~

-"‘f’“
\ National
College

Ireland

A Robust Text-to-SQL Parser With
Optimized Pretraining Approach

MSc Research Project
Data Analytics

Kirubakaran Balaraman
Student ID: x19241658

School of Computing
National College of Ireland

Supervisor: Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Kirubakaran Balaraman
Student ID: x19241658
Programme: Data Analytics
Year: 2020/2021
Module: MSc Research Project
Supervisor: Hicham Rifai
Submission Due Date: 16,/08/2021
Project Title: A Robust Text-to-SQL Parser With Optimized Pretraining
Approach
Word Count: 6345
Page Count: [19]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th September 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

A Robust Text-to-SQL Parser With Optimized
Pretraining Approach

Kirubakaran Balaraman
x19241658

Abstract

Semantic parsing of natural language to Structured Query Language (SQL) has
recently become a popular research topic with the release of the manually annotated
WikiSQL dataset. Most recent research has used the encoder-decoder architecture
with Bidirectional Input Representations for Transformers (BERT) for generating
input embeddings. These models are made content-aware by passing table schema
information coupled with the database contents as additional knowledge. Though
BERT-based models have achieved superior performance over non-BERT variants,
the model is undertrained. In the newer model like RoOBERTa, hyperparameters
are further optimized and trained on a bigger corpus. This research takes a novel
approach by using RoBERTa to generate input embeddings for the decoder models
like Bi-LSTM. A sketch-based slot filling approach is adopted for the Bi-LSTM
decoders. The research also improved the size of the data and robustness of the
model to diverse linguistic patterns by performing synonym-based paraphrasing.
Considering the data privacy, this research omitted using the database contents
as an additional input, thus making the model only schema-aware. The model is
evaluated using the logical form and execution accuracy and showed better perform-
ance than the non-schema-aware counterparts. However, the model’s performance
is lower than those using table contents. The decrease in performance is acceptable
owing to the privacy vs. performance tradeoff. The logical form and execution
accuracy of the model with the test set are 68.8% and 76.6% respectively.

1 Introduction

In the modern world the amount of data stored in databases is increasing rapidly due to
the invaluable insights that can be mined by deep analysis of the data. Businesses started
relying on machine learning and deep learning algorithms to make predictions and make
critical decisions. Relational databases are the most widely used database for storing
and maintaining the data due to its simple, straight-forward approach of storing data in
tables. The healthcare, retail and financial institutions rely on databases to store and
retrieve the records. In order to use the full potential of these databases, users need a lot
of technical knowledge about how database works, the underlying architecture, storage
structure of the data and a language called SQL. This acts as a barrier for non-technical
users such as nurses accessing patient records, retail workers, etc. So there is a need for
an interface between such users and the database. This motivated several researchers
to work on semantic parsing task to convert natural language text to SQL for building
Natural Language Interface for Databases (NLIDBs).

Initially rule-based and grammar-based algorithms are created to perform the trans-
lation. However these NLIDBs are tailored for specific databases and organizations, and
reusing it for a different database needed considerable changes. Models such as ATHENA
(Sen et al.; 2020), SODA works based on this approach and are not able to handle the
ambiguous nature of the natural language. With the advancement in natural language
processing using deep learning models, the researchers started addressing the above prob-
lem by training neural networks to generate an executable SQL query. But the models
performed with poor accuracy due to the insufficient data to train on. The release of the
popular text-to-SQL datasets like WikiSQL and Spider gave rise to more research on this
topic. Early researchers considered the semantic parsing as a sequence-to-sequence trans-
lation similar to language translation problem (Zhong et al.f[2017). But the problem with
this approach is that improper ordering of the generated SQL will lead to syntactically
incorrect queries throwing errors when executed in the database.

A hybrid approach of the rule-based and sequence-to-sequence models motivated re-
searchers to consider text-to-SQL as a slot-filling problem. The underlying syntax of the
SQL is kept constant by only predicting values for different clauses such as SELECT,
FROM and WHERE. Researchers were able to achieve state-of-the-art results with the
existing models by incorporating a pretrained model called BERT as a input layer to
generate intermediate representations. Such representations provided the decoders with
additional knowledge by using table schema and content. The pre-trained models released
by (Liu et al |2019; [Yin et al.; [2020; [Herzig et al.; 2020) are trained on huge volumes
of tabular and textutal data and are built on top of BERT. In this study we replace
BERT by a more optimised version called RoBERTa, in which the hyperparameters of
the BERT are tuned carefully and trained with more epochs.

1.1 Research Question

How data augmentation techniques with synonym-based paraphrasing coupled with rig-
orously optimised RoBERTa model improves the text-to-SQL parsers ?

1.2 Motivation

Previously released models such as the one in (Guo and Gao| (2019)) relied on the contents
of the data assuming that access is available. Models that makes use of content needs
retraining when implemented in a new database. With industries having millions of
records in its databases it becomes a overhead to use the whole database content as input
to the model. Also such models used the initially released BERT encoder for generating
knowledge representations which was outperformed by pretrained models like RoBERTa,
XLNET, TaBERT, etc.,. The natural language is ambiguous and same sentence can be
represented in many variations. For instance, ”Show me the records of all the students?”
can also be represented as ”Fetch the details of all the pupils”. In order to make the
model effective, we need to consider such linguistic variations. To increase the robustness
of semantic parsers when deployed on an unknown database, current models have begun
to incorporate the underlying database structure in addition to the submitted natural
language question (Wang et al.; [2019; |Lin et al.; [2020)).

