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Malware Detection in Android platform using DNN 
 

Akshay Ashok Wakhare  
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Abstract 

The android platform market is growing exponentially and so the attacks on android 

platform are increased. The attacks usually performed by installing an android 

application with malicious code inside the application. On initializing the malicious 

application an attacker is able to get device access, network information and so on. In the 

past, many researchers have performed research on this problem. This research is 

performed aiming to solve and add extra layer of defence in android platform using deep 

learning technology.  

The research is carried out by developing hybrid malware detection models in which 

static model was developed using static features of an android application such as 

manifest permissions, Intents and API calls whereas the dynamic model was developed 

using dynamic features such as system calls and system binder calls. The recurrent 

neural network particularly Long Short-Term Memory technique is utilized to developed 

both the models. Both the static and dynamic models are trained and the efficiency of the 

models is analysed using confusion matric and roc & auc scores. The developed models 

will be used in the organisation to add an extra layer of security in their current working 

mobile threat detection system. 

 

Keywords: Android malware detection, Hybrid malware detection, LSTM, 

Recurrent neural network 

 

 

1 Introduction 
 

The android devices such as mobile devices, tablets are increased over the last decade. 

Particularly the android platform has gained popularity due to open source, cost effectiveness 

and easiness. As the number of users increased the attackers now targeting the mobile devices 

to performed their attacks. The attacks can be performed using various techniques although 

the most commonly used technique by an attacker is to installed the android application 

inside the target device in which the malicious code is embedded in the application and on 

opening the app user can get the victim’s device access from which the information such as 

device information and network information can be retrieved to performed further malicious 

activity. As per Norton’s security blog the malware types in mobile devices have increased 

by 54% in the year 2016-2017. The malicious applications are installed into the devices by 

downloading those apps from websites or by sending them over mail. On opening those 

applications, the malicious code starts to execute. The attacker embeds malicious code inside 



2 
 

 

the application in a way that the malware can be spread to other devices connected to the 

same network. 1 

There are various solutions available in the market which detect such malicious application 

when installed in the device. Few solutions use signature-based detection in which the 

signature of the installed application is compared with the signature of the already observed 

malwares. Few solutions use machine learning technology to detect such application on the 

basis of their properties known as Anomaly-based malware detection.  In anomaly-based the 

detection the static or dynamic properties can be used. In static properties the detection is 

done using the parameters such as permissions, intents, API calls can be extracted without 

initializing the application whereas in dynamic properties by capturing the system call, 

system binder call or network activity the detection can be done.2 

Various researchers have performed their research in this area and has achieved results 

according to their methodology although the research performed by them has faced some 

shortcomings. The researchers have performed their research using various techniques such 

as using deep neural network methods like RNN, CNN and LSTM. Their research shown 

good result although they either used static or dynamic features to carry out their work.  

Also, the ability to detect new malware type is not taken into consideration by few 

researchers as the attackers are now developing such malicious application which has 

capability to bypass the present malware detection solutions.  

This research was motivated to avoid those shortcomings and developing a better solution for 

the malware detection in android platform along with adding an extra layer to current 

industry model which is DeepThinker. In this research two separate models were trained 

using deep neural network technique i.e., Long Short-Term Memory. The following sections 

represent the previous works summary, methodology used in this research design 

specification of the proposed system, Implementation and Evaluation of the developed 

solution.   

 

2 Related Work 
 

The related section explains an extensive literature review of the work done in the android 

malware detection field by other researchers. The methodologies, techniques used, technical 

factors used by the researchers in their study along with their observations and future scope is 

explained in the following section. Earlier the researchers have proposed various techniques 

or frameworks that detects the malicious application in android platform. While considering 

their work the outcomes and shortcomings in their research are taken into consideration in the 

proposed research. Three subsections are categorised while conducting the research such as 

Malware detection using static features, Malware detection using dynamic features and 

malware detection using hybrid features with their approaches and results.  

 
 
1 https://us.norton.com/internetsecurity-mobile-types-of-common-mobile-threats-and-what-they-can-do-to-

your-phone.html 
2 https://sci-hub.se/10.5772/intechopen.69695 
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The research carried was out referring to the precious work in the field of android malware 

detection using machine learning and/or deep learning. 

