~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Komal Vijay Bhalerao
Student ID: x20135386

School of Computing
National College of Ireland

Supervisor: Prof. Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Komal Vijay Bhalerao
Student ID: x20135386
Programme: MSc in Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Prof. Christian Horn
Submission Due Date: 16-08-21
Project Title: Configuration Manual
Word Count: 1203
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Komal Vijay Bhalerao

Date: 15th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Komal Vijay Bhalerao
x20135386

1 Introduction

The configuration documentation explains how to run the implemented scripts for the
present research topic. This will ensure that the code runs smoothly and without errors.
This also contains information about the hardware setup of the machine upon which
scripts are run, as well as the same suggested minimum configuration. Following these
procedures will aid in the replication of the project’s outcomes. This can then be analyzed,
and further research can be done with ease.

2 System Configuration

2.1 Hardware Configuration

e Device name: LAPTOP-7TCVAFID5

Processor: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz

Installed RAM: 8.00 GB (7.80 GB usable)

System type: 64-bit operating system, x64-based processor

2.2 Software Configuration

The project was implemented using the Python-based Jupyter notebook IDE (Integrated
Development Environment) included in the Anaconda package. The steps to execute the
developed scripts are illustrated in the following sections.

3 Downloads and Installation

e Python
This research project is carried out using Python. It has remarkable and note-
worthy number of supporting models for Machine Learning and Deep Learning.
It also has number of libraries and several modules that helps with smooth pre-
processing, altering images, ease of use and implementation. Therefore, the initial
requirement for running the script on the computer is to have latest version of py-
thon downloaded. This can be accomplished by browsing to the python websitel
download page [[| and downloading the software installer for the desired version

thttps:/ /www.python.org/downloads/

based on the operating system of the computer that will be running it. Figure 1
depicts the screenshot of official python website from where the latest version can
be installed. After downloading, by following the installation instruction the file
must be installed.

& python’ o D) -

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows

Download Python 3.9.6

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS, Other

Want to help test development versions of Python? Prereleases,

Docker images

Looking for Python 2.7? See below for specific releases

Fig.1 Download page of Python

The success of the installation can be confirmed using the ‘python —version’ query
in the Windows command prompt. It tells you what Python version you have
installed.

e Anaconda

The next package to be downloaded is Anaconda. It offers a number of user-
friendly Python-based IDEs that may be used for code development and viewing of
outcomes. The most popular IDEs available in Anaconda Navigator on installation
are Jupyter Notebook and Spyder.It can be downloaded from the offical website EI
for different OS so the OS specific installer has to be downloaded. On successful
downloading and installing Anaconda Navigator, multiple IDEs are displayed that
can be selected according to the need of the develpoment. Among all the IDEs
available Jupyter IDE is used in this research project.

£D ANACONDA NAVIGATOR 0 voeron B

A o Applications on | _base (root) v| | channels

@ Environments 45 - P
Kersr 2
B

N Learning CMD.exe Prompt JupyterLab Notebook Orange 3 Powershell Prompt
011 22 .

01

&% Community

Fig.2 Anaconda Navigator

Zhttps://www.anaconda.com/products/individual

e Data Source: This research uses the Amazon’s product reviews dataset and its
meta data available online ﬂ The author has distributed the data into categories
as there are numerous amount of products available on Amazon. From the number
of categories available a subset of 7 All_Beauty” products are used for the research.
The original data and the meta data available for all beauty products is used for
the project.

4 Project development

As shown in Figure 3, Jupyter Notebook should be launched from the navigator installed.
As you launch the jupyter IDE, a new tab is opened in the browser.

C @ localhost:8888/tree * ©

© YouTube G Gmail @ Home - NormaSmurf.. n Moodlepage - Mockaroo |[Bl DataCamp () dataprofessor [fij Komal Bhalerao|Link.. (5 IEEE » Other bookn

~ Jupyter Qut

Files Running Clusters

select items to perform actions on them. Upload
0o ~ m/ Name ¥ Last Modified
O [3D Objects 8 months ago
O [anaconda3 3 months ago
O [Contacts 8 months ago

O [Documents a year ago

Fig.3 Jupyter Notebook home page

A new python 3 notebook can be created and suitable name for the file can be given.
This is the initial stage of coding. The file that we are creating is in .ipynb format. As
the project carries out the implementation of Machine Learning models, some additional
libraries of python need to be installed when required. These libraries can be installed
using pip command in the command prompt or on the Jupyter Notebook.