1.3 Contributions of the research

More recent researches made use of the table schema to provide the model with the
knowledge about the existing relationships between the question keywords and the table
columns (Guo and Gao; [2019; |Lin et al.; 2020). In this paper techniques to augment the
training data with more diverse linguistic patterns are implemented. For this purpose,
the Paraphrase Database (PPDB) is used to inject semantic variations in the data by
replacing words with synonyms. The existing encoder architecture is tweaked by replacing
BERT with RoBERTa (Liu et al.; 2019), and trained on the augmented data.

The remainder of this paper is organized as follows. First, in Section [2 similar
works are critically evaluated to find the research gap. Section |3| describes the research
methodology and details the steps taken as part of the research. In the next section,
Section [the design specifications explain the novel approaches carried out, the model
architecture, and the algorithms used. The Section [5| explains the actual implementation
details and the tools used. The performance of the text-to-SQL model is evaluated with
suitable metrics and discussed in section [6] In the end, section [7] concludes the research
work with key points and future work.

2 Literature Review

In the field of natural language processing, semantic parsing is a hot area for research.
The problem of converting natural language questions to SQL queries is being studied
around the world. Researchers can accomplish this task with the help of state-of-the-art
models and benchmark datasets like Spider and WikiSQL (Zhong et al.; 2017).

2.1 Different approaches for semantic parsing
2.1.1 Rule-based approach

In rule-based NLIDB systems, the database knowledge is used to interpret the provided
NL question, and the intermediate query is converted to an actual SQL query. Such
knowledge is acquired by following different strategies in different researches. Baik et al.
(2019) developed an NL-SQL system that extracts domain knowledge from SQL query
logs and utilizes it to map keywords in NL questions to database elements such as columns,
table names, and values and determine whether a keyword represents a token. The
model was validated using IMDB, MAS, and YELP (Baik et al.; [2019) datasets. When
more complex and queries are submitted, it failed to detect the keyword. The future
models aided in resolving the issue.

In a model such as ATHENA++, database information is defined as domain ontolo-
gies that are constructed manually for each domain. This results in a data model with
real-world linkages by translating and mapping question tokens to columns, values, or
tables (Sen et al.; 2020). ATHENA-++, which is based on ATHENA, operates by inter-
preting natural language questions using a domain-based ontology and overcomes earlier
systems’ shortcomings in building complicated nested queries (Sen et al.; 2020). It de-
termines whether a nested query is required from the NL query keywords using nested
query detectors and builders. Even though the users have to follow a specific pattern
of natural language question. In order to give more freedom for naive users submitting
the queries to the system, NaLLIR is introduced in |Li and Jagadish (2014). The system

works interactively in parsing the questions submitted by the user and determining the
key elements such as column names and where clauses. When the system couldn’t parse
a specific part of the question, the interactive communicator repeatedly asks the users’
input until the final output is reached. The problem with this approach is the system is
more dependent of the user in parsing complex queries.

2.1.2 Deep Learning approach

With the outstanding capabilities of machine learning and deep learning models, re-
searchers are devising an improved solution to old problems on the planet. Researchers
are utilizing neural networks to address a variety of issues in healthcare, technology, the
military, and space science, among others. Recent research has attempted to solve the
Natural language to SQL (NL-SQL) challenge using neural networks.

Models without database schema |Usta et al. (2021) developed the Database Tag-
ger (DBTagger) paradigm with the primary goal of optimizing keyword linkage during
the encoding step. The researchers developed a keyword mapping method that uses the
part-of-speech (POS) tags from the input NL query (Usta et al.; 2021). Here, a unique
architecture is designed to extend the sequence tagging framework by utilizing database
query logs. This model is schema-independent and is intended for use with relational data-
bases. These methods struggled to identify the relationships between question keywords
and the database elements when the words are paraphrased. For example, when presen-
ted with a question to a student database such as ”Show the total number of pupils in the
class”, these models struggled to identify that ”pupil” denotes ”students”. The following
section will discuss how incorporating the database schema improves SQL creation.

Models including Database schema representation The supervised sequence-to-
sequence models are trained on pairs of Natural Language (NL) and SQL queries. Recent
research has concentrated on optimizing this by adding the underlying table schema and,
in certain cases, actual data. By applying appropriate rules, the rule-based systems
convert the NL query to an intermediate form.

The WikiSQL dataset used in this study is released as part of the research work
conducted by [Zhong et al.| (2017). Seq2SQL is the first model trained with the WikiSQL
dataset, which used a method similar to language translation using Bidirectional Long
Short Term Memory (Bi-LSTM) networks. It uses reinforcement learning to predict
correct SQL by providing rewards to the generated SQL. Although it achieved state-of-
the-art performance compared to the previous models, it was below 50%, which is too
low for implementation in the real world. And also, it struggled when the ordering of the
where conditions in the question are too complex.

SQLova was designed by Hwang et al.| (2019), which included table schema by con-
catenating the NL question with the table headers. In contrast to other encoder-decoder
approaches, this research encoded the concatenated input using a BERT encoder and
passed the resulting word embedding to the SQLova layer. The decoding process was in-
spired by the prior work of [See et al. (2017)); Zhong et al. (2017)). Additionally, it contains
a shallow layer that assists in confining the BERT output tokens to specific sketches such
as select-column, select-aggregation, and so on.

