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Abstract

As machine learning evolves within the era of big-data, this research addressed
the topic of comparing batch machine learning against equivalent, online learn-
ing techniques in the context of next-minute cryptocurrency predictions. This re-
search designed 3 comparative experiments, each predicting Ethereum, DogeCoin
and BinanceCoin’s next minute price direction: (Exp1.a) Batch Logistic Regression
vs Online Softmax Regression, (Exp1.b) Batch Decision Tree vs Online Hoeffding
Tree, and (Exp1.c) Batch Random Forest vs an Online Adaptive Random Forest.
Exp1.a showed that across all 3 alt-coins, the Online Softmax Regression model
outperformed the Batch Logistic Regression model, with the best online model ac-
curacy and F1 being 0.61 compared to 0.56 for the Batch Logistic Regression. For
Exp1.b, the results marginally favoured Batch Decision Trees over Hoeffding trees
in 2 out of 3 datasets, with the best batch accuracy and F1 of 0.56 and 0.44, despite
Hoeffding trees performing better on 1 alt-coin (BinanceCoin) with 0.63 accuracy.
Exp1.c results favoured the Online Adaptive Random Forest in 2 out of 3 alt-coins,
with the highest accuracy and F1 of 0.66 and 0.64 compared to 0.56 and 0.46,
while Exp1.c results for DogeCoin marginally favoured the Batch Random Forest.
Overall, model performances compare well with existing work on cryptocurrency
predictions. Despite mixed results, this paper concluded that there are advantages
of deploying online machine learning as opposed to batch learning for predicting
next-minute price predictions of Ethereum, Dogecoin and BinanceCoin.

1 Introduction

This research contributes to the machine learning body of knowledge in the context of
short-term (next-minute) cryptocurrency price predictions. Specifically, this investiga-
tion follows a comparative approach between traditional batch machine learning against
online machine learning, with the goal of predicting next-minute price directions for Doge-
Coin (DOGE), BinanceCoin (BNB) and Ethereum (ETH) using historical pricing data
and technical indicators (time series). As a result, this research also contributes to the
broader body of literature regarding batch and online machine learning performance. A
cryptocurrency is defined as a ”digital currency” which facilitates financial transactions
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as a ”means of exchange” (Mohapatra, Ahmed and Alencar 2019). Distinct from fiat cur-
rencies, cryptocurrencies are typically decentralised and are developed using open-source,
distributed blockchain technologies for recording transactions (Islam et al. 2018). As of
2021, there are over 4,000 cryptocurrencies in circulation according to Investopedia (Con-
way 2021), while the original cryptocurrency – Bitcoin, released in 2009 – is considered
the most successful, attracting the most investment, recognition and not surprisingly,
research too (Sabry et al. 2020). Cryptocurrency prices are observed to be notoriously
volatile compared to other tradable assets (Guo, A. Bifet and Antulov-Fantulin 2018);
and much discussion continues around cryptocurrencies’ underlying value, as well as to
the role they truly play in today’s economies’ (Chiu and Koeppl 2017). Notwithstand-
ing this, total cryptocurrency market capitalisation has sky-rocketed over recent years,
particularly in the last 12 months seeing growth from 200 billion dollars in market capit-
alisation to over 2.3 trillion dollars according to Coinmarketcap.com (2021) (as of April
18th, 2021). As a result, cryptocurrency predictions pose as challenging, but highly
interesting problems for data analytics research.

1.1 Research Question, Objectives and Contributions

From a machine learning perspective, batch learning is considered the ”traditional” ap-
proach which describes how data arrives to train a model. As trends move towards
”big-data”, batch learning has been exposed as being limited for real-time analytics (Hoi
et al. 2018). As a result, online machine learning is increasingly being utilised by re-
searchers, but the relative comparison against batch learning has not been documented
in the context of cryptocurrency predictions until this research. Therefore, by streaming
cryptocurrency data from cloud storage (thereby simulating real-time analytics), this re-
search project answers the following question:

Research Question: ”To what extent can online machine learning provide an advantage
over traditional batch machine learning techniques for researchers and investors when
predicting next-minute cryptocurrency (alt-coin) price direction?”

In order to address this research question, the objectives listed in table 1 are completed.
For objectives B-C, each machine learning model (ML) is implemented and evaluated:

Table 1: Research objectives
A. Process data A.1. Create data lake of cryptocurrency data (1-min intervals)

A.2. Identify which alt-coin prices to model using machine learning
A.3. Process and transform data for predicting alt-coin prices

B. Batch ML B.1. Batch Logistic Regression (B-LG-C)
B.2. Batch Decision Tree Classifier (B-DT-C)
B.3. Batch Random Forest Classifier (B-RF-C)

C. Online ML C.1. Online Softmax Regression (O-LG-C)
C.2. Online Hoeffding Tree Classifier (O-HT-C)
C.3. Online Random Forest Classifier (O-RF-C)

D. Comparison D.1. Individually compare batch and online algorithms
D.2. Hypothesis test: Comparison of batch and online algorithms
D.3. Compare results to literature

E. Dashboard E.1. Develop cloud-based Shiny app to host results
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This research contributes the first known clear-cut comparison between batch and online
learning when applied to predicting next-minute cryptocurrency price movements. Due
to the complex nature of cryptocurrency prices, this research is primarily limited by the
scope of datasets examined (previous alt-coin pricing data). However, cryptocurrencies
are likely influenced by a very complex combination of multiple factors not considered,
such as social media, influential individuals, to name a few. Furthermore, this research
is not proposing an actionable trading strategy as the focus is confined specifically to
comparing learning algorithms across batch and online implementations.

For the remainder of this project, section 2 outlines the Literature Review of Machine
Learning and Crypto-currency Analytics, section 3 covers the Methodology and Design,
while section 4 showcases Implementation, Evaluation and Results. Section 5 covers the
Discussion before concluding this research in section 6.

2 Literature Review of Machine Learning and Crypto-

currency Analytics

This review is focused primarily on research conducted within the last 5 years. To the best
of this work’s knowledge, there is no literature which documents the comparison between
online and batch learning in the context of cryptocurrency analytics. As such, this review
is structured as follows: Introduction to Batch and Online Machine Learning (2.1); A
Critical Review of Batch and Online Machine Learning (2.2) and A Critical Review of
Cryptocurrency Analytics (2.3). Finally, Identified Research Gaps and Conclusion of
Literature are presented in subsection 2.4.

2.1 Introduction to Batch and Online Machine Learning

Batch learning – also referred to as ”offline learning” – is typically known as the ”tra-
ditional” approach to machine learning and requires that all data is readily available to
train a model at once (Hoi et al. 2018). Typically, the model is never updated with new
training data as it is costly to implement, making batch learning unsuitable for the reality
of many predictive problems, particularly in the presence of changing trends over time
(concept drift) (Liu et al. 2016). Indeed, with the advent of big-data which is ever grow-
ing and changing, Hoi et al. (2018) notes that one of the ”grand challenges” in the realm
of Artificial Intelligence is scaling machine learning to be usable from continuous streams
of data. This is consistent with Liu et al. (2016) who points out that batch learning
fundamentally cannot cope with ”large-scale datasets” due to memory constraints.

Accordingly, online learning – also referred to as incremental and/or data stream learning
(Gomes et al. 2019) – can be deployed to overcome shortcomings associated with batch
learning. Specifically, Rahnama (2014) outlines that online learning must exhibit the
following characteristics: process and learn from data one record/instance at a time
without reviewing the data again; consume limited computational resources and memory;
sensitive to time constraints; and capable of generating a prediction at any given time.
Hoi et al. (2018) notes that online learning provides advantages for many ”real-world”
scenarios, particularly where data is received ”in a sequential order”, such as financial
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markets time series. The key differentiator between these methods is that online learning
continually predicts at each time step, while also learning from new data as it arrives.