 

2.1 Static Feature Analysis 

The researcher (Booz et al., 2018) designed a framework ‘Anastatia’ in the research where 

they build the multiple machine learning models as well as the multilayer deep belief network 

using static features such as Intents, permissions, API calls with the optimizer stochastic 

gradient descent. Their results shown great accuracy although the study faced the 

computation limitations. The approach using permissions and using deep learning then 

extended by the researcher (Fereidooni, Conti, Yao and Sperduti, 2016). The multi layered 

perceptron model was used in the research in which they extracted the static feature such as 

permissions of an application. The grid search method was used to calculate the model 

optimization. They followed the methodology in which various dense layers along with the 

multiple neuron’s combinations were used at each layer to reduce the time as the hyper 

parameters was consuming more time. The both researches calculated their model efficiency 

using F1 score. Their future scope defined was to focus on the dynamic features of the 

android application. 

 

The study carried out by researcher (Feng et al., 2019) presented a device-based framework 

as previous research developed the models on server side. In their research they used static 

features such as manifest permissions, API calls and opcode sequences. One hot encoding 

method was used on extracted features using which they formed feature vector as input to the 

next layer. For model training they used convolution neural network technique. They used 

TensorFlow to implement their model and later deployed that model into device using 

TensorFlow lite. Their research has their own shortcomings such as the small sized dataset as 

well as the computation limitation on the devices with older hardware configuration. In the 

research followed by (Feng et al., 2021) they used CNN and RNN. To overcome previous 

research short-coming they used larger dataset. In that study the RNN model achieved higher 

accuracy and efficiency than the CNN. They also used various mobile devices with different 

configurations for testing the framework. Their research was still focused on static features 

and not on dynamic. 

 

In study carried out by (Kim et al., 2019) seven different features with different characteristic 

of the android application was used by the researchers. They created the feature vector using 

the multiple feature encoding technique. The multimodal neural network was developed 

where one feature vector was passed over single layer. Five different layers were used in that 

model and those layers are merged in last layers which is used to classify the application. 

They also used dropout regularization in their DNN model to overcome the overfitting issue. 

Their model achieved higher accuracy although the classification of new malware was not 

taken into consideration. They proposed using dynamic features in their future research.  

 

In the research performed by (Vinayakumar, Soman and Poornachandran, 2017) they used 

the recursive neural network in which they utilized the LSTM technique to carry out their 
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research. Their research was to detect malware as well as the classification using permission 

sequences, they developed a word level language model. They trained the model using long 

short-term memory and achieved higher accuracy using larger dataset although they only 

focused on only static feature i.e., permissions. They proposed using dynamic features for the 

research in their future work. 

2.2 Dynamic Feature Analysis 

The other approach for detection of malware application using dynamic features was 

followed by the researcher (Hou, Saas, Chen and Ye, 2016). They used android emulators to 

generate the dynamic data which they used as dynamic features. They used system calls of 

linux kernel to create a graph vector in which they used graph encoding method. The stacked 

neural network was developed in their research where the final layer was used to classify the 

benign and malicious application. The usage of dynamic feature technique was extended by 

(Tan, Li, Wang and Xu, 2020) in which they extracted API calls from applications using 

dynamic analysis. The model portioning and early exit methods were used in their model to 

optimize the model accuracy and computation load. Even though they achieved good 

research they used sample devices to carry out their research and not on real devices. 

 

In the research performed by (Gronat, Aldana-Iuit and Balek, 2019) the researchers used API 

calls along with system calls extracted from android applications to develop a model named 

MaxNet. The recurrent neural network method was used along with LSTM in which they 

used max loss function to improve time complexity of their model. They used dataset 

consisting 36000 samples in which their model achieved 96.2 percent accuracy.  This 

research approach was referred by another researcher (Xiao et al., 2017) in which they used 

system call sequences. 

Their research was performed by developing two LSTM models. The first LSTM model was 

trained with the malicious samples dataset whereas the second model was trained using 

benign samples dataset. To classify a new malware/benign sample the similarity scores were 

calculated on the basis of the outputs of trained models. They achieved good results in their 

research yet limiting the research to only dynamic features and not hybrid. 