Rather than concatenating the table structure, Bogin et al. (2019) first encoded the
database schema using Graph Neural Networks (GNNs), which is provided along with the

input query. This encoded graph representation is then utilised by bi-directional LSTMs
in both the encoding and decoding steps. This technique results in more accurate SQL
query creation, as demonstrated by the researchers when comparing the WikiSQL and
SPIDER benchmark to the prior state-of-the-art models(Bogin et al.; 2019). Using a
similar GNN technique, Song et al.| (2019)) offers the Hierarchical Schema Representation
Network as a schema-aware neural network with a decomposing design (HSRNet). It is
capable of tackling the challenging and cross-domain process of text-to-SQL conversion.
The HSRNet represents the database schema’s relationships using a hierarchical schema
tree and encodes them using GNN. Unlike sequence-to-sequence models, this process
is separated into three parts (Song et al.; |2019). When both the query and database
schema are supplied, column candidates are identified and a SQL query template is
constructed. A detail completion module populates the data by utilizing the column
candidates and the associated drawing. The approach is validated against a variety of
baseline models and is found to improve accuracy. In contrast to the method described
above, the authors employed a new way to encode the database schema in their research
by dubbing the Relation-Aware self-Attention (RAT) mechanism (Wang et al.; 2019).
The relational structure and relationships between the query keywords, such as column-
table relationships, main and foreign keys, are stored in a single sequence (Wang et al.;
2019). Following that, schema linking is performed, which associates sequence tokens
with database elements. The paper kept the model simple without using BERT to make
the model comparable with other models.

Along with the database structure, some researchers leveraged the database’s actual
data to improve model performance. |Li et al. (2020) developed the SeqGenSQL model, a
weakly supervised model that enables direct translation. By modifying the architecture
and performing question and data augmentation, a state-of-the-art pretrained model, T5,
is used. Additionally, the model’s input includes column headers and type information,
which aided in achieving higher accuracy with the WikiSQL benchmark dataset (Zhong
et al.; [2017). It made advantage of the database’s information by sampling the table’s
first two or three examples. Additionally, the research addresses the issue of hallucin-
ation by utilizing a gated layer that assists in either extracting or producing column
names from the query. In BRIDGE, a model architecture developed by Lin et al.| (2020),
a slightly different technique is used, in which the possible value sets for each field are
inputted rather than the actual data. For example, the marital status field can have the
following value sets:{ “Single”, “Married”, “Divorced”}. It used a BERT encoder and
a pointer-generator network to decode (See et al.; 2017). Guo and Gao (2019) utilizes
the entire database’s content and generates two representational vectors by matching the
table values and column headings to the NL queries. These feature vectors are supplied
to the decoder as extrinsic inputs to assist in query translation. In the publications
mentioned above, keyword mapping was demonstrated to be effective when the database
content was combined with the schema. But the main problem with the above approaches
is that the model relies too much on the database contents. With companies having infin-
ite records stored in their databases, inputting all that knowledge to the NLIDB system
makes it an overhead. When handling with databases containing critical information like
bank records and health data of patients in the hospitals will give rise to ethical issues
such as privacy and confidentiality.

Another well-known neural network technique is slot filling, which utilizes a pre-
determined SQL sketch to fill the slots with expected columns and values from natural
language questions. TypeSQL, as introduced by Yu, Li, Zhang, Zhang and Radev| (2018)),

organizes the slots and uses Bi-LSTMs to forecast the output for each slot. The model
is type-aware, implying that it associates question keywords with certain types such as
column, number, or person . This technique was also employed in Recursively Yielding
Annotation Network for SQL (RYANSQL) by |Choi et al.| (2020]), which provided sketches
for tackling the SPIDER, benchmark’s difficult queries. Due to the fact that the sketches
are customized for a single dataset, they may have an effect on the model’s performance
when confronted with a difficult query type not covered by WikiSQL. This sketch-based
method is also used in the SQLova (Hwang et al.f [2019). The technique of fuzzy semantic
to structured query language (F-SemtoSql) is based on a fuzzy choice during the decoding
stage (Li et al.; 2019). It employs the same method of slot filling as SytnaxSQLNet (Yu,
Yasunaga, Yang, Zhang, Wang, Li and Radev; [2018) and arranges the slots according to
a dependency graph. It classifies the natural question into four types of events (atomic,
aggregate, complex, and composite) and uses the attention mechanism at each stage of
the decoding process. During the training phase, random masks are applied to the input
natural question tokens to allow the machine to predict the masked values based on the
context (Li et al.; 2019). In each preceding article, incorporating the database schema
and content resulted in improved keyword linkage, which enriched the translation process
by providing additional information about the underlying database.

2.2 Data augmentation

Data augmentation is a widely used technique for producing more data from existing
data. Many contemporary state-of-the-art neural models use this technique to enhance
their performance. While current benchmarks such as SPIDER and WikiSQL already
contain a substantial amount of data, enhancing them will assist expand the dataset and
enable varied natural queries for the same SQL. This information can then be utilized to
train the models.

Weir et al.| (2020) created a natural language pipeline for implementing the technique
of data augmentation. It is constructed in such a way that any neural translator may be
inserted into it to boost performance (Weir et al.; 2020). It accomplishes this improvement
in accuracy by paraphrasing the natural language questions contained in the dataset to
generate new data, hence making the plugged model more resistant to linguistic changes
(Weir et al.f 2020)). It validated the pipeline by bringing in cutting-edge models such
as SyntaxSQLNet (Yu, Yasunaga, Yang, Zhang, Wang, Li and Radev; 2018]), which
boosted accuracy by approximately 7%. Additionally, the previously stated SeqGenSQL
Li et al.| (2020) model augments the data by employing a reverse training technique thus
creating 250k fresh samples via NL questions generated by SQL citeli2020seqgensql. This
is accomplished by inverting the input and output of the T5 transformer, which generates
new NL queries from the SQL in the training set, as well as silver data (augmented data).