2.2 A Critical Review of Batch and Online Machine Learning

Although studies have examined the comparative performance of batch and online learn-
ing across various domains, this has not been exhibited for cryptocurrencies. Addressing
this comparative performance, Burlutskiy et al. (2016) used Stack Overflow online forums
as a case study with the goal of predicting user response times to questions within the
field of web-user behaviour. Accordingly, this comparison is achieved by running and
evaluating online algorithms in mini-batches based on mean accuracy and time costs. As
such, the researchers concluded that although a batch ”deep learning” solution produced
highest classification accuracy by small margins, it came with a training cost ”several
magnitudes higher” than basic online algorithms. Therefore, it was concluded that online
models offer better prospects for real-time predictions, despite showing slightly comprom-
ised results, and that future research ought to trial ”more datasets and prediction tasks”
to test this performance comparison outside the scope of web-user behaviour, particularly
where there is a need for real-time analytics, while mitigating the computational overhead.

Focusing on the Auto-regressive Integrated Moving Average (ARIMA) model, Liu et al.
(2016) developed 2 novel online variants of ARIMA to overcome the problem of batch
learning, aliased as ARIMA-ONS (ARIMA Online Newton Step) and ARIMA-OGD (AR-
IMA Online Gradient Descent). Due to the sequential nature of time series, the authors
stipulate that online learning is a ”more natural” approach for this task. Specifically,
the authors report that during periods of ”abrupt change” throughout the Dow Jones In-
dustrial Average time series, ARIMA-ONS (online) reliably outperformed batch models,
indicating a higher resilience to concept drift and volatility. This finding can be contras-
ted against Wang and Han (2014) who also predicted the DJIA index using batch and
online models. In particular, a specific neural network architecture – Extreme Learning
Machine (ELM) (Liang et al. 2006) – was tested against its online sequential variant
(aliased as OS-ELMK), as well as an online Support Vector Regressor (OS-SVR). The
results show that OS-ELMK has multiple advantages: it continuously adapts to new
samples; OS-ELMK can predict with very similar performance as the batch ELM, but
with orders of time complexity reduced. Distinct from Liu et al. (2016), the online accur-
acy for their stock forecasting did not surpass the batch model. Such conflicting results
indicate that more work is necessary, using more algorithms/datasets.

In the healthcare domain, Jagirdar (2018) investigated online and batch learning perform-
ances (binary classification) across the criteria of ”accuracy, model complexity and time
consumption”. By examining two datasets: patient mortality (9,000+ observations) and
diabetic burnout (100,000+ observations). Although a series of batch and online mod-
els were trialed showing mixed results across datasets, only the Random Forest model
was implemented in batch and online learning. Using the Area Under the Curve (AUC)
metric, the relevant results from this study showed that batch random forest classifier
achieved 0.76 AUC, while using online random forest returned an impressive 0.98 AUC
using the mortality dataset. By contrast, the diabetic burnout dataset inquiry did not
vary between batch and online having a 0.98 AUC across both implementations. Similar
to Burlutskiy et al. (2016), Jagirdar (2018) noted that future work is needed using more
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online algorithms for real-time analytics.

The topic of batch and online learning is framed by Suto et al. (2017) as a mix of Inter-
net of Things (IoT) with machine learning. In the context of human activity recognition
(HAR) – where subjects wear sensors for monitoring human activity – this research set out
to test the ”efficiency and reliability” of successfully implemented batch machine learn-
ing techniques when applied under real-time conditions. By comparing their real-time
results to previously recorded results across literature, the authors note that their online
learning tests did not reach the levels observed by other researchers using batch/offline
methods. Finally, from a climate research perspective, Brenowitz et al. (2020) deployed
machine learning techniques to predict temperature and humidity. Although part of a
broader effort to improve the accuracy of traditional approaches of climate forecasting,
this research implemented a Random Forest and 2 layered Neural Networks in both batch
and online learning modes. This research finds that the neural network outperforms the
random forest model in offline mode. However, the neural network is described as being
too unstable for online modelling, thereby giving credit to the random forest model for its
real-time stability. However, more research is needed to find offline predictive modelling
techniques which ”translates to good online performance” (Brenowitz et al. 2020).

2.3 A Critical Review and Comparison of Cryptocurrency Ana-
lytics

The novel nature of cryptocurrencies has attracted research from multiple angles, cov-
ering a wide range of datasets, algorithms and methodologies; yet the majority of con-
tributions have studied Bitcoin price predictions (Sabry et al. 2020). According to the
objectives set out in 1.1, a series of papers are reviewed which utilise machine learning
techniques for predicting cryptocurrencies in general, which is justified as most research
is Bitcoin-centric. To begin, J.-Z. Huang, W. Huang and Ni (2019) raised an important
point which distinguishes cryptocurrency from stock predictions: cryptocurrencies are
not linked to fundamental factors (ie. profits, balance sheets, etc), therefore much of the
research reviewed utilise technical factors (previous cryptocurrency prices) to infer future
prices/direction. In fact, technical factors have been shown to be the most promising
predictor variables for cryptocurrencies (Jaquart, Dann and Weinhardt 2021).

Focusing on real-time predictions, Amjad and Shah (2017)’s research into Bitcoin price
predictions was seeking to forecast price changes for algorithmic trading. Accordingly,
Amjad and Shah (2017) achieved 70+ percent classification accuracy, as well as significant
profit returns by deploying Logistic Regression, Random Forest and Linear Discrimin-
ant Analysis using 2014-2016 data. By contrast, also studying Bitcoin price predictions,
McNally, Roche and Caton (2018) developed ARIMA, Recurrent Neural Network (RNN)
and Long-Short Term Memory (LSTM) models for both classification and regression tasks
between 2013-2016 using daily prices. As anticipated, LSTM and RNN outperformed the
ARIMA model for both classification and regression, despite 52 percent accuracy being
the highest achieved result (LSTM model). The authors note that limitations and future
work areas include using data streaming which they expect to improve model perform-
ance. In conjunction with this, McNally, Roche and Caton (2018) highlight that higher
frequency data (ideally, minute-minute level) would be likely to improve on deep learning
models such as LSTM and RNN implementations. Using higher frequency datasets to
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improve model performance is a commonly held claim for predicting cryptocurrencies
(Sebastião and Godinho 2021; Munim, Shakil and Alon 2019; Pang, Sundararaj and Ren
2019). Indeed, research has been done using higher-frequency datasets (highest being 15
minute intervals) studying the classification of 12 alt-coin price returns, with the goal
of testing and ”exploiting” market inefficiencies Akyildirim, Göncü and Sensoy (2018).
The best performing algorithms (using out-of-sample results, and 15-minute intervals)
appear to have been 0.64 accuracy using an MLP Artificial Neural Network, predicting
the OMG-Network alt-coin returns, while all tests return at least 0.5 accuracy.

