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Comparative Analysis of Deep Learning and Machine
Learning Techniques in Predicting Radiation
Pneumonitis

Olawaunmi Sunday Anota
x19239149

Abstract

Radiation pneumonitis (RP) is a form of lung damage induced by an irritant
that develops when patients with Non-small Lung Cancer (NSCLC) get radiation
therapy. Due to the complexity of computed tomography (CT) scan images, dif-
ferent transformations, augmentation, and normalization approaches are used in
the data preparation. The goal of this research is to compare the performance
of deep learning techniques with that of machine learning in predicting radiation
pneumonitis in patients with Non-Small Cell Lung Cancer. The Cancer Imaging
Archive (TCIA) 4D-Lung dataset containing 1699 images was adopted. In this
study, three classification models were implemented- VGG16, Capsule Neural Net-
work (CapsuleNet) and Support Vector Machine (SVM) based on deep learning
and machine learning with the goal of creating a binary classifier that can predict
radiation pneumonitis in Non-Small Cell Lung Cancer patients and the obtained
outcome was compared. The Sensitivity and Specificity evaluation metrics of all
the implemented classifier models are obtained in this study. To increase models
performance, several parameter tuning was employed. From the implementation
of models, it is shown that VGG16 had the best performance output of sensitivity
100% and specificity 95%.

1 Introduction

1.1 Background and Motivation

Lung cancer has been noted to be deadliest disease that affects mankind across the globe,
with an estimate of 2.21 million cases and accounting for about 1.8 million deaths in 2020
[l Lung cancer is named for malignant cells that may be seen under a microscope in tra-
ditional oncology. The two major histological subtypes of lung cancer are small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC), accounting for 87% of patients.
Adenocarcinoma, Squamous cell carcinoma, and large cell carcinoma are the three major
subtypes of NSCLC. Due to low survival rates and inter-patient variability, managing
these individuals is difficult. These individuals present with a wide range of symptoms,
from resectable tumors with microscopic lymph node metastases to bulky, unresectable
disease. One of the most prevalent adverse effects of thoracic radiotherapy in patients

thttps://www.who.int /news-room/fact-sheets/detail /cancer



affected by NSCLC is radiation pneumonitis (RP) which occurs between 1 to 6 months
of radiation therapy treatment has been completed. Shen et al.| [2019] estimated that ap-
proximately 75% of lung cancer patients receive radiation therapy as a treatment alone or
in combination with surgery. Furthermore, radiation pneumonitis (RP) is a dose-limiting
toxicity of non-small cell lung cancer, it affects about 5 to 20 percent of patients and
restricts the highest dose that may be given, lowering tumour control probability (TCP)
and perhaps causing dyspnea and poor quality of life |Giuranno et al., 2019]. Machine
learning is a subfield of artificial intelligence (Al) that can learn from massive dataset by
applying algorithms that can explore and predict future events and outcomes. In the as-
pect of healthcare, deep learning attempts to enhance the interpretation of medical data,
resulting in faster workflow, fewer medical mistakes, lower costs, and better consultation
and improved human health. In addition, in recent years, the application of deep learning
approaches in radiotherapy has become popular which has aided medical oncologist in
reducing the adverse effect from the treatment by way of predicting the outcomes. For
the objectives of patient stratification, disease rating, prognosis, and treatment toxicities,
machine learning has a substantial influence on the creation of novel prediction models for
cancer diagnosis to enhance patient care [Kleppe et al.,2021]. Deep learning approaches
have been found to identify well-established predictors of the progression of systemic ra-
diation pneumonitis in NSCLC. Once the data is properly curated, it is possible to detect
RP in NSCLC patients using data-driven machine learning techniques. RP has shown to
be a significant stumbling block to radiation therapy treatment in lung malignancies, it
has become a testing ground for oncologists to experiment with modern machine learning
approaches.

VGG16, CapsuleNet and Support Vector Machine models will be implemented compar-
atively in predicting RP in patients with NSCLC. This study will examine and evaluate
the models using sensitivity and specificity metrics to ascertain the true positives and
true negatives respectively which are of core importance to the investigation of this study.
The outcome of the result will aid radiation oncologist in accurately diagnosing and con-
sultation of NSCLC patients will be less stress.