 

The approach to detect gaming malwares in android by (Jaiswal, Malik and Jaafar, 2018) 

analyzed the system calls for both malicious and non-malicious application by capturing the 

frequencies of the various systems calls in both malign and benign applications for various 

timestamps. Their methodology of the analysis is that they captured the system calls for 

different time intervals in which they found the frequencies for system calls such as 

clock_gettime, ioctl, brk, mprotect, futex, pread64, read, write and getPackageInfo higher as 

compared to non-malicious applications. Their approach helped the research to which can be 

used to create signatures of the malicious application using system calls. 
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2.3 Hybrid Feature Analysis 

To overcome the shortcoming from previous researches few scholars used hybrid model 

methodology. The research carried out by (Khoda et al., 2019) developed a model using deep 

learning technique. In their research they used features such App permissions, API calls. 

Intents as static features whereas system calls were used in their dynamic feature analysis 

which were extracted using monkey tool. In their study the model was trained using adversial 

retraining technique and created the multilayer perceptron model. Their results showed good 

accuracy rate although the dataset used in their research was of 3000 malware samples. The 

hybrid methodology was extended by the researcher (Alshahrani et al., 2018) along with the 

model deployed on device side. The dynamic features were extracted from the device and 

those features and the APK was then transmitted to server on which the static features were 

extracted using the APK. They used database to store the extracted features and the 

multilayer perceptron model was trained using those features. Their study achieved 95% 

accuracy on device-based model yet they used smaller dataset for training the model although 

they proposed using larger dataset in their future work. 

 

The study carried out by the researcher followed the same approach using the features used 

by (Khoda et al., 2019) in their research they used deep belief network for training the model. 

They also used dropout method to avoid model overfitting issue. They calculated 

performance matrix using F1 score, accuracy, precision and recall. Their research motivated 

them for using deep learning techniques such as RNN and CNN as their research achieved 

better results as compared to previous study. The research performed by (Hadiprakoso, Buana 

and Pramadi, 2020) utilized the hybrid methodology in which they used static and dynamic 

features. They compared the deep neural network model with the models which were trained 

using machine learning such as Random Forest, SVM and Naïve bayes. They used two 

different models in deep learning such as DNN-S and DNN-D. Their research achieved 

higher accuracy as compared to other machine learning models. 

 

The research performed by (Chaulagain et al., 2020) followed a different approach in which 

they developed two separate LSTM models to classify the malware applications. In the static 

model they used API calls to train the static model whereas system calls were extracted and 

transformed using embedding technique into low-dimensional semantic space. They 

performed the testing using LSTM, Bi-directional LSTM and Attention based Bi-directional 

LSTM techniques. Their research outperformed as compare to previous researches although 

their model was lacking back propogation while training as the results of static and dynamic 

model was combined in their final layer. 

 

On analysing the researches mentioned above the conclusion can be made that even though 

the researchers achieved good results in their study their research has few shortcomings 

which they defined as their future scope. Such as the research mentioned by (Booz et al., 

2018) and (Fereidooni, Conti, Yao and Sperduti, 2016) the model was build using few static 

features. The research performed by (Feng et al., 2019) had few malware samples failing to 
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classify a new malware. The research carried out by (Khoda et al., 2019) was focused on 

comparison of different models and not on specific methodology. 

 

In this project, the methodology, structure mentioned in above work was referred while 

performing the research. In a nutshell, the work done by the previous researcher used the 

smaller dataset whereas in this research the larger dataset was used. The shortcoming of 

previous studies such as using either static or dynamic features was taken care by developing 

hybrid model. The datasets used in this research was normalized and scaled while doing this 

research. The research was carried out using LSTM method as the research perfomed by 

(Chaulagain et al., 2020) achieved the higher accuracy. The evaluation of the model is 

decided based on the performance matrix as well as roc & auc scores. 

 

2.4 Research Niche 

The following table summarize the literature review on the basis of the techniques used to 

developed the model, Type of analysis used in research with their shortcoming and the 

positives of the research which motivated the proposed research. 