Yu et al. (2020) took a fresh strategy to augmentation in the research by using it
during the pre-training phase rather than the end-of-training phase. This approach to pre-
training is referred to as Grammar-Enhanced Pre-Training For Table Semantic Parsing
(GRAPPA). It generates a grammar template for question-SQL combinations taken from
the Spider dataset and then mixes it with the real table schema to generate new samples
(Yu et al} [2020). These samples are subsequently encoded and transformed to SQL
queries using the transformer. Thus, data augmentation enhanced the accuracy of earlier
state-of-the-art models when used with benchmark datasets.

2.3 Pretrained models for input encoding

The pretrained models are widely used in question answering, part-of-speech tagging and
other similar NLP problems to easily identify the keywords and provide knowledge as
hidden representations. Using these pretrained models for text-to-SQL task has proved
to improve the accuracy. BERT is a pre-trained model for modeling language that was
introduced by Devlin et al.| (2018]). The majority of state-of-the-art models acquired
traction as a result of their use of the BERT encoder in their study. The Generalized
Autoregression Pre-training Approach for Language Understanding (XLNet), the Ro-
bustly Optimized BERT Pre-training Approach (RoBERTa) (Liu et al. [2019)), and the
DistilBERT (Sanh et al.; 2019)) pre-trained models were all built on top of BERT to
address the various BERT-related issues. Pre-trained models encoded both textual and
tabular input.

Herzig et al. (2020) published a weakly supervised question-answering model that does
not construct logical forms. As a result, Table Parsing (TAPAS) can derive operations
from natural language rather than from formal definitions. It contained extra features to
capture table structure and two new layers introduced for predicting the aggregator and
to select cell. With extra embeddings that capture tabular structure on top of BERT and
two classification layers for cell selection and aggregator operator prediction. [Liu et al.
(2019) introduced RoBERTa, an optimized BERT, by dynamically modifying the masking
pattern used to mask the training data. Additionally, it trained for a longer period of
time than BERT, resulting in state-of-the-art performance on the GLUE, RACE, and
SQuAD benchmarks.

A different variant of BERT known as TaBERT incorporated textual and semi-
structural tabular data (Yin et al.;[2020). The research proposed a method for converting
a table structure to a linear format that is BERT compatible. Additionally, it offers a
content snapshot of the table by capturing rows that match the question’s keywords. It
was trained on 26 million tables and paragraphs and is intended to be used in conjunction
with any semantic parser (Yin et al.; 2020). It was evaluated on Spider and outperformed
its competitors.

2.4 Summary and research gap

The text-to-SQL problem is approached using both deep learning and a rule-based tech-
nique. The majority of models were trained and evaluated using WikiSQL or the Spider
dataset, which both give massive hand annotated datasets. After the introduction of
BERT, the focus of the research shifted away from direct sequence-to-sequence mod-
els and moved towards the introduction of an intermediate representation between the
BERT encoder and the final query generator. These logical representations are either
SQL-constrained templates or graph networks. Using pretrained models such as BERT
to complement existing models has significantly improved their performance. Following
the publication of BERT, numerous optimized models such as RoBERTa, TaBERT, and
GRAPPA were made available. The researchers then concentrated on enhancing the
decoding mechanism, employing techniques such as execution-guidance and pointer gen-
eration networks. Several researchers merged the grammar-based and neural approaches
through the use of sketch-based slot filling algorithms. Finally, several models experi-
mented with training the model with more data through the use of data augmentation
approaches, which increased the model’s robustness.

According to the authors Liu et al|(2019), BERT is undertrained and training with

7

more data and changing the hyperparameters can improve the model. Employing im-
proved models like RoBERTa will help improve the performance. Most of the state-of-
the-art models rely on BERT for encoding. Augmenting the data with paraphrases helped
to improve performance in a similar problem like question answering. In this research,
these changes are applied to already existing model and experimented to achieve better
performance.

3 Methodology

In order to carry out this research, the Knowledge Discovery in Databases (KDD) has
been used with slight modification to fit the problem of semantic parsing as shown in
Figure (1 The highlighted part of the process flow diagram shows major changes made
and also the novelty part of this research.

Data Collection Data Preprocessing Modelling

Q
1)
g
[T %]
= (=)
= c S c =l 2 .
2 e 3 5 = =
i T Oq>) = 2 c 2
WikiSQL 8 £ ° 9 9 | 3 | s &
S o [P To [= »| 0O > = 3
dataset o= c 5 — © O
=) T o i 3 28
3 L3 5 o e
< © O o = i}
o S £
oy
(]
O

Figure 1: Process flow of the methodology followed

3.1 Data Collection

By reviewing the previous research papers in semantic parsing, it was observed that
WikiSQL and Spider are the popular datasets, containing huge volumes of question-SQL
pairs. After analysisng the datasets, it is found that the Spider dataset contains many
databases from different domain areas in contrast to the single database of WikiSQL.
Considering the limitations in time and computational resources and to reduce the com-
plexity, the scope of the project is confined to single database and WikiSQL dataset has
been chosen. WikiSQL is released as part of the study conducted by [Zhong et al.| (2017)
and contains two JSON files: one with the natural language question and the SQL query
and the other having the schema information of the tables. An annotated form of the
dataset in which the natural language question is tokenized is also available to download.

3.2 Data Augmentation

The WikiSQL dataset is augmented to increase the size of the dataset and to inject vari-
ations in the natural language questions. This is a common technique in NLP problems
in which the textual data is augmented by generating paraphrases of the existing English

language sentences. In this way, the model can be trained to learn different linguistic
patterns and can understand that same question can be paraphrased in different ways.
For example, two different questions can denote the same SQL query. This is done by
doing synonym based paraphrasing with the help of synonyms available in PPDB.