1.2 Research Question

“Can deep learning techniques such as VGG16, CapsuleNet provide a significant improve-
ment over SVM in predicting pneumonitis beam in NSCLC patients?”



1.3 Research Objective

Table 1: Research Goal
Discreption Metrics

S/N
1 Critically examine the
literature review of the
prediction of radiation
pneumonitis in NSCLC
from 2015 to 2021

2 Exploratory data ana-
lysis about the data to
get an in-depth insight
about the data

3 Implementing  VGG16 | Sensitivity and Specificity
model and evaluating
the result

4 Implementing Cap- | Sensitivity and Specificity

suleNet  model  and
evaluating the result

) Implementing SVM | Sensitivity and Specificity
model and evaluating
the result

6 Comparative analysis of | Sensitivity and Specificity

the models result and in-
terpret findings

The goal of the research is to apply cutting-edge, comprehensive, and in-depth scientific
techniques to predict the RP in NSCLC patients. In line with prior research relevant
to the project, only few researchers had utilised an advanced deep learning technique
for predicting RP in NSCLC. This research project is structured as follows: Section
2 covers related work in the oncology field in predicting RP in cancer patients, the
research methodology is illustrated and explained in section 3, section 4 gives an in-
depth illustration of the design architecture, Implementation of the models is explained
in section 5, section 6 considers evaluation and results, and section 7 covers the conclusion
and future work.

2 Related Work

RP prediction in NSCLC is an intriguing field of study to radiation oncologist where
various deep learning techniques and ensemble approaches are being applied on Computed
Tomography (CT) scans. RP may have adverse effect on NSCLC patients by way of



shortness of breath, chest pain and cough [} as a result, RP prediction in NSCLC is
critical, and deep learning algorithms are used to analyse the NSCLC patients CT scans
to figure out which patient is liable of having the side effect from the radiation therapy
treatment. This section will focus, critically examine the various deep learning techniques,
and machine learning methods of recent literatures in this problem domain.

2.1 Prediction of Radiation Pneumonitis in NSCLC Using Ma-
chine Learning

Applying machine learning approaches to the development of systematic radiation pneu-
monitis can detect known predictors [Luna et al., 2019]. The precision of radiotherapy
toxicity prediction has assisted clinicians in choosing the optimal treatment option for
patients with radiation pneumonitis who have NSCLC. According to the above study, a
unique machine learning technique was utilized to identify 32 continuous and categorical
characteristics per patient to detect predictive factors for the development of RP, using
optimally trained decision stumps, univariate analysis was utilised to find statistically
important features and their related pneumonitis beam thresholds, while Mediboost were
used to select features for multivariate analysis.

In another study by |Chao et al.| [2018], out of the 197 stage 1 NSCLC patients who under-
went stereotactic body radiotherapy, 25 patients recorded tumour, dosimetric features and
11 of whom suffered common terminology criteria for adverse events (CTCAE) 4.0 grade
2 chest wall discomfort. Individual feature thresholds for chest wall syndrome (CWS)
were determined using decision tree modelling, independent multivariate techniques were
used to identify significant characteristics. Out of bag estimation using Random forests
(RF) and bootstrapping (100 iterations) with decision trees were adopted. Applying the
learning curve experiments, the dataset showed self-consistency and provided a realistic
model for chest wall syndrome analysis. Likewise, Yakar et al.|[2021] examined 193 stage
1T lung cancer patients who had radiation therapy and chemotherapy treatment between
the year 2014 to 2020. The pneumonitis beam evaluation was conducted using the Com-
mon Terminology Criteria for Adverse Events (CTCAE) 5.0 grading system. To produce
a balanced data set, a synthetic minority oversampling approach was utilized, following
the correlation analysis, a permutation-based technique was used to choose the variables.
In 51 of the 193 test subjects, pneumonitis beam was discovered. The machine learning
approach employed in this study were logistic regression, artificial neural networks, ex-
treme gradient boosting (XGBoost), support vector machines, random forest, gaussian
naive bayes, and light gradient boosting machine (LGBM). The result from the study
showed that LGBM algorithm exhibited the greatest accuracy in predicting pneumon-
itis beam when the clinical and dosimetric data were combined and outperformed other
machine learning models with an accuracy of 85 percent, Specificity of 50 percent and
Sensitivity of 97percent.