Framing this task into a multinomial classification problem (21 classes, categorised into
percentage increase/decreases), J.-Z. Huang, W. Huang and Ni (2019) deployed a decision
tree model on a ”high dimensional” dataset of 124 variables containing daily records from
2012-2017. This research portrayed the utility of previous price indicators (technical ana-
lysis) for predicting Bitcoin, as the results were able to outperform the ”buy-and-hold
strategy even in a strong bull market”. However, a number of research papers have em-
phasised that there is a lack of contributions which utilise streaming data and/or real-time
predictions with the cryptocurrency space (Mohapatra, Ahmed and Alencar 2019; Jay
et al. 2020; Horvat et al. 2020). This gap in literature led Mohapatra, Ahmed and Alen-
car (2019) to develop a scalable Bitcoin prediction implementation using high frequency
cryptocurrency data (1-minute intervals), while also using Twitter data from July-August
2019. The authors aliased their solution as ’KryptoOracle’. While KryptoOracle mainly
focused on text analytics at first, the authors later incorporated historical Bitcoin prices
to increase model performance, finding that model performance improves over time show-
ing the adaptive nature in real-time. Mohapatra, Ahmed and Alencar (2019) identified
future work of developing more machine learning techniques, particularly using streaming
algorithms which were not available to them (ie. non-linear models).

In a comprehensive review of 100 alt-coins, Liew et al. (2019) modelled the daily returns
using 11 algorithms (linear, tree, ensemble, deep learning models). Among the findings,
the authors demonstrated that smaller, more volatile cryptocurrencies were the hardest
to predict, while larger, less volatile performed better. Analysing the Ethereum alt-coin,
Chen, Narwal and Schultz (2019) also deployed multiple models to the task of classifying
price direction using hourly data, which the authors proclaim is ”non-trivial” and chal-
lenging task for machine learning. Across 10 deployments, the best performer was an
ARIMA model with 0.61 accuracy, while all other models ranged between 0.5-0.57 ac-
curacy, Random Forest being the worst. Seemingly the best performing model identified
in this review, Albariqi and Winarko (2020) implemented a LSTM for predicting Bitcoin
price directions. The dataset ranged from 2010-2017 with records for every second day
(1300 rows). Albariqi and Winarko (2020) reported mean accuracy of 81.3 percent, preci-
sion of 81 percent and recall as high as 94 percent. However, this research is limited due
to small dataset size, and the fact that predictions are for 2-60 days, rather than provid-
ing any real-time, actionable insight. This critique is consistent with Jaquart, Dann and
Weinhardt (2021) who claims that not enough researchers focus on short-term predic-
tions, and that there is much to be discovered regarding Bitcoin price predictions within
short time horizons (under 60-minutes). It is fair to assume this extends to alt-coin prices
too. Therefore, Jaquart, Dann and Weinhardt (2021) predicted 1, 5, 15 and 60 minute
price movements with multiple algorithm types, finding that 60-minute predictions per-
formed best returning 0.56 accuracy (LSTM). For 1-minute predictions, the best is also
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LSTM with 0.52 accuracy.

Claiming that current literature doesn’t address the problem of real-time predictions, Jay
et al. (2020) studied Bitcoin, Litecoin and Ethereum from 2017-2019 (daily prices) from
the perspective of volatility due to the ”erratic” behaviour of these markets. Using a
selection of neural networks, Jay et al. (2020) compared stochastic induced models with
”deterministic” models. This is based on the premise that real-time predictions require
the element of random/stochastic behaviour. Jay et al. (2020) reported that model
accuracy is improved by 1.3 to 3.9 percent utilising the stochastic induced networks.
Incremental learning using a batch size of 7 was implemented to train the networks.

2.4 Identified Research Gaps and Conclusion of Literature

Combining both bodies of literature, the following gaps and limitations are identified: (a)
First, a common theme pointed out by most of the papers in 2.2 confirm that there is a
need and benefit of continued research into the comparison between batch and online mod-
els using more datasets, algorithms and across different domains (Burlutskiy et al. 2016;
Jagirdar 2018; Brenowitz et al. 2020). This is also supported by Hoi et al. (2018) who
outlined the ”grand challenge” of bringing model usability to ”continuous data streams”.
(b) Taking the first research gap into account, there are currently no known studies which
examine cryptocurrency price predictions using batch and online learning techniques, des-
pite this being done across other research domains discussed in 2.2. Furthermore, within
the cryptocurrency literature discussed, authors have identified that future work should
consider streaming data and online learning algorithms to improve results, however no
controlled comparison has been done against the traditional, batch models to warrant the
use of online and data streaming models (Mohapatra, Ahmed and Alencar 2019; McNally,
Roche and Caton 2018). (c) Next, the majority of cryptocurrency research papers focus
on Bitcoin priced in US Dollars (Sabry et al. 2020). Accordingly, this research focuses on
prediction of 3 alt-coins instead using Euro currency. (d) The fourth issue identified is
regarding the dataset sizes being examined, which typically do not extend greater than
daily price records (Jaquart, Dann and Weinhardt 2021; McNally, Roche and Caton 2018;
Sebastião and Godinho 2021; Munim, Shakil and Alon 2019; Pang, Sundararaj and Ren
2019). This is potentially highly problematic for many machine learning techniques as
the models may need more data to learn intra-day patterns in the data. This is also im-
portant from a stakeholder perspective, as daily price predictions do not lend themselves
to actionable decisions (ie. when in the day should one buy/sell?). All considered, this
research develops the first known comprehensive account of using streaming and online
techniques versus the traditional batch approach for alt-coin predictions.

3 Methodology and Design

3.1 Batch versus Online Machine Learning Methodology

This section outlines the steps taken throughout this research, while section 4 details the
implementation with evaluation and results. When embarking on data analytics research,
one is confronted with a series of possible methodology frameworks to consider. Most
notably, these include the Cross Industry Standard Process for Data Mining (CRISP-DM)
and the Knowledge Discovery in Databases (KDD) paradigms (Islam et al. 2018). Given
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this research is not within a business setting, a tailored version of the Knowledge Discovery
in Databases (KDD) is best suited to this task, which is hereby named ”Batch versus
Online Learning Methodology” as visualised in figure 1, and also within the ”Analytics
Tier” of figure 7 highlighting the interplay between methodology and design. Accordingly,
the methodology consists of the following stages: (1) Select Cryptocurrency Data; (2)
Pre-process Cryptocurrency Data; (3) Transform Cryptocurrency Data; (4) Batch versus
Online Machine Learning; (5) Knowledge Discovery.

Figure 1: Batch versus Online Learning Methodology (Analytical Tier)

3.1.1 Select Cryptocurrency Data

First, this research extracted1 all cryptocurrency prices from the Binance exchange priced
in Euro currency (table 2, 29 cryptocurrencies, 1-minute intervals). The following fields
are extracted: Timestamp, Open, High, Low, Close, Volume, Quote Asset Volume,
Trades, Taker Buy Base Asset Volume, Taker Buy Quote Asset Volume. By extract-
ing a comprehensive set of cryptocurrencies, this enabled a well informed process for
deciding to model DogeCoin, BinanceCoin and Ethereum price movement.

Table 2: Cryptocurrency datasets
ADA/EUR AVAX/EUR BCH/EUR BNB/EUR BTC/EUR
BTT/EUR CHZ/EUR DOGE/EUR DOT/EUR EGLD/EUR
ENJ/EUR EOS/EUR ETH/EUR GRT/EUR HOT/EUR
LINK/EUR LTC/EUR LUNA/EUR MATIC/EUR SXP/EUR
THETA/EUR TRX/EUR UNI/EUR VET/EUR WIN/EUR
WRX/EUR XLM/EUR XRP/EUR YFI/EUR

The following criteria is applied for selecting DogeCoin (DOGE/EUR), BinanceCoin
(BNB/EUR) and Ethereum (ETH/EUR) to study: (a) Bitcoin is excluded as it is widely
researched to date; (b) Cryptocurrencies with less than the median dataset size (circa
210,000 records) were automatically dropped (14 cryptocurrencies), due to the preference
of using larger datasets where possible (Sebastião and Godinho 2021; Munim, Shakil and
Alon 2019; Pang, Sundararaj and Ren 2019). Accordingly, there is over 222,000 rows of
DogeCoin minute prices, while BinanceCoin and Ethereum have over 780,000 rows; (c)
Next, this research sought to study a high, medium and low volatility time series calcu-
lated by the standard deviation of the price percentage change (figure 2). This identified
that Ethereum is the least volatile alt-coin (0.0017), while DogeCoin is the most volatile

1Credit to Nistrup (2019) for providing online article using the Binance API which helped this meth-
odology
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(0.00371). BinanceCoin is included as showing a moderate volatility level (0.00276). By
selecting these 3 large cryptocurrency datasets, this addresses research gaps (a) and (b)
while also ensuring a range of complexity. Objectives A.1 and A.2 are now completed.

