Curve™)

To display the plot

plt.show()

Fig. 16. Learning curve of the model

7 Conclusion

All the steps involved in the implementation of this project are briefly described in this
document. The tools, techniques, and software requirement are also mentioned in the respective
section. The environment setup is quite easy and can be implemented step by step with the help
of links cited. The data gathering for this project is a bit challenging, but each step taken is
precisely documented in Section 5. Moreover, the packages, and libraries required for several
data analysis phases are stated wherever required.

12