Valdes et al.| [2016] developed a patient-specific large data clinical decision approach to
predict radiation pneumonitis in stage I NSCLC patients who had stereotactic body ra-
diation treatment (SBRT'). A cohort of 201 lung cancer patients was utilized in the study
to assess the efficacy of three different algorithms: decision trees, random forest, and
random under-sampling (RUS) Boost. The carbon monoxide diffusion potential of the
lung and the dose to the heart, trachea, and bronchus were the most important features

Zhttps://www.cancer.ca/en/cancer-information /diagnosis-and-treatment /managing-side-
effects/radiation-pneumonitis/?region=bc



for radiation pneumonitis prediction, according to the feature collection. The data set’s
quality is crucial because the machine learning algorithm would learn the parameters
from the available data. The study’s drawback is that if the training data set is sparse,
the model is unlikely to acquire a representative set of parameters that can be used in
scenarios outside of the dataset. Furthermore, Moran et al.| [2017] looked at the feasibil-
ity of utilizing computed tomography (CT)-based radiomic features to define post-SBRT
lung damage, as well as using dose-response curves to examine the relationship between
improvements in radiomic feature values and cumulative dosage, using just Gray Level
Co-occurrence Matrix (GLCM) functions, the researcher were able to get AUC values
in the range of 0.64-0.75, indicating that eight out of nine features showed a significant
dose-response association, implying that post-SBRT lung damage could be objectively
evaluated.

Luo et al.| [2017] adopted the Bayesian Network (BN) methodology to analysis the bio-
physical signalling pathways affecting pneumonitis beam grade 2 from a heterogeneous
dataset that included single nucleotide polymorphisms, microRNAs, cytokines, clinical
data, and radiation treatment plans before and during radiotherapy. The BN methodo-
logy mainly depended on a large-scale Markov blanket (MB) method to pick significant
predictors, and K-fold cross-validation was used to minimize overfitting.

Krafft et al.|[2019] used computed tomography to extract radiomic features from 192
NSCLC patients, as well as clinical and dosimetric parameters, to develop a predictive
model for radiation pneumonitis. Eighty percent of the 192 patients received intensity-
modulated radiation therapy (IMRT), while the rest received 3D-cathode-ray tube radi-
ation therapy (CRT), a LASSO logistic regression classifier generated an average AUC of
0.68 when compared to models without image features.

Du et al. [2019] analysed a total of 118 lung cancer patients who had radiation therapy,
generalized linear models through Lasso and ElasticNet regularization (GLMNET) were
applied to evaluate 700,000 single-nucleotide polymorphism (SNP) sites to check whether
they had any synergistic impact on pneumonitis beam risk prediction. A multiple linear
regression model known as Radiation Pneumonitis Index (RPI) were developed based on
the outcome of the research for the evaluation of grade 2 pneumonitis beam risk. The out-
come from the analysis showed 92% sensitivity and 100% specificity which can correctly
differentiate the pneumonitis beam population. In addition, [Yu et al. [2019] applied stat-
istical analysis to determine predictive cytokines from the evaluated 131 NSCLC patients
out of which 17% had pneumonitis beam grade 2, a generalized linear model (GLM) for
predicting pneumonitis beam grade 2 risk was developed using a machine learning tech-
nique, in a fully independent test set, the model prediction ability was confirmed with an
accuracy of 80%, specificity 77% and sensitivity 100%. This research work established
and validated a comprehensive model for predicting pneumonitis beam grade 2 before
radiotherapy by combining inflammatory cytokines with clinical factors.

Yan and Wang| [2020] analysed fifty NSCLC patients CT scans treated with radiother-
apy using various machine models to predict the tumour responses, from the analysis it
showed that lower-order features inside the tumour have a stronger predictive capacity
that higher-order feature.

Yu et al| [2021] developed and validated a weighted-support vector machine classifier
that incorporates circulating Chemokine (C-C motif) ligands CCL4 levels with import-
ant dosimetric and clinical factors to predict radiation pneumonitis . The analysis had
an accuracy of 75%, one limiting factor from the author’s research sample size data was
small to justify the result of the findings.