Figure 2: Standard Deviations of Price Changes (excluding 14 cryptocurrencies)

3.1.2 Pre-process Cryptocurrency Data

As outlined in figure 1, data pre-processing is identical for both batch and online learning
as part of exploratory analysis (Ethereum, DogeCoin, BinanceCoin). Simple moving
averages (SMA) are generated for 10, 20, 50, 100, 200, 300 minute intervals. SMAs are
widely used technical indicators which indicate trends in the data, and can be used to
predict future prices J.-Z. Huang, W. Huang and Ni (2019). Because this is done at the
minute-minute level, it is hard to discern the various time series from one another without
zooming in on a 12-hour window as shown between figures 3 and 4.

Figure 2: DogeCoin (DOGEEUR) Time Series

Figure 3: DogeCoin (DOGEEUR) Zoomed Time Series
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Figure 4: BinanceCoin (BNBEUR) Time Series

Price direction is generated for every minute, which enables this analysis to implement
classification tasks from the time series data. The price direction field is populated with
’1’ where the price increases compared to the previous price, ’0’ when prices remains
the same, while -1 is labelled for a decrease in price. Subsequently, class imbalance is
identified for each cryptocurrency (figure 5).

Figure 5: Class Balance for DogeCoin, Ethereum, BinanceCoin

3.1.3 Transform Cryptocurrency Data

By addressing the pre-processing findings, this subsection completes objective A.3 of
preparing the data for machine learning with the following activities:

Create target variables: The target variable to be predicted across all experiments
is the next minute price direction. Therefore, once the price direction is generated as
described in 3.1.2, this is shifted back by 1 row when training machine learning models.
This is because it is required to predict the future price direction, given the current
information. For example, at time ’t’, a model needs to predict the price for time ’t+1’.

Feature selection: With the goal of classifying price direction with input data which
is fundamentally continuous (ie. continuous input, categorical output), many commonly
used feature selection techniques such as correlation analysis are invalid. Therefore, this
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approach uses machine learning to help identify and/or rule out features. Accordingly, the
Random Forest feature importance technique is used, which plots the following features
importance’s for each alt-coin, as shown in figure 6 for Ethereum:

Figure 6: Feature Selection

When applied to each alt-coin, it is clear that there is no 1 or 2 features which dom-
inate the learning process (as shown in below table, the highest contribution is 0.12),
therefore it is decided to exclude only the features in the lowest quartile. Following this
approach, 87 percent of feature importance is captured for Etheruem and BinanceCoin,
while DogeCoin’s is 78 percent. Table 3 summarises the features selected for deployment
per alt-coin:

Table 3: Ethereum, DogeCoin and BinanceCoin Feature Importance’s

Class imbalance: Given the time series nature of this research (that is, each sample
is not independent of the previous), it is not palatable to transform the data using
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over/under sampling techniques, as this will inherently violate the time component of
the data, and create a ”non-representative” dataset for training (Cao et al. 2013). In-
stead, each batch trained model is provided with the class weight parameter, which is
calculated by weighting the classes while training the model with their inverse proportion
to the current class distribution. Because the class distribution cannot be known in ad-
vance for online tasks, online learning models use the Hard Sampling Classifier technique
(from the ’river’ package), which stores a fixed size of samples which are deemed the most
difficult to classify by the algorithm, and uses this data to train the model at a specified
probability (Montiel et al. 2020a).

3.1.4 Batch versus Online Machine Learning

Evidently, this research empashised the use of tree-based machine learning models (though,
not exclusively), which is justified given that these model types are among the least util-
ised in current cryptocurrency literature (Sabry et al. 2020). While each implementation
is covered in section 4, a cursory overview of each model is provided:

Logistic and Softmax Regression Logistic regression is the most commonly used
approach for predicting categorical variables (particularly for binary classes) (Burkov
2019; Hilbe 2011). The concept underpinning logistic regression revolves around the
”odds” of an event occurring or not, which logistic regression models as a ”linear function”
of predictor variables using the natural logarithm of the odds (log-odds) to predict the
target class (Burkov 2019; LaValley 2008). Overall, logistic regression is noted as being
an efficient and scalable model for classification tasks (Amjad and Shah 2017). Softmax
regression is defined as a multinomial ”generalisation” of the logistic regression model,
and therefore can be used for multi-class problems (Jurafsky 2020; Montiel et al. 2020b).

Decision Tree A decision tree is a highly intuitive and ”white-box” model (as opposed
to black-box, meaning it is easy to understand) which learns rules from the data in order to
predict the target class/variable and is used in both classification and regression problems
(Pedregosa et al. 2011a). There are many variations of the decision tree algorithm (eg.
ID3, C4.5, CART), however each of these require that all data is readily available to train
from memory, which therefore inhibits their utility for big datasets, and rules them out
for data stream analytics altogether (Domingos and Hulten 2000).

Hoeffding Tree The Hoeffding tree algorithm is also a tree-based model and was
developed to address the limitations of traditional decision trees (Domingos and Hulten
2000). Accordingly, the Hoeffding tree is in effect a decision tree which can be deployed
using online learning and can be used for real-time analytics (Domingos and Hulten 2000).
It does so by constructing a decision tree using Hoeffding bounds enabling the algorithm
to converge to the same level of a batch trained decision tree provided enough streams of
data (Domingos and Hulten 2000).

Random Forest The random forest algorithm is a widely used example of an ”en-
semble” machine learning algorithm (Burkov 2019). Ensemble learning is a technique
which seeks to build a highly accurate model by combining several ”weak” or ”shallow”
learning models (models that are not deep learning neural networks) into an aggregated
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model. Effective for both classification and regression tasks, random forests are construc-
ted of multiple decision tree algorithms, and are more resilient to over-fitting compared
to decision trees due to the bagging technique which ensures each decision tree learns
on slightly different copies of the original data. Random forests predict classifications
by returning the class which the majority of decision trees predicted, and are therefore
considered highly robust models (Burkov 2019; Amjad and Shah 2017).

3.1.5 Knowledge Discovery

The following evaluation metrics are calculated using the weighted average approach
rather than using the default ’macro’, or ’micro’ function. This is justified due to class
imbalances in the data, meaning that each of the following metrics are calculated for each
class (1, 0, -1), and then weighted by the support level of the class. For batch learning
models, the average metric for each cross validation split is used in results. Because online
learning metrics are continually updated, the final (ie. the current) value of each metric
is used. All of the following are interpreted between 0 (worst) and 1 (best).

Mean Accuracy Mean accuracy captures the ratio of correct predictions compared to
all predictions made (Hossin and Sulaiman 2015).

Precision Out of all the samples that the classifier predicted as being positive, precision
measures how many of them were correctly identified (Hossin and Sulaiman 2015).