3.3 Model Building

Model building involves two stages: encoding input tokens to generate knowledge embed-
dings using BERT and generating SQL based on the RoBERTa output along with the
question and table schema.

3.3.1 Input Encoding

After augmenting the data, the next task is to create input embeddings using the RoBERTa
pretrained model (Liu et al.f [2019). In order to provide to help the LSTMs in the next

stage of the process to better identify the relationships between the question keywords

and the column headers, this step is carried out. The two knowledge vectors which are

the question knowledge and the header knowledge is generated and concatenated to every

instance of data using the algorithm used in |(Guo and Gao| (2019)). These vectors carries

additional information which will be fed as inputs the Bi-LSTMs in the step of decoding

to identify the columns and numbers.

3.3.2 SQL Generation using Bi-LSTM

The Bi-LSTMs takes the input embeddings from the RoOBERTa and passes it through six
sub modules to predict SQL components. These SQL components are filled in SQL sketch
like a slot filling problem to produce the final SQL query. This will then be compared
with the ground truth query and submitted to the database to evaluate. We will discuss
the evaluation methods followed in the next subsection.

3.4 Model Evaluation

After the model has been trained with the annotated training data, it is evaluated using
two new measures that is specific for the text-to-SQL semantic problems. The papers
reviewed in the related work section use such measures and it will be useful to compare
our model’s performance with previous baselines.

3.4.1 Logical Form Accuracy

The logical form accuracy is used to evaluate the semantic correctness of the SQL. This
is done by comparing the ground-truth (from train data) query with the predicted query
for each clause separately. We are not using the exact match accuracy of the predicted
queries as the same query can be written in different ways. The match is checked within
each clauses such as select, from and where. The ordering of the conditions in the where
clause is ignored in this accuracy calculation.

3.4.2 Execution Accuracy

The execution accuracy is used to evaluate the syntactic correctness of the predicted
SQL. This is done by executing the query in the SQLite database created using the table

schema data. The output is considered correct if it successfully executes without throwing
an error. The functions for these evaluations are provided as part of the WikiSQL dataset

page.

3.5 Deploying the model

The model checkpoint that was trained as part of the training process is used to generate
SQL queries for a sample database. A sample SQLite student database is created with
few records and the trained model is deployed to convert natural language questions
submitted to the database to predict SQL queries. Multiple manually formed English
language questions are inputted to the model along with the table schema to validate the
predicted output.

4 Design Specification

4.1 Augmentation with Synonym paraphrasing

The paraphrasing of the annotated WikiSQL dataset is done with the help of synonyms
in the PPDB database by following the algorithm[I] The algorithm iterates through each
sentence in the data and replace synonyms of the words available in the PPDB database.
Then the new sentences with slight synonym changes are added to the existing data and
the question and header vectors are generated. By doing this, the model can be made
more robust to linguistic variations and will help improve the model.

Algorithm 1 Synonym paraphrasing to augment data
function PARAPHRASE(Data)
SynonymDatabase < FetchPPD BSynonymData
for every sentence in Data do
for every word in sentence do
if word has synonyms in SynonymDatabase then
wordlist <— synonym
else
wordlist < word
end if
newSentence < sentence(wordlist)
end for
Add newSentence to ParaphrasedData
end forreturn ParaphrasedData
end function

4.2 Knowledge vector generation

Additional knowledge to BI-LSTMs for SQL generation is provided by concatenating
two knowledge vectors with the actual data called question vector and header vector.
These knowledge carry information about the question keywords and the table headers
by identifying the columns. The algorithm used in |Guo and Gao (2019) is adopted to
generate these vectors. It matches the question keywords with the column headers passed

10

question: 'Tell me what the notes are for South Australia’,

sql: {"agg": 0, 'conds": [[3, 0, 'SOUTH AUSTRALIA']], 'sel': 5},

table id: '1-1000181-1',

question_tok: ['Tell','me','what’,'the’,'notes’,"are’,'for','South’','Australia'],
header: ['State/territory',' Text/background colour','Format’,'Current slogan','Current series','Notes'],
types: ['text','text’,'text’, text’, 'text’, 'text'],

phase: 1,

question_knowledge: [0, 0,0, 0, 4, 0, 0, 0, 0],

header_knowledge: [0, 0, 0,0, 0, 1]

Figure 2: Contents of single processed data in the WikiSQL dataset

as input and uses the vectors to represent this by marking the index. For example, the
question shown in Fig |2 contains a word “notes” which is present in the header vector.
The algorithm identifies this and generates two vectors question_knowledge with length
= number of words in question and header_knowledge with length = number of headers.
These vectors contains 4 and 1 in the corresponding indices to denote the relationship.

4.3 RoBERTa model for input embedding

r
Final SQL
A

Select Select Where Where Where Where

Column mggregate Number Column Operator Value

8 i i i — =
|53
® £ [Questionvector, [= » = »l = -l = | =
Z e 15 I3 R I3 o -
D g | Header Vector = - »| = »| = »l = SQL|te
g (e 5 (5 CH g U
20
20 A
g Roberta Embedfings
(ROBERTa]

=

LNaturaI + Table + Column
angtage Headers Types

Question

Figure 3: Architecture design of the model

The RoBERTa model introduced by [Liu et al| (2019)) is imported from the Trans-
formers package in python. The previous work of SQLova (Hwang et al. [2019) and
\Guo and Gao (2019), used BERT for tokenization and creating input embeddings. The

11

roberta-base’” pretrained model is imported and used to produce knowledge embeddings

by passing natural language question concatenated with the table schema as shown in Fig-

ure[3] The input to the RoOBERTa consists of tokens in input question along with headers
merged with it as follows: [C'LS], Q1, Q2, Qs,Quw, [SEP], H1,[SEP], Hy, [SEP], ..., Hy, [SEP],
where ()i—1 2., denotes the question tokens and Hi—; 5k denotes the table headers The
hidden states from the last layer of the RoBERTa is passed into the LSTM models for

each clauses.