2.2 Prediction of Radiation Pneumonitis in Cancer Patients us-
ing Deep Learning Approaches

Liang et al.| [2020], developed a prediction model using a Convolutional 3D neural net-
work, the neural network was pre-trained using UCF101 video dataset. From the analysis,
C3D prediction model performance was compared with 3 multivariate Logistic regression
on the data sample containing 70 NSCLC patients treated with volumetric modulated
arc treatment. The outcome showed C3D neural network outperforming all other mod-
els. The goal was to develop a dose distribution-based prediction model and investigate
the relationship between pneumonitis beam incidence and high order dose distribution
features. They were few drawbacks from the research, data sample size was very low
which made training the complex convolutional neural network from the scratch difficult
and clinical significance of the observation was unknown. However, Chang et al. [2020]
carried out a comparative analysis of the efficiency of a deep learning approach to a static
doismetric model and general linear model in predicting stereotactic body radiation ther-
apy toxicity in the 351 lung cancer patients used in the test. The result showed deep
learning technique outperforming the other models.

Huang et al.|[2021] applied a hybrid model that included a Fuzzy Clustering Means and
Neural Network to predict pneumonitis beam using 4-dimensional computed tomography
ventilation image based dosimetric parameters in NSCLC patients, from the analysis, the
combination of the two models gave a better prediction when compared to conventional
neural network. There were some notable setbacks to this study, the clusters of samples
are mapped onto a two-dimensional space with a reduced gap between them and the
sample data size used was small.

Xu et al|[2019] analysed the time series CT scans of NSCLC patients using transfer
learning of CNN with Recurrent Neural Network (RNN) to validate the assumption that
deep learning networks would accurately predict clinical outcomes, the main goal of the
study was to classify NSLC patients into two categories based on their mortality risk.
A major limitation of this research is with limited sample data size, it was proven that
machine learning based on engineered features outperformed the deep learning model.
To identify lung nodules from heterogeneous in CT images, Wang et al.| [2017] presented
a data-based approach termed the Central Focused Convolutional Neural Network (CF-
CNN). The proposed model captures a diverse range of nodule-sensitive features from
both 3D and 2D CT scans at the same time, which is the basis for this study’s technique.
To achieve this aim, a central integration layer and a multi-scale patch learning approach
were utilized, and the study revealed a sensitivity of 82 percent.

Jiang et al.| [2019] devised a multi-scale CNN technique for volumetric cross-section pul-
monary tumours that allows for precise, automated tumour volume diagnosis and quan-
tification, tumour localisation has been found to have a sensitivity of 85%.

Velec et al.|[2017] applied the Principal Component Analysis (PCA) to extract features
from entire dose-volume histograms (DVHs) for the estimate of radiation exposure in the
liver. According to the author, a single architecture of Actuarial Deep Learning Neural
Network (ADNN) model can predict various endpoints of radiation pneumonitis and local
control. Heng Yu, Zhou, and Wang (2020) implemented the Generative Adversarial Net-
works (GANSs) to synthesize additional radiotherapy-like information and overcome the
issue of datasets with limited sample sizes.



3 Methodology

The Knowledge Discovery in Databases (KDD) paradigm will be used in the research
project’s implementation. The goal of the KDD method is to extract information from
massive data sets. This paradigm divides the execution of a data analysis project into
four stages: data selection and extraction, data preparation, data transformation, data
mining, and evaluation/interpretation. The in-depth summarise of the steps is explained
in later section.

[ Data Selection } { Data Preparation } { Data Modeling ]—»[ Evaluation & Interpretation }—»[ Knowledge
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Figure 1: KDD Methodology

3.1 Data Selection

The 4D-Lung Image dataset used for this research project was published by Hugo et al.
[2017] on The Cancer Imaging Archive (TCIA) website. The dataset consists of 1,699
images CT scans. The data consist of Computed Tomography (CT) scans images of
chemoradiotherapy.

3.2 Data Preparation

This step comprises of data pre-processing and data transformation stage. the data is
prepared for the upcoming phase of modelling. In the data pre-processing stage, the image
is of DCIM (Digital Camera Images) format which makes it hard to work in a python
environment, thus the DCIM images were manually converted to PNG format without
losing the data. The pre-processing stage was done in two phases (Deep Learning phase
and Machine Learning phase). The deep learning phase, hyper-parameter was set as
random seed, image size, batch size, training steps, validation steps and epoch. The
image folder containing two folders of the classes were combined before data shuffling
and implementing image augmentation. Image augmentation, the images were re-scaled,
rotation range, width shift range, height shift range and shear range, brightness, vertical,
horizontal, fill mode was set, and image data generator created in other split data into
train and valid generators. For the machine learning phase, the images were flattened
by reshaping the images from 4D to 2D images. Image feature extract was done using
principal component analysis (PCA) and the image maximum value was derived. The
data transformation data was split into 80:20 ratio for training and test.