Recall Out of all the positive samples that actually exist, recall measures how many of
them were correctly identified (Hossin and Sulaiman 2015).

F1 Score The F1 score returns the ”harmonic mean” of the precision and recall metrics,
and is often compared to mean accuracy but is considered preferable under conditions
where false predictions are more crucial (Hossin and Sulaiman 2015).

3.2 3-Tier Batch versus Online Machine Learning Design

This research developed a 3-tier architecture (as shown in figure 7) owing to fact that
a significant level of development was necessary in order to create a live, voluminous
dataset while also using scalable, cloud technologies in a cost effective manner. The
interplay between methodology and design is summarised in figure 7:

Data Persistent Tier: The purpose of the Data Persistent Tier is to continually gen-
erate live cryptocurrency data into an AWS Simple Cloud Storage bucket (S3), where
the data can be loaded/streamed into the Analytics Tier. Everyday, data is collected
and loaded into AWS S3 buckets using the Binance’s API (binance.client) programmed
through Python 3.8.10, which is scheduled to run using Ubuntu’s cron utility, hosted on
AWS EC2 cloud instances. The following EC2 instance is utilised:

• EC2 Region/Availability Zone: US East, N. Virginia (us-east-1b).

• EC2 AMI: Ubuntu Server 20.04 LTS (HVM), SSD Volume Type.

• EC2 Instance type: t.2 large (2 VCPUs, 8GB RAM).
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• Storage: 16GB of Elastic Block Storage (EBS).

• Security: Ports 20 and 80 are open for custom IP addresses only (HTTP and SSH).

In turn, this EC2 instance is scheduled to run using the AWS Instance Scheduling service
comprised of AWS CloudFormation, CloudWatch, Lambda and DynamoDB.

Analytics Tier: The Analytics tier is the development environment where pre-processing
and analytical techniques are deployed to address the research question. The primary
programming language used is Python 3.7.10 running from Pycharm Community Edition
2019.2.3, using Windows 10 with 16GB of RAM and an Intel Core i5-7300HQ CPU.

Visual Tier: The Visual Tier is developed to inspect analysis and results in an inter-
active manner, hosted on a second EC2 instance. The programming language utilised for
this web-application is R version 3.6.3, using the shiny package (version 1.6.0). Similarly,
this EC2 instance specification is the same as the Data Persistent Tier, except for the
following differences:

• Storage: 8GB of Elastic Block Storage (EBS).

• Security: Ports 20, 80, 8787 and 3838 are open for custom IP addresses only. These
are used for SSH, HTTP, R-Studio and the Shiny app service respectively.

Because each tier is running from completely different host systems, this means that code
has to be managed in an effective manner. To do so, the Git version control utility is
used to track the code on each system and Github is used as the remote repository.

Figure 7: Batch versus Online Learning 3-Tier Analytical Architecture
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4 Implementation, Evaluation and Results of Batch

versus Online Learning

This section documents the experimental implementation to address the research question
posed in subsection 1.1, consisting of batch and online machine learning across each alt-
coin. Accordingly, the following experiments were completed:

Experiment 1: The main component of this implementation was to individually com-
pare the predictive performance (using the evaluation metrics in subsection 3.1.5) of each
model when deployed under batch and online conditions. By completing the following
experiments, this addresses objective D.1: (Exp.1a) Batch Logistic Regression vs Online
Softmax Regression; (Exp.1b) Batch Decision Tree vs Online Hoeffding Tree; (Exp.1c)
Batch Random Forest vs Online Random Forest.

Experiment 2: Unpaired Two-Sample Hypothesis Test: Using model evaluation met-
rics collected from Experiment 1, a hypothesis test was performed for determining whether
a differential between batch or online learning predictive performance is statistically sig-
nificant. By completing this secondary experiment, this addresses objective D.2.

4.1 Experiment 1 Implementation, Evaluation and Results

Before progressing to Exp.1a-c, a brief overview of Experiment 1 is presented here. While
this implementation delivers a comparison between batch and online models, all model
development is conducted using batch data. Once the final batch model is identified in
Exp.1a-c (using grid-search and time series cross validation), a replica of this model (ie.
hyper-parameters, features, etc) is deployed using online learning where applicable. This
is justified from a machine learning operations (ML-ops) perspective, and also provides
scientific control from which to compare results. For online learning deployments, data
is streamed from an AWS S3 CSV file, transformed into a python dictionary object,
and then fed to models for online learning. Figure 8 summarises the implementation of
Experiment 1 (Exp.1a-Exp.1c) for each alt-coin and model.
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Figure 8: Experiment 1 Flow Chart

Secondly, the time series cross validation splits, including class balance, is plotted for each
alt-coin throughout figure 9 (plotting technique adopted from the scikit-learn document-
ation/code (Pedregosa et al. 2011b)). This approach maintains the sequential nature of
the time series, and ensures the model is never trained on future data to predict past
prices. The ’class’ bars also reveal the sequentially imbalanced and dynamic nature of
the data as time passes (particularly for BinanceCoin and to a lesser degree, Ethereum).
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Figure 9: Ethereum, DogeCoin and BinanceCoin Cross Validation Splits

A final note before commencing the experimental process: all batch learning development
is implemented using the ’sklearn’ Python package (Pedregosa et al. 2011a) with the
’Pandas’ DataFrame object once extracted from AWS S3 using the ’boto3’ package. All
online model development is using the ’river’ package (Montiel et al. 2020a). For every
batch and online machine learning model, a model alias is provided (eg. B-LG-C).

4.1.1 Exp.1a: Batch Logistic Regression vs Online Softmax Regression

Implementation of Batch Logistic Regression (B-LG-C):

Batch Logistic Regression is developed using sklearn’s linear model.LogisticRegression
class, configured for ’multinomial’ problems. In order to arrive at a final/best model,
this research deployed grid-search parameter tuning for all 3 alt-coins to identify the
optimal ’C’ tuning across 8 possibilities. The ’C’ parameter represents the ”inverse of
regularization strength” (Pedregosa et al. 2011a), and ultimately controls the degree to
which the model is programmed to avoid over fitting to training data. Secondly, data
scaling is conducted using the Standard Scaling technique (also sklearn). This transforms
each feature to have a mean of 0, with a standard deviation of 1, and is most effective
when working with linear models. During grid-search, the settings shown in table 4 were
applied:

Table 4: Logistic regression Grid Search Settings
Hyper-parameters: Settings:

Solver SAG (Stochastic Average Gradient)
C (Inverse of regularization) 0.0001, 0.0013, 0.0193, 0.268, 3.727, 51.79, 719.68, 10000
Class Weights None

The ’sag’ is noted for performance for larger datasets, therefore it was used for each
test within this experiment (Pedregosa et al. 2011a). Finally, the gird-search revealed
that inverse regularisation (’C’) tuned to 0.0001 (the lowest provided value) was optimal
for all Ethereum and BinanceCoin indicating each time it was better to under-fit the
model, By contrast, C was best tuned to 51.79 for DoeCoin. In general however, this
implementation struggled with algorithmic convergence during grid search (which took
10+ hours). Indeed, providing the model with class weights proved more problematic than
omitting class weights (despite significant class imbalance), and as a result, the classes
were not balanced by the model to estimate the optimal C value during grid search. Table
5 showcases the logistic regression models finally deployed after grid search:

17



Table 5: Batch Logistic Regression Final Models
Alt-coin: C: Penalty: Class Weights:

Ethereum 0.0001 l2 Both (with/without inverse proportions)
DogeCoin 51.7947 l2 Both (with/without inverse proportions)
BinanceCoin 0.0001 l2 Both (with/without inverse proportions)

Implementation of Online Softmax Regression (O-LG-C):

On the contrary, river’s linear model.SoftmaxRegression class is used for the online model.
Because scikit-learn StandardScaling is incompatible with online learning, data is also
scaled with river’s StandardScaling class when streaming from S3. The distinction with
online standard scaling is that the true distribution is unknown in advance, therefore
a ”running mean and a running variance” is calculated to scale the data (Montiel et
al. 2020a). This implementation also utilised the HardSamplingClassifier class from the
river package to increase model performance. This technique is unique to online machine
learning which provides the model a window of previously trained samples which were
the most difficult to predict (ie. the hardest samples), with an associated probability on
how often to retrain on past data and for-go newly streamed data. As shown in table 6,
the SoftmaxRegression model is set up the same for each cryptocurrency, with Stochastic
Gradient Descent as the optimiser with 0.1 learning rate.