Example:
For command prompt : pip install numpy
For Jupyter Notebook: !pip install numpy

Firstly, some of the standard libraries required for building model for Sentiment Ana-
lysis are installed.The latest versions of these libraries are installed and some of the
standard libraries include:

e Scikit-Learn
e Numpy
e pandas

Sklearn

Matplotlib
e Gensim

e nltk

3http://deepyeti.ucsd.edu/jianmo/amazon /index.html

Once the coding is complete, the script can be launched using the jupyter notebook com-
mand or by running the code in blocks. If there are any mistakes in the code, they will
be displayed below the code block, where they can be debugged.

As the process of running the model begins, converting and fetching the data in a pandas
dataframe is required. As the source file was in json.gz format and the meta data was a
large file so in order to decompress the files gzip is imported and then it is converted to
dataframe as shown in figure 4.

import gzip

def parse(path):
g = gzip.open(path, 'rb')
for 1 in g:
yield eval(l)

def getDF(path):
i=e
df = {}
for d in parse(path):
df[i] = d
i+=1
return pd.DataFrame.from_dict(df, orient="index')

dfmeta = getDF('C:/Users/KOMAL BHALERAO/OneDrive/Desktop/beauty/meta_All_ Beauty.json.gz')

Fig.4

4.1 Text Pre-processing

In [1]: # Dataframe
import pandas as pd

Array
import numpy as np

Decompress the file
import gzip

Visualizations

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap
import seaborn as sns

import matplotlib.colors as colors
%matplotlib inline

Datetime
from datetime import datetime

Warnings
import warnings
from scipy import stats

warnings.filterwarnings('ignore")

Large dataset
import dask.bag as db

Fig.5

Figure 5 depicts the imported libraries required for the model development.

In [9]: | product_reviews=pd.merge(review_df,dfmeta,on="asin',how="left")
Figure 6.

This block shows the merging of original data and meta data.

[13]: #Dropping Unnecessary columns

review_dfl=product_reviews.drop(['reviewerName','image’, ‘verified’, 'feature','also_view','similar_item', 'imageURL','imageURLHi

[22]: review_df2['review_Text'] = review_df2[['summary', 'reviewText']].apply(lambda x: " ".join(str(y) for y in x if str(y) I= 'na
review_df3 = review_df2.drop(['reviewText', 'summary'], axis = 1)
review_df3.head(5)

[23]: #Retriving a subset of "perfume" from all the beauty products

review_dfd4 = review_df3[review_df3["title"].str.contains("perfume|perfumes |Perfume|Perfumes")]

Figure 7.
In the first block, unnecessary columns that bring no value are discarded.

Second block depicts the merging of two columns 'Summary’ and 'reviewText” to a new
column named 'review_Text’.

In the next block, a subset of perfume is retrieved from the entire set by passing a
search string of ” perfume—perfumes—Perfume—Perfumes”.

In [27]: #Classification of ratings in good or bad

good_rate = len(review_df4[review_df4['Ratings’'] >= 3])
bad_rate = len(review_df4[review_df4['Ratings'] < 3])

Printing rates and their total numbers
print ('Good ratings : {} reviews for perfumes'.format(good_rate))
print ('Bad ratings : {} reviews for perfumes'.format(bad_rate))

Good ratings : 68 reviews for perfumes

Bad ratings : 8 reviews for perfumes

In [28]: #Applying the classification to rating column
review_df3['rating_class'] = review_df3['Ratings'].apply(lambda x: 'bad' if x < 3 else'good')
review_df3.head()

Figure 8.

In figure 8, the ratings provided by the user is classified as good or bad. The ratings are
in the range of 1-5 where 1 is the lowest and 5 is the highest rating. The rating which
is less than 3 is classified as 'Bad’ and the rating which is equal to or greater than 3 is
classified as 'Good’. In the second block, the classified rating is applied to the rating
column and a rating_class column is formed.