4.4 LSTM models for predicting SQL

Syntax-guided slot filling approach used in previous researches such as Choi et al.| (2020));
Hwang et al.| (2019) is used to predict values for separate modules such as sel-agg, sel-col,
where-col, where-op, where-val, where-num. The sketch can be found below:

SELECT $sel-agg($sel-col) FROM $table
WHERE $where-col $where-op $where-val

In this modules, the where-num denotes number of where conditions needed. For each
module separate Bi-LSTMs are used to predict the final column, value and operator and
the slots are filled accordingly. The input dimensions for the Bi-LSTMs is the same
dimensions of the RoOBERTa hidden states. Each Bi-LSTMs perform different task.

select-column The first Bi-LSTM predicts the probability of the column that needs
to be selected from the given natural language utterance and also using the knowledge
vectors.

select-aggregate takes value among one of the following choices:{ MAX, MIN, COUNT,
SUM, AVG, NONE}. This is dependent upon the predicted select column value as well.

where-number takes an integer value and denotes the number of where conditions
associated with the SQL query.

where-column is predicted by using the information from the table schema, the ques-
tion and the RoBERTa embeddings. This prediction has a dependency on the where-
number prediction as it denotes how many columns need to be predicted.

where-operator takes a value from the following set: {"=","<”,">"}. This is the
operator that acts on the where column and is directly connected to it.

where-value is extracted from the natural language question and the RoBERTa em-
beddings helps the LSTMs to identify this and predict.

5 Implementation

The implementation of this research is carried out using Python 3.6 programming lan-
guage due to the wide range of libraries that it provides. Due to the computationally
demanding nature of this research, the implementation environment is setup in Google

12

colab to train and run the models. The annotated version of the WikiSQL dataset is
uploaded to the google drive and mounted to the google colab environment. The code
adopted from previous researches are also uploaded along with the data.

The code is written in Pytorch as it is commonly used for NLP tasks involving tensors
running on GPU. The dataset consists of train, test and dev sets First, the dataset is

PPDB
Question : Who is the winner of the tournament in the year, Question : Who is the winner of the competition in the
2020? Algorithm 1 annum 2020?
Query: SELECT name(player) FROM players WHERE 9 Query: SELECT name(player) FROM players WHERE
won == 'yes' AND year =='2020' won == 'yes' AND year =='2020"

Figure 4: Generating new data by paraphrasing

preprocessed by tokenizing the natural language questions as shown in Fig[2] The word
ans sentence tokenizers from the nltk library is used for this task. Then the knowledge
headers are generated and concatenated with the actual data by using the question and
header vector generation algorithms as discussed in the previous section. In order to
increase the dataset size the data augmentation is carried out. First, The PPDB data,
downloaded from their Websiteﬂ is used to extract synonyms. Then algorithm explained
in the design section is written by making considerable changes to the data preprocessing
code adopted from the previous researches (Guo and Gao; 2019; Pal et al.; 2021)). This
helps generating new sentences with words replaced by synonyms present in the PPDB
database. For example, the Fig [4] shows how the words 'tournament’ and ’year’ in the
question is replaced with the synonyms 'competition” and ’annum’ to form a new sentence.
This will help the model learn the different words having similar meaning.

In the next step, we import the RoBERTa base model (roberta-base), the tokenizer
and the optimizer from the Transformers (version = 3.4.0) package. The adopted code
is changed to use RoBERTa as an encode instead of the BERT model. Then both
the RoBERTa and the Seq2seq model were loaded. The input for the RoBERTa is the
preprocessed data containing the question tokens, corresponding table headers along with
their type information. The RoBERTa generate embeddings which will then be fed to the
next stage of Bi-LSTM models. The The input dimensions of the Bi-LSTMs are set to
the dimensions of the hidden states of RoOBERTa. The LSTMs consists of 2 hidden layers,
with dropout rate being 0.3. The question knowledge and header knowledge dimensions
are given as 5 and 3 respectively. Then the linear transformation is applied to the data
followed by softmax activation.

The models are then trained for 5 epochs with the training set and validated with the
dev sets. The size of the train, dev and test sets are 56355, 8421 and 15878 respectively
The best model is saved in the project folder by comparing the logical form accuracy in
each epoch. The saved models are used to evaluate using the test sets and accuracies are
recorded.

In order to make inferences, a sample SQLite database containing student records is
created and uploaded to the google drive. In order to connect to the database and submit

thttp:/ /paraphrase.org/# /download

13

query, the sqlalchemy (version=1.3.28) and records packages of python are imported. The
model output is checked by inputting manually formed natural language questions along
with the table schema information.

6 Evaluation

Model Dev LF (%) Dev EX (%) Test LF (%) Text EX (%)
Our model (Data Aug + RoBERTA + LSTMs) 69.7 774 68.8 76.6

Table 1: Logical Form and Execution accuracy for Dev and Test sets. LF and EX stands
for logical form and execution accuracy respectively.