Table 6: Online Softmax Regression Final Models
Alt-coin: Optimisation: Hard Sampling Setting:

Ethereum SGD 0.1 Probability of 0.2, Sample size of 150
DogeCoin SGD 0.1 Probability of 0.2, Sample size of 150
BinanceCoin SGD 0.1 Probability of 0.2, Sample size of 150

Exp.1a Evaluation and Results:

Table 7 displays the performance of the batch and online logistic/softmax regression
models across each alt-coin. Note that for each batch model, there are 2 sets of results:
1 set for where class weights were provided to the model (ClassBal), and another where
no class weights were provided (NoClassBal). For all result tables, the best model per
alt-coin is highlighted in bold text:

Table 7: Exp.1a Results Table
Alt-coin: Model: Accuracy: Precision: Recall: F1:

Ethereum B-LG-C (ClassBal) 0.52 0.48 0.52 0.46
Ethereum B-LG-C (NoClassBal) 0.56 0.53 0.56 0.5
Ethereum O-LG-C 0.59 0.58 0.59 0.59
DogeCoin B-LG-C (ClassBal) 0.39 0.48 0.39 0.35
DogeCoin B-LG-C (NoClassBal) 0.37 0.49 0.37 0.33
DogeCoin O-LG-C 0.45 0.45 0.45 0.45
BinanceCoin B-LG-C (ClassBal) 0.49 0.55 0.49 0.39
BinanceCoin B-LG-C (NoClassBal) 0.56 0.55 0.56 0.44
BinanceCoin O-LG-C 0.61 0.61 0.61 0.61

Taking these results at face value, the following themes are identified: (a) across each alt-
coin and nearly every metric, online learning model outperforms the batch trained models;
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(b) for batch models, better performance is found when class balance is not applied; (c)
finally, DogeCoin appears to be hardest dataset for predictions. However, a closer look
is provided with the following normalised confusion matrices of batch (NoClassBals) and
online logistic regression models2:

Figure 10: B-LG-C (NoClassBal) Confusion Matrices

Figure 11: O-LG-C Confusion Matrices

Figure 10 and 11 provide further insight into the model behaviours. For example, the
performance variance for BinanceCoin is highly explained by the online models ability
to predict ’0’, which is then compounded by the level of support in the BinanceCoin
dataset as outlined in figure 5 and 9 previously. Regardless of these issues, the models
are learning from the same data, which in an online manner appears to be preferable. A
further inspection of the respective model learning rates (accuracy) is plotted in figure
12:

2As described in section 3.1.5, batch model results are averaged across each CV split. Therefore,
confusion matrix ’Actual’ percentages may not be identical across batch and online evaluations, among
other evaluation metrics.
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Figure 12: Experiment 1a Learning Progress (B-LG-C vs O-LG-C)

For online models, figure 12 plots the rolling accuracy at every minute. For batch models,
there are only 4 data points at the end of each test period, therefore a rolling accuracy is
plotted for each split. A close look at the online time series’ show the sudden, adaptive
learning at the very start of each series, which then tapers downward for Ethereum and
BinanceCoin. By contrast, DogeCoin’s appears to be trending upward, and with more
data could end up with similar performance of the other alt-coins. To conclude, the
online implementation is considered preferable, which completes objectives B.1 and C.1
while also partially answering the research question.

4.1.2 Exp.1b: Batch Decision Tree vs Online Hoeffding Tree

For this experiment, a decision tree is compared to a Hoeffding tree (aka. Very Fast
Decision Tree (Domingos and Hulten 2000)). The key difference between these two is that
a Hoeffding tree can be trained incrementally/online using data streams while decision
trees cannot as they require all data in advance (Albert Bifet et al. 2017).

Implementation of Batch Decision Tree (B-DT-C):

For developing the batch decision tree model, sklearn’s tree.DecisionTreeClassifier class
is used. The sklearn package implements the CART decision tree (Classification and Re-
gression Trees), which builds trees based on the ”largest information gain” when learning
from the features training the model (Pedregosa et al. 2011a). Because tree-based models
do not require feature scaling to be applied (unlike linear models), the original feature
values were maintained as opposed to using a scaling technique. For parameter tuning,
the grid-search cross validation was applied to establish the best values for the ’criterion’,
’splitter’ and the maximum tree depth (’max depth’). For each alt-coin, the time series
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was split into 4 train-test segments, as shown in figure 9 previously, while table 8 show-
cases the decision tree grid-search configuration at each train-test split:

Table 8: Decision Tree Grid Search Settings
Hyper-parameters: Settings:

Criterion ’gini’, ’entropy’
Splitter ’best’, ’random’
Max depth 5, 10, 20, 30, 40, 50, 60
Class Weights Inverse proportions of class balance

Accordingly, the best model is recorded at every train-test split, for each alt-coin as shown
in the following table. Using this information, the final models were established in figure
9:

Table 9: Batch Decision Tree Final Models
Alt-coin: Criterion: Max Depth: Splitter: Class Weights:

Ethereum Entropy 5 Random Both (with/without inverse proportions)
DogeCoin Gini 5 Random Both (with/without inverse proportions)
BinanceCoin Entropy 5 Random Both (with/without inverse proportions)

Implementation of Hoeffding Tree (O-HT-C):

This implementation uses river’s tree.HoeffdingTreeClassifier class for the online Hoeffd-
ing tree classifier. As the data is streamed into all online models, the data is transformed
to a Python dictionary, as required by the river package, each record at a time. Because
the best parameters are found in batch mode for the decision tree, these are then applied
where applicable to the Hoeffding tree. As such, the max tree depth is always 5 for each
Hoeffding tree and alt-coin. However, the HardSamplingClassifier is also utilised in this
implementation to re-train the model on the fly with the most difficult samples. As per
table 10, the settings were as follows for each alt-coin:

Table 10: Online Hoeffding Tree Final Models
Alt-coin: Criterion: Max Depth: Hard Sampling Setting:

Ethereum Entropy (info gain) 5 Probability of 0.2, Sample size of 150
DogeCoin Gini 50 Probability of 0.2, Sample size of 150
BinanceCoin Gini 5 Probability of 0.2, Sample size of 150

Exp.1b Evaluation and Results:

The performance of the decision and Hoeffding tree are compared herein, which completes
objectives B.2 and C.2 while also improving the clarity surround this research question.
Accordingly, the results of each model are presented in table 11. Similar to Exp1.a,
the batch tree models with no class balancing return higher evaluations. By contrast to
Exp.1a however, the performance differential between both batch and online regimes is
visibly more difficult to discern. Although O-HT-C’s metrics are significantly stronger
on the BinanceCoin test, the same cannot be said for Ethereum and Dogecoin. To gain
a better intuition about the model outputs, confusion matrices are plotted in figure 13
and 14.