 

Table 1:  Research Niche Summary 

Author ML/DL 

Model 

Feature type Shortcoming Motivational 

Positives  

(Booz et al., 

2018) 

Anastatia 

(Deep Belief 

Network) 

Static Computational 

Limitations 

To use deep 

learning 

(Fereidooni, 

Conti, Yao and 

Sperduti, 2016) 

MLP Static Exclusion of 

Dynamic features 

To include 

dynamic features 

(Feng et al., 

2019) 

CNN Static Less computation 

capacity of android. 

 

Smaller Dataset 

To use Manifest 

permissions and 

API calls as 

features in static 

model 

(Feng et al., 

2021) 

CNN and 

RNN 

Static Only Static features 

utilized 

To include 

dynamic features 

(Kim et al., 

2019) 

DNN Static Only Static features 

utilized 

To include 

dynamic features 

(Vinayakumar, 

Soman and 

Poornachandran, 

2017) 

LSTM Static Only used App 

permission in static 

analysis 

To use LSTM 

model 

(Hou, Saas, 

Chen and Ye, 

2016) 

ANN Dynamic Limited to dynamic 

 

 

Use of Deep 

neural network 

(Tan, Li, Wang 

and Xu, 2020) 

Multi model 

NN 

Dynamic Real time detection 

not possible 

Use API calls  
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(Gronat, Aldana-

Iuit and Balek, 

2019) 

MaxNet 

(LSTM) 

Dynamic No included the 

static features 

Use of LSTM  

(Xiao et al., 

2017) 

LSTM Dynamic Two separate models 

for Benign and 

Malicious dataset 

Use of LSTM 

(Jaiswal, Malik 

and Jaafar, 2018) 

System call 

Analysis 

Dynamic Only importance of 

the system calls was 

defined. 

This research 

helped to create 

threat model 

based on system 

calls. 

(Khoda et al., 

2019) 

MLP Hybrid Smaller Dataset  To use large 

dataset 

(Alshahrani et 

al., 2018) 

MLP Hybrid Smaller Dataset To use large 

dataset 

(Khoda et al., 

2019) 

DBN Hybrid To use CNN or RNN To use both 

static and 

dynamic features 

(Hadiprakoso, 

Buana and 

Pramadi, 2020) 

DNN Hybrid Used Machine 

learning models 

To develop two 

separate models 

for Static and 

Dynamic 

(Chaulagain et 

al., 2020) 

LSTM Hybrid Only used API calls 

in static and System 

calls in dynamic  

To use more 

features  

To develop 

LSTM models 

 

3 Research Methodology 
 

The methodology used in this research was extension to the current industry model to detect 

malicious application in android. In the current model, the first line of defence is simple 

where signature-based detection is performed in which the application signature is fetched 

from the installed APK file before running the application and is passed to the virustotal and 

google play protect business subscription. The second line of defence is initiated after 

application is in up and running state where particular features of the APK are extracted and 

are passed to the machine learning model known as DeepThinker. The aim of this research 

was to improve the second layer of defence by utilizing the deep learning methodology and 

the updated data for training the model. 

 

In the research carried out, the two different models were trained Static and Dynamic where 

static model utilizes the static features of the APK such as Manifest Permissions, API call 

signature, Intent whereas in the dynamic model the dynamic features of the running APK 

such as System Calls, System Binder Calls were used to train and test the model. The static 

dataset was obtained from the industry where the original source of the dataset was Drebin in 

which the 215 features were extracted using Mobile Sandbox Tool for the 15031 Malicious 
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and Bening applications. The dynamic dataset was obtained from the open source and the 

dataset is named as CICMaldroid 2020 in which various 470 features was extracted including 

system calls and system binder calls for the 11598 malicious and benign applications. 

 

The following diagram shows the basic architecture of both the static and dynamic model. 