After building and training the model, evaluation is crucial for assessing the per-
formance of the model. The evaluation will be based on logical form accuracy and the
execution accuracy which are explained as part of methodology in section

Sub models accuracies for dev set

101 B Accuracy
0LE 1
0.6 -
04 -
0.2 -
0.0 -
g g g E, 5 g
B 7 v 3 g '
g 5 2 5
L v
PE]
E
S0L Component

Figure 5: Dev Set accuracy for each sub models

From the table [6] we can see the logical form accuracy and execution accuracy for
both dev and test sets. The previous models does not use any pretrained model to encode
the input data to generate embeddings. They are mostly direct sequence to sequence
translation. The recent models used BERT as a pretrained model and also made use of
the contents of the table along with the table schema. None of the models performed data
augmentation by using paraphrasing. For the model trained in this research, we achieved
a logical form accuracy of 68.8% and an execution accuracy of 76.6%. This shows that
our model shows improved performance when compared to the models without BERT
encoder. The reason for the decreased accuracy in comparison with the BERT enabled
models will be analysed in the discussion section.

14

Sub models accuracies for test set

101 B Accuracy

0.8 -
0.6
0.4 -
0.2
0.0

S0L Component

sel_col

=l agg
where_num
where_col
where_val

where_operator

Figure 6: Test Set accuracy for each sub models

The figures [5] and [6] shows the logical form accuracies for each sub modules such
as select-column, select-aggregate, where-number, where-column, where-operator and
where-value. The accuracies for dev and test set are almost similar. In both the sets,
the sub modules predicting select column and number of where conditions showed better
performance. Although the individual model accuracies are higher, the overall logical
form accuracy is only 68.8%. This is because, the logical form accuracies for individual
modules are calculated without forming the whole query where as the final accuracy is
the accuracy of the combined query. For example, if the select column for a query is
predicted wrong, then the whole query is considered as wrongly predicted despite the
fact that other components such as where and aggregate are predicted correctly.

6.1 Experiments

To experiment and analyse the model behaviour when presented with an unseen database
not present in train, dev or the test set, a sample SQLite database with single student
table is used. This table consists of few records of students details such as marks in
different subjects, their gender and the birth date. A set of manually prepared natural
language questions are prepared and passed as input to the model along with the table
schema. It was observed that the model performed well most of the times, but failed
to predict the select column correctly in some cases. The model was able to identify
differences in the language and matched the question keywords with the correct columns.
For example, when submitted with a question like ” Provide names of all the pupils” the
model correctly identified "pupil” denotes "student” and outputted the correct query.

15

6.2 Discussion

In this research, the augmented WikiSQL dataset is used to train the model. The para-
phrasing of the dataset surely helped the model identify the linguistic variations better
as discussed in the previous section. The usage of RoBERTa as a pretrained model also
showed better performance than the baseline models. But our model achieved lower ac-
curacy than the content-aware models introduced by |Guo and Gao| (2019) and Hwang
et al.| (2019). Providing the table contents along with the table schema surely helped
these models learn better patterns. This decrease in accuracy is acceptable considering
the risk of data privacy of highly sensitive data. When dealing with databases containing
patient and bank information, privacy and confidentiality should be given more import-
ance. With respect to the individual submodels performance, the Bi-LSTMs achieved
higher accuracy in predicting the individual components. The logical form accuracies for
the all the individual predictions are in the range of 88% to 99% which is really good.

In terms of the limitations, the WikiSQL dataset used in this study does not contain
more complex queries involving joins and subqueries, which makes our model not capable
of generating such queries. And our model is only capable of generating queries with single
columns only due to the limitation of the dataset. By training the model with a complex
dataset like Spider [Yu, Zhang, Yang, Yasunaga, Wang, Li, Ma, Li, Yao, Roman et al.
(2018)) will improve its performance. This was not done as part of this research due to
the time and computational limitations.

Submodule Dev (%) Test (%)

Select-column 95.21 95.00
Select-aggregate 90.54 90.61
Where-column 89.25 88.19
Where-number 98.24 97.66
Where-operator 91.55 90.79
Where-value 85.70 85.09

Table 2: Logical form accuracy for each submodule

7 Conclusion and Future Work

The research focused on building a neural parser that converts natural language question
to SQL query by training using WikiSQL dataset. The primary goal was to find out
the effect of synonym based data augmentation in the robustness of the model and the
enhanced RoBERTa model in improving the performance. In order to achieve this, the
architecture of the previously existing models was modified to perform the input embed-
dings that are fed to the Bi-LSTMs. These Bi-LSTMs are responsible for predicting the
SQL query by taking the NL question, RoOBERTa embeddings and the knowledge vectors
as inputs. Then it fills the slots of the SQL by predicting output for the different SQL
clauses. The model was trained with the WikiSQL dataset and evaluated using the logical
form and execution accuracies. The model performed well with variations in linguistic

16

patterns due to the when experimented with sample databases. The model was able
to surpass the performance of most of the previous models that failed to use the table
schema information. But, ignoring the table contents considering privacy have decreased
the performance of the model slightly.

In the future, the robustness of the model can be further improved by performing
more rigorous paraphrasing and thus increasing the data size. As part of this research,
only word-level paraphrasing has been done by changing synonyms using simple word
replacement. Using a encoder-decoder model like BERT or RoBERTa for doing sentence-
level paraphrasing can be done to observe the change in performance. Also, using a
multi-domain dataset like Spider to train the model will help the model generate more
complex queries.

References

Baik, C., Jagadish, H. V. and Li, Y. (2019). Bridging the semantic gap with sql query logs
in natural language interfaces to databases, 2019 IEEE 35th International Conference
on Data Engineering (ICDE), IEEE, pp. 374-385.