21



Table 11: Exp.1b Results Table
Alt-coin: Model: Accuracy: Precision: Recall: F1:

Ethereum B-DT-C (ClassBal) 0.5 0.46 0.5 0.39
Ethereum B-DT-C (NoClassBal) 0.56 0.5 0.56 0.44
Ethereum O-HT-C 0.53 0.51 0.53 0.44
DogeCoin B-DT-C (ClassBal) 0.46 0.46 0.46 0.46
DogeCoin B-DT-C (NoClassBal) 0.47 0.46 0.47 0.45
DogeCoin O-HT-C 0.47 0.44 0.47 0.42
BinanceCoin B-DT-C (ClassBal) 0.53 0.53 0.53 0.53
BinanceCoin B-DT-C (NoClassBal) 0.56 0.51 0.56 0.45
BinanceCoin O-HT-C 0.63 0.6 0.63 0.6

Figure 13: B-DT-C (NoClassBal) Confusion Matrices

Figure 14: O-HT-C Confusion Matrices

An interesting pattern emerges from figure 14 (for Ethereum and BinanceCoin): each
Hoeffding tree was virtually unable to predict the price decreases (-1). Perhaps a minor
observation, but this may indicate that a batch trained decision tree offers advantages for
multi-class problems. Nonetheless, this certainly contributed to the poorer performance
of online models. For the BinanceCoin test, the confusion matrices between B-DT-C and
O-HT-C are nearly equally inverted between false price decrease and increase predictions
respectively, yet once again, the online model was better able to identify the ’0’ class for
no increase, resulting in a preferable model. Similarly, the learning progression is plotted
in figure 15:
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Figure 15: Experiment 1b Learning Progress (B-DT-C vs O-HT-C)

With the benefit of figure 15, it is clear the DogeCoin predictions struggled from start
to finish, while Ethereum and BinanceCoin a very clear downward trend emerged, to the
point that O-HT-C’s learning crossed below B-DT-C after the first training split for the
Ethereum test. Because the B-DT-C models outperformed O-HT-C 2 out of 3 datasets,
this experiment concludes that batch decision trees may offer minor advantages given that
the F1 score for B-DT-C (NoClassBal) showed 0.45, while O-HT-C had 0.42. In general,
these results came as surprising due to previous literature noting that Hoeffding trees
produce ”nearly identical” trees as batch learners when provided enough data Domingos
and Hulten (2000), but for alt-coins it appears that different performances are observed,
arguably beyond which can be considered ”nearly identical”.

4.1.3 Exp.1c: Batch Random Forest vs Adaptive Random Forest

Implementation of Batch Random Forest (B-RF-C):

This experiment deploys random forest classification using batch learning as well as online
learning, and compares their results. Accordingly, sklearn’s ensemble.RandomForestClassifier
class is developed for batch learning, which is also deployed using time series cross val-
idation and grid search parameter tuning. However, given the size of the datasets, and
the computational overhead required for random forest algorithms, only the following
parameters were tested across each alt-coin as shown in table 12:

Table 12: Random Forest Grid Search Settings
Hyper-parameters: Settings:

Criterion ’entropy’
Number of trees 20, 50
Max depth 5, 10
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As always, the goal of grid search is to determine the final random forest model to test
in batch and online manners resulting in the models listed in table 13 for each alt-coin:

Table 13: Batch Random Forest Final Models
Alt-coin: Criterion: Max Depth: No.Trees: Class Weights:

Ethereum Entropy 5 50 Both (with/without inverse proportions)
DogeCoin Entropy 10 20 Both (with/without inverse proportions)
BinanceCoin Entropy 5 50 Both (with/without inverse proportions)

Implementation of Online Random Forest (O-RF-C):

For the online variation, the AdaptiveRandomForestClassifier class is utilised from the
river.ensemble module which combines online drift detection with decision trees to identify
concept drifts in the data. Upon detecting a drift warning, ”background trees” are trained
up which then replace the ”active trees” when concept drift is then fully detected (Montiel
et al. 2020a). As per table 14, Adaptive Random Forests deployed were:

Table 14: Adaptive Random Forest Final Models
Alt-coin: Criterion: Max Depth: Hard Sampling Setting:

Ethereum Entropy (info gain) 5 Probability of 0.2, Sample size of 150
DogeCoin Entropy (info gain) 5 Probability of 0.2, Sample size of 150
BinanceCoin Entropy (info gain) 5 Probability of 0.2, Sample size of 1500

Exp.1c Evaluation and Results:

In this experiment, the performance differential between batch and online models is most
pronounced with Ethereum and BinanceCoin tests returning notably better performance
metrics in favour of online learning. Contrasting this with the DogeCoin test, the lowest
performing cyrptocurrency overall, the results show that batch trained random forest
models offer slightly preferable results, but this is marginally the case. On aggregate, the
adaptive (online) random forest is found to be preferable than a batch trained random
forest based on the following results in table 15:

Table 15: Exp.1c Results Table
Alt-coin: Model: Accuracy: Precision: Recall: F1:

Ethereum B-RF-C (ClassBal) 0.49 0.47 0.49 0.41
Ethereum B-RF-C (NoClassBal) 0.57 0.5 0.57 0.47
Ethereum O-RF-C 0.63 0.61 0.63 0.62
DogeCoin B-RF-C (ClassBal) 0.47 0.46 0.47 0.43
DogeCoin B-RF-C (NoClassBal) 0.45 0.47 0.45 0.42
DogeCoin O-RF-C 0.46 0.45 0.46 0.45
BinanceCoin B-RF-C (ClassBal) 0.53 0.54 0.53 0.48
BinanceCoin B-RF-C (NoClassBal) 0.56 0.47 0.56 0.46
BinanceCoin O-RF-C 0.66 0.64 0.66 0.64
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Figure 16: B-RF-C (NoClassBal) Confusion Matrices

Figure 17: O-RF-C Confusion Matrices

The rationale behind the high performance on the BinanceCoin datasets is once again
attributable to extremely high recall of the ’0’ class, and to a slightly lesser degree,
precision too (based figures 16 and 17). Likewise, the learning progression rates are
visualised for B-RF-C and O-RF-C in figure 18, which also highlights O-RF-C and B-
RF-C’s ability to predict within the first 40-50 percent of the time series. However, for
the O-RF-C’s case, the benefit of the online/adaptive learning becomes very clear in the
BinanceCoin dataset between September and January 2021, as the drop rate is not as
extreme with online/adaptive learning as it is for B-RF-C, ultimately creating quite a
strong performance for O-RF-C on BinanceCoin data (0.66 accuracy). It is also highly
promising that an online random forest provides better results overall. This is important
due to the computational complexity and costliness of retraining a batch random forest,
particularly so for time-sensitive matters such as short term predictions. Objectives B.3
and C.3 are hereby completed, while also completing objective D.1 too.
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Figure 18: Experiment 1c Learning Progress (B-RF-C vs O-RF-C)

4.2 Experiment 2 Implementation, Evaluation and Results

4.2.1 Implementation of Hypothesis Test

Given the model evaluation metrics collected from Exp1.a-c, the results naturally lended
themselves towards performing a 2-sample, unpaired hypothesis test to assist answering
the research question in the form of the following hypothesis (significance is 0.05):

H0: µB = µO: There is no predictive difference between batch and online machine
learning models for predicting alt-coin price direction.

H1: µB 6=µO: There is a predictive difference between batch and online machine
learning models for predicting alt-coin price direction.