 

 

 

Fig. 1 Developed Model 

The dataset for the both models were taken in the first step where the data pre-processing was 

applied where factors such as ‘nan’ values, numerical null, categorical null, Data encoding, 

data skewness were taken into consideration. After data pre-processing the feature 

importance of the dataset was calculated using XGBoost after data split in which the factors 

which are highly important for decision making were calculated. In static model top 15 

features were taken whereas in dynamic model top 20 features were chosen. The data were 

split into training and testing dataset. In model training phase the models were trained using 

sub type of Recursive Neural Network which is Long-Short Term Memory. The decision of 

utilizing LSTM model was taken into consideration after analysing the methodologies and 

results of the previous research in the same domain from various researchers. The 

methodology and outcoming results of (Chaulagain et al., 2020) inspired to carry out the 

research using LSTM for both static and dynamic models. The data was split into 80-20% 

where 80% data was used to train the model where 20% of the data was utilized to test the 

models to calculate the performance of the trained models. The models trained are discussed 

in the section 4. The performance metrics are also mentioned in the section 4 where the 

Accuracy, F1-Score, Sensitivity, Specificity and Precision were calculated.   

 
 

4 Design Specification 
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Lately the researchers are using the deep learning methodology for the detection of malicious 

application in their research. The deep learning models such as ANN, CNN, RNN are used to 

develop accurate and time efficient models. Many researchers use the model according to the 

data they are having to carry out the research. In this research, data used was enormous data 

and in order to achieve the enhanced model the deep learning method was chosen to carry out 

the further research.  

This section illustrates the information of the model design for both static and dynamic 

model. In this research the LSTM models were trained. The following diagram describe the 

basic LSTM architecture which was referred while doing the research. 

 

 
 

Fig. 2 Simple LSTM Model  

 

The basic architecture of LSTM is inherited from the recurrent neural network which is 

designed to overcome the problem that occurs in general RNN i.e., vanishing gradient. The 

LSTM has the memory cells. The architecture of LSTM cell is categorized into three parts 

known as forget gate, Input gate and Output gate. The decision of the information obtained 

from the previous cell need to be remembered or needs to be dropped as irrelevant is decided 

using forget gate. This is useful for the model to long term range as well as the short-term 

range. The cell learns from the information obtained in Input cell whereas the updated 

information from the current cell is passed to the next cell using output gate. The cell 

contains the information along with the previous and current cell. The decision of the forget 

gate that is information need to be stored or dropped overcome the vanishing gradient issue in 

LSTM model and the model can be trained effectively as compared to the general RNN.    

 

The research was carried out for classification of malicious application uses the Many to One 

Model of the LSTM. In which output of the model is decided using multiple inputs. In the 

diagram below the X denotes the input sequence, u denotes the hidden state whereas the Y 

denotes the output value.  
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Fig. 3 Many to One Model 

4.1 Evaluation Metrics: 

 

The need of the evaluation metric in any deep learning is important as the metrics help 

researchers to understand and evaluate the efficiency of the built model. In the research the 

performance was calculated using Accuracy, F1-Score, Sensitivity, Specificity and Precision 

(ROC & AUC values). The model was tuned until the desired output of the model was not 

met. The ROC & AUC values used are defined below: 

 

4.1.1  Accuracy 

While calculating the accuracy the ratio of the correct prediction to the total number of 

predictions are calculated.3 

Accuracy = True Positives (TP) + True Negatives (TN) / True Positives (TP) + True 

Negatives (TN) + False Positives (TP) + False Negatives (TN) 

 

Where, True Positives are the values which are true and model also predicted them true.  

True Negatives are the values which are false and model also predicted them as false.  

False Positives are the values which are true but the model predict them as false. 

False Negatives are the values which are false but the model predict them as true.   

 

4.1.2 Precision 

The precision of the model was calculated by the ratio of the correctly predicted positive 

observation to the total number of the positive observations. 

Precision = True Positives / (True Positives + False Positives) 

 

4.1.3 Sensitivity / Recall 

Sensitivity is calculated as the ratio of the number of predicted positive values to the total 

number of true positives and false negatives. 

Sensitivity = True Positives / (True Positives + False Negatives) 

 

4.1.4 Specificity 

 
 
3 https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 
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Specificity is calculated as the ratio of the number of predicted negative values to the total 

number of true negatives and false positives.4 

Specificity = True Negatives / (True Negatives + False Positives) 

 

4.1.5 F1-Score 

The harmonic mean of the precision and recall are used to calculated the F1-Score. 