3.3 Data Modelling

The processed data will then be run through the classification models. The models
adopted for the prediction of RP in NSCLC are VGG16, CapsuleNet and SVM.The image



Data Augmentation Outputs

Figure 2: Image Augmentation

augmentation data is run through VGG16 and CapsuleNet and PCA decomposition was
applied on SVM model, this is done to facilitate the model execution.

3.3.1 VGGI16

VGGI16 is a convolutional neural network model which has large kernel-sized filters (11
and 5 in the first and second convolutional layer, respectively) with multiple 3x3 kernel-
sized filters one after another. The model has 16 deep layers which load the ImageNet
data. The data images in the research needs to be uploaded as ImageNet. The model
can classify up to 1000 classes. This model has won 1st and 2nd place in the categories of
object localization and image classification respectively in the year 2014 at the ILSVRC
challenge. The implementation and efficiency of VGG16 model will be explained in section

D.

3.3.2 Capsule Neural Networks (CapsuleNet)

Capsule Neural Networks (CapsNet) are networks that can retrieve spatial information
and other critical aspects to overcome the data loss that occurs during pooling operations.
Four main components are present in the CapsNet that are listed belowﬂ:

e Matrix Multiplication: It is used to transform the image that is supplied as an input
to the network into vector values so that the spatial portion can be understood.

e Scalar Weighting of the Input: It figures out which higher level capsule should get
the present capsule’s output.

e Dynamic routing algorithm: It enables these many components to exchange data
with one another. Lower-level capsules provide input to higher level capsules.

3https://analyticsindiamag.com /understanding-capsule-net-with-its-implementation-in-computer-
vision/



e Squashing Function: It is the final component that summarizes the data. The
squashing function takes all the data and turns it into a vector that is smaller than
or equal to 1, while keeping the vector’s orientation.

The implementation of the model will be further explained in section 5.

3.3.3 Support Vector Machine (SVM)

SVM is a classification model that divided the two groups by a hyperplane which makes
the SVM identity a non-probabilistic binary classifier. The training data point which
is closest to the nearest classifier is also known as Support Vector. To achieve a better
separation between classes, support vector machines with a radial basis function (RBF)
kernel modify the original feature space. The implementation of the model will be further
explained in section 5. By increasing the margin between the two classes after translating
the training data, x into a higher dimensional space using a mapping function ¢(x). As
a result, there is a decision-making function as shown below:

f(x) = (w, ®(x)) + b, (1)

3.4 Performance Evaluation

After the models have been trained on train test sets of data, evaluation metrics (Spe-
cificity and Sensitivity) were adopted to evaluate the model’s efficiency and to confirm
hypothesis predictions. The evaluation metrics are further explained in Section 5.

4 Design Specification

4D-Lung Dataset

Train Test spit Data Image Augmentation
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Figure 3: Process Flow Diagram

The process flow diagram in Figure 4 clearly explains the steps taken in answering the
research question. Python programming was selected as the primary tool for development
due to its ease of use and the availability of several libraries such as Keras, TensorFlow,
OpenCyv, Sklearn, and Matplotlib that can be used to quickly achieve the capabilities



and create models shown in Figure 4. Pre-processing and data transformation was ex-
ecuted using Google Colab notebook, which functioned as the Integrated Development
Environment (IDE). Following that, models like VGG16, SVM, and CapsuleNet were im-
plemented. The collected findings are then depicted using the python matplotlib tools,
allowing us to readily compare and evaluate the models implemented.

5 Implementation

This section discusses the system’s overall implementation. This section also discusses
how all the activities were completed to accurately predict the radiation pneumonitis
in NSCLC patients. The initial step of this stage is environment setup, which provides
information on the tools utilized in this research as well as the necessary setting. The data
is then pre-processed and transformed before comprehensive information on the model
design and operation is provided.