The 2 samples are a collection of all model ’Accuracy’ scores, bucketed between batch
models (NoClassBal) and online models. The reason all metrics cannot be included is
due to the requirement of independent groups, that is, every sample in a group cannot
be related to another sample (ie. high accuracy would also result in high F1, etc). This
is therefore a relatively small sample size (9 in each set). Due to the absence of normality
across each sample (figure 19), an unparametric test was performed: the Wilcoxon Rank
Sum test.
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Figure 19: Distribution of Batch (left) and Online (right) model Accuracy

4.2.2 Hypothesis Test Evaluation and Results

Upon running the Wilcoxon Rank Sum test using R (stats package), the p-value returned
is 0.23. This indicates that there is not enough evidence provided to confirm that any
differences observed by the model performances is not random. Accordingly, the null
hypothesis (H0) failed to be rejected and objective D.2 is completed. Despite this result,
one must also interpret this within the business context of predicting alt-coin price direc-
tion. That is, even the slightest of performance differences could provide researchers and
investors a competitive advantage in cryptocurrency trading/analytics, which may never
be identified as statistically significant by a hypothesis test.

4.3 Comparison of Results with Existing Work

This research fits into 2 bodies of literature. First, in the domain of comparing algorithmic
performance between batch and online implementations, this research has provided a se-
lection of experiments which while showing mixed results, indicate that online learning
offers better performance in 2 out of 3 experiments (Exp1.a, Exp1.c). According to table
16 (and section 2.1), it is clearly difficult to reduce this body of literature into a general
consensus on the topic of batch and online learning comparisons strictly when it comes
to predictive ability. Nonetheless, the findings of Exp1.c (random forests) are consistent
with Jagirdar (2018) who also found online random forests to be preferable.
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Table 16: Comparison with Literature - Batch v Online Learning

Looking at the cryptocurrency-specific literature, the top results found from experiments
1 (Exp1.a-c) are compared with some of the best results identified throughout literature
of classifying future cryptocurrency movement in table 17. Comparing the best results is
justified as all studies have a huge amount of results presented:

Table 17: Comparison with Literature - Cryptocurrency Analytics

Accordingly, it can be seen that the best results found by this research rank reasonably
well against other authors. However, this research also had many results which were quite
low (below 0.5). The unique element of this best contribution of 0.66 accuracy is that
this result was obtained using an online, adaptive random forest model while the others
are using batch techniques. By highlighting this contribution, this completed objective
D.3.
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5 Discussion

The theme to be drawn from the results is that online learning models offers reasonable
advantages over batch trained models when classifying next-minute alt-coin price direc-
tion. By sampling 3 alt-coins (Ethereum, DogeCoin, BinanceCoin) across 3 batch trained
models (Logistic Regression, Decision Tree classifier, Random Forest classifier) and 3 on-
line learning models (Softmax Regression, Hoeffding Tree classifier, Adaptive Random
Forest) it is with confidence that these results can be consumed as a useful, informative
guide to algorithmic decision making and model development for alt-coin predictions.
That being said, the scope of this research has limited remits by only considering a small
portion of machine learning models, all of which solved classification tasks, and as such,
results should be interpreted within these bounds. To the extent that online learning
models offer advantages in the case of SoftMax Regression and Adaptive Random Forests
in Exp1.a and Exp1.c (ie. 2/3 experiments in this paper), it is difficult to assert how
these findings will generalise to other batch/online learning algorithms and indeed, alt-
coins, especially in light of the challenge with the DogeCoin predictions being reliably the
toughest to predict overall. In addition, contrasting results between Exp1.a and Exp1.b
of the Ethereum dataset indicate the results are too close to be making general claims.
This is also buttressed by experiment 2 which indicates that the observed performance
differential between models’ accuracies were not statistically significant.

It is likely that the following limitations contributed to the lower DogeCoin results: the
dataset size was significantly smaller, with only circa 220,000 records, while Ethereum
and BinanceCoin were closer to 800,000 records. Furthermore, because DogeCoin was
identified as being most volatile in section 3.1.1, these two points are consistent with find-
ings from Liew et al. (2019) who noted that smaller, more volatile alt-coins are harder to
predict than the larger, less volatile cryptocurrencies. Notwithstanding this limitation,
the research question is not effected by this due to the fact all experiments (Exp1.a-c) use
the same 3 datasets, meaning any potential issues with Dogecoin datasets will effect all
experiments equally. Frankly though, many batch learning results in this paper do not
perform to the same standard found throughout literature (specifically, those under 0.5
accuracy), which may indicate that batch solutions presented in this paper ought to be
improved with increased model development, feature engineering, and parameterisation.

Already, a number of alternative avenues come to mind which may have avoided vari-
ous issues faced in this project, particularly regarding class imbalance. First, focusing
on regression tasks to predict the actual price of the alt-coin (despite other challenges
which come into play - auto correlation, stationarity, etc) would equally have contributed
to answering the research question. Moreover, this research could have benefited from
carrying out a greater amount of feature engineering tasks (ie more technical indicators,
SMA crossover signals, etc), rather than expecting the models to learn these patterns
entirely themselves. On another note, it is often said that not having enough data is
a limitation of research problems, but in many ways, the relatively larger sizes of the
datasets used in this project certainly contributed to the limited range of grid-searches,
tree depths, or ensemble number of estimators being tested, due to the apparent compu-
tational complexity. However, the algorithmic efficiency of each implementation was not
within the scope of this research, but a greater emphasis on this would also have been a
valid inquiry.
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6 Conclusion and Future Work

This section concludes this thesis by highlighting the key findings and future work areas
with regard to the research question and objectives posed in section 1.1:

Research Question: ”To what extent can online machine learning provide an advantage
over traditional batch machine learning techniques for researchers and investors when
predicting next-minute cryptocurrency (alt-coin) price direction?”

In order to answer this question, the following tasks were completed. First, a compre-
hensive cloud-based data lake (AWS S3 bucket) of alt-coins priced in Euro was created,
thereby allowing data processing for predictive modelling to be possible for both batch
and online learning regimes. By deploying machine learning classification techniques
using both batch learning (ie. traditional machine learning) as well as the increasingly
utilised online learning (ie. incremental or data stream machine learning), machine learn-
ing techniques were fairly compared to provide insight of the predictive performance of
bringing a model from batch deployment to online within the context of next-minute
alt-coin predictions. Secondly, upon collecting all evaluation metrics from Experiment 1,
this enabled hypothesis testing to also be completed as outlined in section 4.2. Finally,
a cloud-based dashboard is developed for users to inspect results (completing objective
E.1), which shows the relative performance over a range of classification tests, indicating
that online learning is preferable in 2 out of 3 experiments (Exp1.a, Exp1.c), that is, the
online softmax regression model outperformed a batch logistic regression (all 3 alt-coins),
and an online adaptive random forest model outperformed the batch random forest (2/3
alt-coin datasets). The online Hoeffding tree did not outperform a batch trained decision
tree on aggregate, despite providing better results for 1 of the alt-coins (BinanceCoin).

There a number of future work directions which are still be to explored. First, a nat-
ural extension of this implementation would be to identify the performance differential
between batch and online regression models for predicting the actual next-minute price
of selected alt-coins. Furthermore, given that the overall model performances were not
highly promising, it would make sense to also extend this to using deep learning, neural
network models such as LSTM among other sequential learning models and other en-
semble model types, applied to other less documented alt-coins. Given that this project
simulated real-time machine learning using data streams from AWS S3, with future work
it would be beneficial to integrate this implementation into a true real-time environment
using live Binance API data streams where the models can learn from every minute in
real-time.
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