F1-score = 2 * (Sensitivity * Precision) / (Sensitivity + Precision) 

 

4.1.6 Time Efficiency: 

The total time required to trained the model with 100 Epoch and total time required to test the 

split test data were calculated in seconds. 

 

 

5 Implementation 
The following section illustrates the implementation of the static and dynamic model carried 

out in this research. The pre-processing and feature importance is also mentioned in this 

section. 

5.1 Environment Setup: 

The most widely used technology in data science is python. In this research the python 

language is used for model building. Jupyter Notebook and Anaconda are also installed on 

the Windows 10 system for development and execution of the model. 

5.2 Dataset: 

The static dataset was taken from the industry whose original source was Drebin in which the 

various 215 features were extracted using Mobile Sandbox Analysis Tool against 15031 

Malicious and Bening applications. The dynamic dataset was referred from the open source 

named as CICMaldroid 2020 in which 470 different features was extracted consisting system 

calls and system binder calls against 11598 malicious and benign applications. These two 

datasets were used while doing the research. 

5.3 Packages/Libraries: 

The below mentioned packages/libraries were installed for the research implementation. 

 

• Numpy: To support large and multidimensional arrays the numpy library is used in 

this research. 

• Pandas: For data analysis and data manipulation the pandas were utilized. 

• Matplotlib: To visualize the output results and plotting the graphs this library is used. 

• Keras: This library was used in which the APIs for neural network are defined for 

easiness of data science community. 

 
 
4 https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5 
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5.4 Model Implementation: 

5.4.1 Data Pre-processing:  

In this phase the imported datasets were checked for the nan, null values and the handling of 

any such values were taken into consideration. The target class that the classification of the 

application was encoded using label encoding where value 1 was assigned for the malicious 

application and 0 value was assigned for benign application. 

The dataset was then checked for skewness of the data and the skewness transformation was 

handled using cube root method. The datasets used in this research were imbalanced datasets 

that means the samples for the malicious applications was more as compared to the benign 

application which would have impacted the efficiency and accuracy of the trained model. To 

avoid such problems imblearn library was used in which SMOTE module was utilized to 

balance the datasets. 

 

 

5.4.2 Feature Importance:  

Feature importance is method in which the input features which are highly responsible for 

predicting the dependent variable is calculated by assigning scores to the input features. The 

feature important method is widely used to get insights of the model, data. To reduce the 

dimensionality and improve the model efficiency the feature importance scores are used. 

In this research, the XGBoost algorithm was used to calculate the features which were 

responsible for predicting the target values i.e whether the application is malicious or non-

malicious. The XGBoost algorithm was applied on both static and dynamic models where top 

15 features were selected for training the static model and 20 features were selected for 

training the dynamic model.   

 

5.4.3 Data Split: 

For both the models the dataset was split into two parts i.e., train data and test data into 80-

20% ratio. where for model training the LSTM model 80% split data was used and after 

model was trained the testing of the model was carried out using 20% of the data. 
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Fig. 4 Static and Dynamic LSTM Model Implementation 

 

  

5.4.4 Model Training:  

 

The model training phase started after data preprocessing and after getting the feature 

importance graph using XGBoost. In the first phase the dynamic model was trained using the 

20 important features. While training the model the recurrent neural network was used in that 

particularly the LSTM techniques was utilized. In the LSTM the output of the first layer is 

treated as the input for the next layer. In the modeling phase two LSTM layers were defined 

where the units which is the output dimension for the next layer were defined as 32. The 

‘relu’ activation function was used in both the layers with the input shape parameter which is 

nothing but the inputs from the training data. Here, in the input layer the input shape needs to 

be provided into three dimensions to the model hence prior to the training the training data 

were reshaped into three dimensions. As two layers were used return sequence parameter 

need to be set true in the first layer i.e., in the activation layer. To improve the performance of 

the model and to avoid model overfitting the dropout regularization method was used after 

defining each layer of the LSTM in which 20% data for the input connections was excluded 

for weight updates. After two layers with the output units set to 32 the output layer was 

defined with unit size 1 along with the sigmoid activation function as the output of the final 

layer was 0 and 1. In the compilation phase the model was compiled using ‘adam’ optimizer 

and ‘mean square error’ loss function was used for calculating the model loss. 