In [31]:
#Total reviews
total = len(review_df4)
print ("Number of reviews: ",total)
print ()

Number of reviews: 16234

In [32]: #Unigue reviewers
print ("Number of unique reviewers: ",len(review_df4.reviewer_id.unique()))
reviewer_prop = float(len(review_df4.reviewer_id.unique())/total)
print ("Prop of unique reviewers: ",round(reviewer_prop,3))
print ()

Number of unique reviewers: 13762
Prop of unique reviewers: ©.848

In [33]: #Unique Products
print ("Number of unique products: ", len(review_df4.product_id.unique()))
product_prop = float(len(review_df4.product_id.unique())/total)
print ("Prop of unique products: ",round(product_prop,3))
print ()

Number of unique products: 1128
Prop of unique products: ©.069

Figure 9.

Figure 9 depicts some of the statistical analysis carried out in the project.

In [36]:
plt.figure(figsize=(12,8))
review_df4['ratings'].value_counts().sort_index().plot(kind="bar")
plt.title('Distribution of Rating')
plt.xlabel('Rating")
plt.ylabel('Number of Reviews')

Out[36]: Text(@, ©.5, "Number of Reviews')

Figure 10.

This is used to plot bar chart which shows the total number of ratings for each class

Distribution of Rating

10000

Number of Reviews

2000

0 |||||I III'II IIIlII IIIIII
- ~ " -

Rating

Figure 11.

In [39]: import nltk
nltk.download('punkt')
nltk.download('stopwords")
nltk.download('wordnet')
from nltk.corpus import stopwords
from bs4 import BeautifulSoup
import unicodedata
#import contractions
#from contractions import CONTRACTION_MAP
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize, sent_tokenize, regexp_tokenize
from nltk.stem import PorterStemmer, WordNetlLemmatizer
import re

[n [42]: def strip_html(text):
soup = BeautifulSoup(text, "html.parser")
return soup.get_text()

def remove_between_square_brackets(text):
return re.sub('\[[*]]*\]', '', text)

def denoise_text(text):
text = strip_html(text)
text = remove_between_square_brackets(text)
return text

special_characters removal

def remove_special_characters(text, remove_digits=True):
pattern = r'[”a-zA-z@-9\s]' if not remove_digits else r'["a-zA-z\s]'
text = re.sub(pattern, '', text)
return text

def remove_non_ascii(words):
"""Remove non-ASCII characters from list of tokenized words
new_words = []
for word in words:
new_word = unicodedata.normalize('NFKD', word).encode('ascii', 'ignore').decode('utf-8', 'ignore')
new_words .append(new_word)
return new_words

wun

Figure 12

The above block depicts some of libraries imported and defined functions for text pre-
processing.

4.2 Model Development

from sklearn.model_selecticn import cross_validate
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import learning_curve
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.decomposition import TruncatedSVvD

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, HashingVectorizer
from sklearn.pipeline import Pipeline

from sklearn.naive_bayes import MultinomialNﬂ

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

from sklearn import metrics

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

from sklearn.metrics import precision_recall_fscore_support
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import fl_score

from sklearn.metrics import recall_score

from gensim.models import Word2Vec

from tqdm import tqdm

Figure 13

Importing all the libraries required for Model building

In [58]: dfil['rating_class'] = dfl['rating_class'].apply(lambda x: @ if x == 'bad' else 1)

In [59]: # Splitting the Data Set inte Train and Test Sets
dfl['clean_text']
dfl['rating_class']

>

In [68]: # Splitting Dataset into train and test set with a ratio of 75(train):25(test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

In [61]: print ('Train Set Shape\t\t:{}\nTest Set Shape\t\t:{}'.format(X_train.shape, X_test.shape))

Train Set Shape 1 (12175,)
Test Set Shape :(4859,)

Figure 14

In this block, the data is split into test and train in the ratio of 75:25.
Following blocks of code shows the models defined for various algorithms.