5.1 ENVIRONMENT SETUP

The research was carried out using a 64-bit Windows 10 operating system with 8GB of
RAM, and Python was utilized as the programming language. The research is implemen-
ted in the Google Colab environment. It is a cloud platform that implements the python
environment and has Jupyter notebook pre-setup so the data analysis can get started eas-
ily. For image preparation and execution of CapsuleNet, VGG16, and SVM models, this
notebook uses Python 3.6.9 and libraries like OpenCV, Keras, TensorFlow, and Sklearn
were employed. The environment also gives support to GPUs and TPUs which leads to
faster development of the image processing and image classification algorithms. All data
are saved on google drive and accessible in the notebook by mounting Google Drive with
the aid of a python library. The environment has certain python libraries pre-installed,
even though any required library can be installed easily if required.

5.2 Data Handling

From Google Drive, all CT scan images are read and loaded into the directories. Each of
the directories were created belonging to pneumonitis and no pneumonitis classes. The
data exploration was done by creating the path of each class directories and to check how
many images are in each directory, data wrangling and visuals about the data was done.
The radiation pneumonitis contains 1062 images, and no radiation pneumonitis images
contains 637 images. The images were augmented with the cv2 python package, the
Keras library’s ImageDataGenerator class is adopted to offer real-time data augmenta-
tion. tf.keras.preprocessing.image.ImageDataGenerator() function in the ImageDataGen-
erator class accepts the loading of the data into train and test data generators with the
right parameters.

5.3 Classification Techniques
5.3.1 Vision Geometry Group 16 (VGG16)

The initial model is the VGG16, which has been shown to be an effective and accurate
Convolutional Neural Network (CNN) for image dataset classification [Liu and Dengj,
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. The architecture was pretrained on the ImageNet. For each image, this component
generated a tensor with 7x7x512 values. The first two dimensions (7x7) correspond to
the original image dimensions. The network perception of the 4D-Lung image dataset
is described by 512 features. A total of 25,088 values represents the number of features
extracted by the network from the image. The Flatten layer follows, which transforms
the input to one-dimensional space without changing the batch size. A dropout layer
was added to sets input unit to 0 with a rate frequency preventing overfitting of the
model. To accomplish the binary classification, the Softmax activation function has been
implemented. The model was built using Adam optimiser, which has a learning rate of
0.001.

Output Shape
vgglé (Functional) 75 45 512)
flatten (Flatten) 25088)

dropout (Dropout) 25088)

dense (Dense)

Total params: 14,764,866
Trainable params: 50,178
Non-trainable params: 14,714,688

Figure 4: VGG16 model Architecture

Table 2: VGG16 Model Parameters

Value
Parameter
Batch Size 224, 224
Epoch 25
Optimiser Adam
Learning Rate 0.001
Early Stopping Monitor Validation Accuracy
Early Stopping Patience 8

5.3.2 Capsule Neural Network (CapsuleNet)

Capsules are equivariant networks of neurons that receive and output vectors
Patrick et al) 2019]. The CapsuleNet architecture is made of two convolutional layers.
The first layer Convl is designed with 256 channels with 9 x 9 filters, ReLLU activation
function and stride of one. The second convolutional layer known as the primary layer
with 8 convolutional layer unit, kernel of 9 x 9 and Squash activation function. The third
layer known as Digitcaps which consist of a fully connected (FC) layer with ten 16D
capsules that receive input from all capsules in the layer below to conduct classification
based on two classifications. The last layer, known as Decoder, is critical in identifying
the real length of each capsule in the preceding layer, which is required to determine the

11
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Figure 5: VGG16 Architecture Pandiyan et al.|[2019]

possibility of radiation pneumonitis in 4D-lung CT scans. Adam optimiser learning rate
of 0.001.

32,

V; = [8 X 16]

FC FC
RelLU Sigmoid

512

=0 Masked . = Representation of the reconstruction target

Figure 6: CapsuleNet Architecture [Kwabena Patrick et al., 2019

Table 3: CapsuleNet Model Parameters

Value
Parameter
Batch Size 224, 224
Epoch 25
Optimiser Adam
Learning Rate 0.001
Early Stopping Monitor Validation Accuracy 1
Early Stopping Patience 8

12



Model: "sequential 1"
Layer (type) Output

conv2d (Conv2D) 224, 224, 64)

conv2d_1 (Conv2D) 224, 224, 128)

max_pooling2d (MaxPooling2D) (None, 112, 112, 128)
flatten_1 (Flatten) (None, 1685632)
dense_1 (Dense)