While in the second phase the static model was trained. The steps followed to train the model 

were similar to the dynamic model along with the LSTM although the layers defined in the 

static model were different. In the static model the units in the first input layer were defined 
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as 64 as the output from this layer was input to the next layer. In the compilation phase 

‘adam’ optimizer was used along with the mean error square loss function.  

 

 

6 Evaluation 
 

The following section elaborates the model efficiency and final outcomes of both the models. 

The efficiency was calculated using confusion matrix, the accuracy and loss were graphically 

plotted after validation of the models. The sections overall cover the results of the research 

followed in this project. In deep learning, confusion matrix is often used to conclude the 

performance of the model. In this research the confusion matrix was calculated for both static 

and dynamic model along with the ROC & AUC scores and time required to train and test the 

models. 

 

6.1 Dynamic Model:  

1. Confusion Matrix: 

The confusion matrix is useful to calculate the roc auc scores such as accuracy, precision, 

recall and F1-score. In this research the calculated confusion matrix are as follows: 

 

 
Fig. 5 Confusion Matrix for Dynamic Model 

 

 

Here, the True Positive values means the application was benign and model also predicted the 

benign value for validation data. The value for the same was 325. 

False Negative values means the application was malicious but the model predicted the 

benign which were 23. 

False Positive values means the application was benign although model predicted the 

malicious application which were 111. 

True Negative values means the application was malicious and model also predicted them as 

malicious which were 1861. 
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2. Accuracy:  

The accuracy of the model is nothing but the correct prediction of the model with respect to 

the training and validation data. The formula for the Accuracy is ratio of the number of the 

correct predictions to the total number of the predictions. Here in dynamic model the correct 

predictions were (325+1861= 2186) and total number of predictions were 

(325+23+111+1861= 2320) so 2186/2320 is 0.9422. Accuracy was 94.22%. 

 

The roc & auc scores were calculated using confusion matrix. The values for the dynamic 

model are as follows: 

 

 
Fig. 6 ROC & AUC scores 

3. Model Execution Time: 

The total time required to train the model with 100 epochs were 292.06 Seconds whereas the 

Testing time required to test the data on trained model was 0.21 milliseconds. 

6.2 Static Model:  

1. Confusion Matrix:  

In the static model, the True Positive values means the application was benign and model also 

predicted the benign value for validation data. The value for the same was 1832. 

False Negative values means the application was malicious but the model predicted the 

benign which were 98. 

False Positive values means the application was benign although model predicted the 

malicious application which were 114. 

True Negative values means the application was malicious and model also predicted them as 

malicious which were 963. 
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Fig. 7 Confusion Matrix for Static Model 

 

2. Accuracy:  

The accuracy of the model is nothing but the correct prediction of the model with respect to 

the training and validation data. The formula for the Accuracy is ratio of the number of the 

correct predictions to the total number of the predictions. Here in dynamic model the correct 

predictions were (1832+963= 2186) and total number of predictions were 

(1832+98+114+963=3007) so 2186/3007 is 0.9294. Accuracy was 92.94%. 

 

The roc & auc scores were calculated using confusion matrix. The values for the static model 

are as follows: 

 

 
Fig. 8 ROC & AUC scores 

 

3. Model Execution Time: 

The total time required to train the model with 100 epochs were 393.67 Seconds whereas the 

Testing time required to test the data on trained model was 0.26 milliseconds.  

 

6.3 Case Study 1 

Feature selection and Threat Modelling: 

As both the dataset were having various features, the dynamic dataset was having 470 

features whereas static dataset was having 215 features so in order to achieve time efficiency 

while achieving the accuracy the feature selection method was used. The 20 features which 

were most responsible for classification were selected using XGBoost for dynamic data 
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whereas 15 features which were responsible for the classification were selected for static 

data. The features on Y-axis denotes the index number from the dataset. 