Support Vector Machine:

In [72]: #model function calling for SVM with CountVector
modeling(SVC())

Assign y_pred to a variable for further process
y_pred_cv_svc = y_pred

Figure 21

Naive Bayes:

In [69]: # model function calling for Naive Bayes with CountVector
modeling(MultinomialNB())

Assign y_pred to a variable for further process
y_pred_cv_nb = y_pred

Figure 22

Logistic Regression:

In [66]: # model function calling for logistic regression with CountVector
modeling(LogisticRegression(multi_class = 'multinomial’, solver = 'newton-cg',
class_weight = 'balanced', C = 8.1, n_jobs = -1, random_state = 42))

Assigning y_pred to a variable
y_pred_cv_logreg = y_pred

Figure 23

In [65]: def modeling(Model, Xtrain = count_vect_train, Xtest = count_vect_test):

model = Model

To fit classifier to train set
model.fit(Xtrain, y_train)

global y_pred
#To predict test results
y_pred = model.predict(Xtest)

assigning f1 score to variable
score = fl_score(y_test, y_pred, average = 'weighted')

Printing evaluation metric
print("fl score: {}".format(score))

Figure 15

The block above depicts the global function defined for modeling and how the data is
trained.

In [64]:
Create the word vector with CountVectorizer
count_vect = CountVectorizer(ngram_range=(1,1))
count_vect_train = count_vect.fit_transform(X_train)
count_vect_train = count_vect_train.toarray()
count_vect_test = count_vect.transform(X_test)
count_vect_test = count_vect_test.toarray()

In [81]: # Create the word vector with TF-IDF Vectorizer
tfidf_vect = TfidfVectorizer(ngram_range=(1, 1))
tfidf_vect_train = tfidf_vect.fit_transform(X_train)
tfidf_vect_train = tfidf_vect_train.toarray()
tfidf_vect_test = tfidf_vect.transform(X_test)
tfidf_vect_test = tfidf_vect_test.toarray()

Figure 18

The above blocks shows the creation of word vectors with CountVectorizer and TF-IDF
Vectorizer

def plot_confusion_matrix(cm, classes,
normalize=False,
title = 'Confusion matrix',
cmap = plt.cm.ocean):

wun

Create a confusion matrix plot for 'good' and 'bad' rating values

wun

if normalize:

cm = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]
plt.imshow(cm, interpolation = 'nearest', cmap = cmap)
plt.title(title, fontsize = 28)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, fontsize = 28)
plt.yticks(tick_marks, classes, fontsize = 20)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.

for i, j in itertools.product(range(cm.shape[@]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), horizontalalignment = "center",
color = "white" if cm[i, j] < thresh else "black", fontsize = 4@)
plt.tight_layout()
plt.ylabel('True Label', fontsize = 3@)
plt.xlabel('Predicted Label', fontsize = 3@)

return plt

The above block is a function for creation and displaying confusion matrix

In [68]: # Print confusion matrix for lLogistic regression with countvectorizer
disp_confusion_matrix(y_pred_cv_logreg, "Logistic Regression")

Figure 16

Logistic Regression with CounterVectorizing
Confusion Matrix

200

2000

1500

True Label

Good 1000

Bad Good
Predicted Label
Figure 17

The above block is a function for generating confusion matrix

10

In [75]: # Function for converting the "classification report" results to a dataframe
def pandas_classification_report(y_true, y_pred):
metrics_summary = precision_recall_fscore_support(
y_true=y_true,
y_pred=y_pred)

avg = list(precision_recall_fscore_support(
y_true=y_true,
y_pred=y_pred,

average='weighted'))

metrics_sum_index = ['precision’, 'recall', 'fl-score', 'support']
class_report_df = pd.DataFrame(

list(metrics_summary),

index=metrics_sum_index)
support = class_report_df.loc['support']
total = support.sum()
avg[-1] = total
class_report_df['weighted avg'] = avg

return class_report_df.T

Figure 19

The above block shows how the model is evaluated in the form of classification report.

In [67]: print(classification_report(y_test, y_pred_cv_logreg))

precision recall fl-score support

e 8.72 .87 8.79 838

1 8.96 8.91 0.94 3229

accuracy 8.9 4859

macro avg .84 .89 ©.86 4059

weighted avg .91 .90 0.91 4059
Figure 20

This block generates the classification report for the model using multiple evaluation
metrics.

11

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Downloads and Installation
	Project development
	Text Pre-processing
	Model Development