Total params: 3,286,914

Trainable params: 3,286,914
Non-trainable params: @

Figure 7: CapsuleNet Model Architecture

5.3.3 Support Vector Machine (SVM)

SVM is a machine learning model that uses the SVM python package sklearn to clas-
sify radiation pneumonitis in NSCLC CT scans. It features numerous hyper-tuneable
parameters such as Radial Basis Function (RBF) kernel, gamma, and C (regularisation
parameter) for better performance outcome. The svm.SVC () function from the sklearn
package was used to run the SVM classification model. The clf.predict() function was
used in predicting RP in NSCLC from the classifier.

6 Evaluation and Results

This section of the study looks at the models and all of the parameters that were fine-
tuned to get the best outcome. For this study project on 4D - NSCLC CT scan images,
three models were adopted and in order to make the study novel models like VGG16 and
CapsuleNet are implemented and outcome is compared with that of SVM. The training
and validation accuracies, as well as the losses determined for each epoch, are first used
to assess the models performance and efficiency. This may be shown in graphs, which
shows how the accuracy and loss of the training and validation data change over time
with each epoch. In addition, Sensitivity and specificity metrics are utilized in order to
assess the model prediction efficiency.

6.1 Experiment 1: VGG16 model built on ImageNet

This model was created with the help of a pre-trained model (ImageNet) and without
the top layer. The model was run for 25 epochs, however it was halted early after 14
epochs since the validation accuracy was no longer rising. It yielded a 98.64 percent
accuracy and a 98.64 percent validation accuracy. The model variance was tested on 5
folds cross validation. The model accuracy and loss plots are shown to show the variance
between the training and validation datasets. The model is further tested using the
validation_generator and predict_ generator functions to assess how well it performs on
unknown test data. In addition, the model sensitivity and specificity metrics generated an
outcome of 100 percent and 95percent respectively on the third fold cross validation. The
result shows a highly sensitivity outcome which means that are no false positive result,

13



while the specificity result signifies there are fewer sensitivity outcome. The model took
1400 seconds to train on the training dataset.
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Figure 9: VGG16 Model Loss

6.2 Experiment 2 : Capsule Neural Network (CapsuleNet) built
from scratch

The CapsuleNet is built from scratch with 2 convolutional 2D layers. The first convolu-
tional 2D layer designed with 256 channels and 9 x 9 filter size. The model was executed
with 25 epochs, however it halted early after 14 epochs since the validation accuracy was
no longer rising and resulted in training accuracy of 98.48% and validation accuracy of
96.59%. The model variance was tested on 5 folds cross validation. The accuracy and loss
plots for the model are plotted to see the variations for training and validation dataset.

14



The model is evaluated using validation_generator function to check the model perform-
ance on unseen validation data. The evaluation metrics shows sensitivity and specificity
outcome of 98.15% and 90.52% on the third fold cross validation. The sensitivity out-
come depicts that there are 98% of NSCLC patients with radiation pneumonitis, while
the specificity result shows there are 90% of NSCLC patients without the RP.The model

took 1300 seconds to train on the training dataset.
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6.3 Experiment 3: Support Vector Machine

The last model executed in this project report is SVM. It has been recommended because
SVM model has proven to produce a favourable outcome in the prediction of radiation
pneumonitis in NSCLC CT scans [Oh et al) 2009]. The data points are classified into
classes in this model in order to obtain a maximum marginal hyperplane that acutely
classifies the data points. The Sklearn library was imported to apply SVM. SVM model
was split into 80:20 train test dataset. The model variance was tested on 5 folds cross
validation, the evaluation metrics showed sensitivity and specificity results of 99.18% and
96.79%, which signifies that there are 99% of NSCLC patients with radiation-induced lung
injury while specificity denotes that there 96% of NSCLC patients without radiation-
induced lung injury. The model took less than 200 seconds to train on the training
dataset.