Bogin, B., Gardner, M. and Berant, J. (2019). Representing schema structure with graph
neural networks for text-to-sql parsing, arXiv preprint arXiw:1905.06241 .

Choi, D., Shin, M. C., Kim, E. and Shin, D. R. (2020). Ryansql: Recursively apply-
ing sketch-based slot fillings for complex text-to-sql in cross-domain databases, arXiv
preprint arXiv:2004.03125 .

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language understanding, arXiv preprint
arXiw:1810.04805 .

Guo, T. and Gao, H. (2019). Content enhanced bert-based text-to-sql generation, arXiv
preprint arXiw:1910.07179 .

Herzig, J., Nowak, P. K., Miiller, T., Piccinno, F. and Eisenschlos, J. M. (2020). Tapas:
Weakly supervised table parsing via pre-training, arXiv preprint arXiv:2004.02349 .

Hwang, W., Yim, J., Park, S. and Seo, M. (2019). A comprehensive exploration on
wikisql with table-aware word contextualization, arXiv preprint arXiv:1902.01069 .

Li, F. and Jagadish, H. V. (2014). Nalir: an interactive natural language interface for
querying relational databases, Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pp. 709-712.

Li, N., Keller, B., Butler, M. and Cer, D. (2020). Seqgensql-a robust sequence generation
model for structured query language, arXiv preprint arXiw:2011.03836 .

Li, Q., Li, L., Li, Q. and Zhong, J. (2019). A comprehensive exploration on spider
with fuzzy decision text-to-sql model, IEEE Transactions on Industrial Informatics
16(4): 2542-2550.

Lin, X. V., Socher, R. and Xiong, C. (2020). Bridging textual and tabular data for
cross-domain text-to-sql semantic parsing, arXiv preprint arXiv:2012.12627 .

17

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L. and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach,
arXiv preprint arXw:1907.11692 .

Pal, D., Sharma, H. and Chaudhuri, K. (2021). Data agnostic roberta-based natural
language to sql query generation, 2021 6th International Conference for Convergence
in Technology (I2CT), IEEE, pp. 1-5.

Sanh, V., Debut, L., Chaumond, J. and Wolf, T. (2019). Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter, arXiv preprint arXiv:1910.01108 .

See, A., Liu, P. J. and Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks, Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Association for Computa-
tional Linguistics, Vancouver, Canada, pp. 1073-1083.

URL: https://www.aclweb.org/anthology/P17-1099

Sen, J., Lei, C., Quamar, A., Ozcan, F., Efthymiou, V., Dalmia, A., Stager, G., Mittal,
A., Saha, D. and Sankaranarayanan, K. (2020). Athena++ natural language querying
for complex nested sql queries, Proceedings of the VLDB Endowment 13(12): 2747—
2759.

Song, M., Zhan, Z. and Haihong, E. (2019). Hierarchical schema representation for text-
to-sql parsing with decomposing decoding, IEEE Access T: 103706-103715.

Usta, A., Karakayali, A. and Ulusoy, O. (2021). Dbtagger: Multi-task learning for
keyword mapping in nlidbs using bi-directional recurrent neural networks, arXiv pre-
print arXiw:2101.04226 .

Wang, B., Shin, R., Liu, X., Polozov, O. and Richardson, M. (2019). Rat-sql:
Relation-aware schema encoding and linking for text-to-sql parsers, arXiv preprint
arX1w:1911.04942 .

Weir, N., Utama, P., Galakatos, A., Crotty, A., Ilkhechi, A., Ramaswamy, S., Bhushan,
R., Geisler, N., Héttasch, B., Eger, S. et al. (2020). Dbpal: A fully pluggable nl2sql
training pipeline, Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pp. 2347-2361.

Yin, P., Neubig, G., Yih, W.-t. and Riedel, S. (2020). Tabert: Pretraining for joint
understanding of textual and tabular data, arXiv preprint arXiv:2005.0831} .

Yu, T., Li, Z., Zhang, Z., Zhang, R. and Radev, D. (2018). Typesql: Knowledge-based
type-aware neural text-to-sql generation, arXiv preprint arXiv:1804.09769 .

Yu, T., Wu, C.-S., Lin, X. V., Wang, B., Tan, Y. C., Yang, X., Radev, D., Socher, R.
and Xiong, C. (2020). Grappa: Grammar-augmented pre-training for table semantic
parsing, arXw preprint arXiw:2009.13845 .

Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z. and Radev, D. (2018). Syn-
taxsqlnet: Syntax tree networks for complex and cross-domaintext-to-sql task, arXiv
preprint arXiv:1810.05237 .

18

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, 1., Yao, Q.,
Roman, S. et al. (2018). Spider: A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task, arXiv preprint arXiv:1809.08887 .

Zhong, V., Xiong, C. and Socher, R. (2017). Seq2sql: Generating structured queries from
natural language using reinforcement learning, arXiv preprint arXiv:1709.00103 .

19

	Introduction
	Research Question
	Motivation
	Contributions of the research

	Literature Review
	Different approaches for semantic parsing
	Rule-based approach
	Deep Learning approach

	Data augmentation
	Pretrained models for input encoding
	Summary and research gap

	Methodology
	Data Collection
	Data Augmentation
	Model Building
	Input Encoding
	SQL Generation using Bi-LSTM

	Model Evaluation
	Logical Form Accuracy
	Execution Accuracy

	Deploying the model

	Design Specification
	Augmentation with Synonym paraphrasing
	Knowledge vector generation
	RoBERTa model for input embedding
	LSTM models for predicting SQL

	Implementation
	Evaluation
	Experiments
	Discussion

	Conclusion and Future Work