Also, according to the study carried out by (Jaiswal, Malik and Jaafar, 2018) the frequency of 

the system calls such as clock_gettime, ioctl, brk, mprotect, futex, pread64, read, write and 

getPackageInfo were found higher in malicious application as compared to the benign 

application. The study was referred while selecting the features from the dataset along with 

the feature importance graphs. The above-mentioned features from study and features from 

the graph were found similar.    

 

 

 
Fig. 9 Feature Importance for Dynamic Data 

Feature Importance for Static Data: 

 

 
Fig. 10 Feature Importance for Static Data 

6.4 Case Study 2 

For Dynamic model the analysis of the accuracy and loss graph were performed and 

represented in this experiment. 
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Train/Test Accuracy Graph: The following graphs demonstrate the accuracy of model 

while training and testing for each epoch. On doing analysis of the graph, it can be seen that 

the model accuracy was increasing at each epoch for both the training and testing data. 

 

 
Fig. 11 Dynamic Model Train/Test Accuracy 

 

Train/Test Loss Graph: On analysing the following loss graph the loss for the both training 

and testing the model was gradually decreasing.     

 

 
Fig. 12 Dynamic Model Train/Test Loss 

 
 

6.5 Case Study 3 

For Static model the analysis of the accuracy and loss graph were performed and represented 

in this experiment. 

Train/Test Accuracy Graph: The following graphs demonstrate the accuracy of model 

while training and testing for each epoch. On doing analysis of the graph, it can be seen that 

the model accuracy was increasing at each epoch for both the training and testing data. 
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Fig. 13 Static Model Train/Test Accuracy 

 

Train/Test Loss Graph: On analysing the following loss graph the loss for the both training 

and testing the model was gradually decreasing.  

 

 
Fig. 14 Static Model Train/Test Loss 

 

6.6 Discussion 

On analysing the efficiency parameters, the working of the models developed in this 

research can be interpreted as an efficient model in order to detect the malicious application 

in android system. The idea behind using deep learning and particularly the LSTM was that 

the LSTM model is considered as suitable model for long range learning. In this research the 

models were trained using 100 epochs in which at every epoch the accuracy of the models 

was increasing as well as the loss was observed was minimum.  Although the accuracy of the 

models was impressive with respect to the LSTM, the dataset which were used was balanced 

using SMOTE which was the drawback in this research. In the dataset the values for the 

malicious application were higher as compared to benign one. The methodology developed in 

this research overcomes the issues occurred in the previous research such as in research of 

(Xiao et al., 2017) they only developed dynamic model. In the research the limitation can be 

stated as the models trained were two separate models in which two separate invocations will 
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be required from current deployed system which is one as of now, although the Mobile 

Threat Detection system will become more efficient than the current system as the dataset 

used were large and updated with new malware types.   

 

 
 

7 Conclusion and Future Work 
 

The key motive behind this research was to improve current mobile threat detection system 

deployed in the organization by developing the model which will be more efficient than the 

current model i.e., DeepThinker. Also, to overcome the drawbacks of the current model such 

as the older model was developed using old dataset, the model deployed was only for 

dynamic analysis and the static analysis was based on signature-based detection. The research 

model will suffice this drawback as it will add an extra layer of security in second line of 

defence of the current deployed system. Even if installed app bypass the signature-based 

detection the static model will ensure the detection of malicious or benign application prior to 

the app gets in running state. 

The models were fine-tuned in order to achieve the better performance. In final phase, the 

static model has achieved 92.94% accuracy in detection of the malware/benign application 

which were passed to the model in validation phase whereas the dynamic model has achieved 

94.22% accuracy along with the F1-Score 90.08% and 96.52% respectively. Due to time 

constrain, the methodology such as Bi-LSTM was not experimented in this research which 

can be the future scope of the research along with the research for detection of malware 

application in iOS environment as the current deployed system also has the ability to detect 

malicious applications in iOS environment. In future work, the model will be deployed on 

Cloud and the testing of the models will be carried out with the real time malicious as well as 

non-malicious application where the feature extraction and analysis will be carried out on 

server side.  
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