6.4 Experiment 4 : Execution Time of Models

Following the completion of the various implementation of models, a critical analysis
of the training times required by the various models was conducted. The execution
time is the time it takes for a function to execute and is expressed in seconds. When the
computational time is extremely long, Graphics Processing Unit (GPU) support is critical
since it drastically decreases the execution time. The computing time of several models
is compared, and the SVM model is shown to be the quickest of all the implemented
techniques with less than 200 seconds of training time.
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Figure 12: Execution Time Comparison

6.5 Discussion

The main goal of the research project was to carry out a comparative analysis between
deep learning and machine learning algorithm based on Sensitivity and Specificity, K-fold
cross validation and execution time. The image pre-processing and augmentation process
was very crucial to the performance of all the models implemented. The experiments
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commenced with the application of model based on evaluation metrics. The VGG16
model attained Sensitivity and Specificity of 100% and 95% respectively under the 3 fold
cross validation. However, the execution time of VGG16 was very high, but it is under-
standable as cross validation was applied on the training data. The model was trained on
25 epochs but halted after 14 epochs. The next experiment applied was CapsuleNet built
from the scratch to improve model performance by using hyper-parameter tuning on 25
epochs but halted after 14 epochs. The sensitivity and specificity outcome achieved was
98.15% and 90.52% respectively under the thrid fold cross validation, the execution time
was lesser compared to that of VGG16 model. The last model applied was SVM, its per-
formance was measured also by sensitivity and specificity with an outcome of 96.03% and
97.20% respectively. The execution time for the model to be trained was less than 200
seconds. The reason for a very execution time may be as result of the processes involved
in image classification with a machine learning model. The K-fold cross validation of the
model is shown below.

Table 4: Comparison based on K-fold cross validation

K-Folds | Model Sensitivity | Specificity
VGG16 98.33% 95.19%
1 CapsuleNet 92.37% 97.13%
SVM 96.15% 99.05%
VGG16 96.71% 96.76%
2 CapsuleNet 96.64% 94.57%
SVM 88.06% 95.63%
VGG16 100% 95%
3 CapsuleNet 98.15% 90.52%
SVM 99.18% 96.79%
VGG16 99.18% 96.79%
4 CapsuleNet | 93.13% 97.13%
SVM 97.60% 97.21%
VGG16 95.35% 98.10%
5 CapsuleNet | 91.11% 98.04%
SVM 96.00% 96.73%

The Bar plot representing the models performance score is illustrated in figure 12
below.

However, all models performed exceedingly well in terms of sensitivity and specificity
in predicting RP in NSCLC patients CT scans but it is worth noting that VGG16 achieved
overall best result compared to other models. In terms of execution time to train the
models, SVM outperformed the deep learning techniques.
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7 Conclusion and Future Work

Radiation pneumonitis prediction in NSCLC has been a persisting issue that oncologists
have attempted to address. However, a significant amount of medical research has gone
into establishing a reliable predictive machine learning model for categorizing NSCLC
radiation C'T images. Different sorts of models based on traditional machine learning and
deep learning approaches are implemented in this study. The models and architectures
are chosen based on knowledge about their performance and execution time gleaned from
a thorough literature review. The dataset selection was first subjected to an exploratory
data analysis. After confirming that the data was valid, image pre-processing, image
augmentation, principal component analysis procedures were employed to transform and
normalise the image data. SVM using the Sklearn python package, CapsuleNet built
from scratch, and VGG16 with pre-trained weights were the three models executed. The
models were then trained on 1699 NSCLC radiotherapy CT scan images from the Cancer
Imaging Archive database. The performance of the models was compared using the 5-fold
cross-validation approach. The deep learning model VGG16 had the greatest performance
in the 3-fold cross validation, with a sensitivity of 100% and a specificity of 95%, while the
machine learning model SVM had the fastest computational time in training the model.
While the models achieved the study aim, there were several constraints in identifying
the right hyperparameters to train the CapsuleNet model, as well as the Google Colab
restricted memory space which made the GPU runtime slower.

For future work, it is recommended that a high performing system be used with Tensor
Processing Unit (TPU)/ Graphics processing Unit (GPU) for improving the execution
time for the models. This is required due to the use of images, which takes a lot of time
to process. Also, the images were of DCIM format which needed to be converted to PNG
file due to the limitation of the python DCIM file library. During the conversion some
data is usually lost, for further work, different images formats and libraries could be used.
In addition, the aim is to indulge in further study of novel deep learning models like Deep
Belief Network and Convolutional extreme Gradient Boosting on huge dataset to add to
the body of knowledge in the field of oncology.
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