\—-
\ National
Collegef

[reland

Configuration Manual
MSc Research Project

MSc Cybersecurity

Aniket Singh
Student I1D: X19222645

School of Computing

National College of Ireland

Supervisor: MR. Imran Khan

National College of Ireland
MSc Project Submission Sheet

School of Computing

Student Name: Aniket Singh

Student ID: X19222645

Programme: MSc. Cybersecurity Year 2020-21
Module: Research Project

Supervisor: Mr. Imran khan

Submission Due Date: 16-08-2021

Implementation of open-source IDS (Snort) to

Secure docker container
Project Title:

Page-24
Word Count: Count-3250 words

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aniket Singh

Date: 15-08-2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including m
multiple copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the m
project, both for your own reference and in case a project is lost
or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be
placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Table of Content

O [0 o [FTot Ao OO P TSP PSP TTRTRPRRPPTRTN 5
2. SYStEM CONFIGUIALION .. .utiteie sttt ettt e e e e et e e s ae st e e ReeRs e st et et e teebeeReensesee s et e seeebeaneeneeneeenreans 5
2.1 HOSE SYSEEIM ..ttt b R R Rt R R Rt e 5
2.2.VIPUAI MACHINE ...t E e Rt bRt Rt b e bt 5
2.3, TO0NS . E R R R e R R r e 5-6
3 IMIPIEMENTALION ...ttt bbb b bbb bbbt bbbt b bbbt b st bt b e n s 6
Bl ACCESSING vttt ettt ettt h ekt h bbbt s b bRk R ek E AR R R R £ R £ R R R AR R R R R R R R Rt bt h b et b 6-7
3.2. Controlling container from AMACKING VIMoiiiiii ettt e be e re e nte e 8-9
4. IMPIEMENTALION OF TEST CASESttt bbbt bbb bbb bbb bbbt nb s 10
B TESE-CASE-1....ceeieeeri et e e 10-11
4.2, TESE-CASE=2..... ettt e bbb 12-15
G TS 072 LT T TP TP TR TT TP PRPRO 16-17
B4, TESE-CASE-A ... oottt b h e E e e 17-18
5. CrEALION OF TUIR ..o ettt E et R ettt R et nr e nr et renn e nr s 19-23
B. CONCIUSION ...ttt bt h e b e Rt e e s e bt e r et e Rt e R e st e bt nr et e Rt ar et ek e en et et e e r e erenn e 23
A R 5] (=] =] Lo OO U ST PP UPPRPPPRPIN 24

1-Introduction: In this configuration manual we are going to illustrate how we had contributed and
implemented the projected for the secure deployment of docker container implementing rule-based
snort-IDS. This manual will also explain the various set of software and hardware used along with the
steps involved in completion of the project. The main motive behind the development of this is to
protect the docket container from suspicious activities. However, we had achieved this by
implementing the rule-based IDS by writing the customized rule in .config file using text editor and
python script by importing various function from SCAPY library.

2-System configuration: In order to implement the project, it is necessary to have a system which
support all the required tools and related configuration so the implemented project work properly
with all its supported dependencies. If the system supports all the required tool the performance of
the implemented project will increase in order to provide the better result. Tough, it is necessary to
have a system with proper configuration.

2.1 Host system:

OS: Windows 10 64-bit
e Processor: Intel i5 8th Gen
e Storage: 2TB SSD
e RAM: 16GB

2.2 Virtual Machines

e 0S: Kali 2020.3

e Processor Allocated: 4
e Storage: 80GB

e RAM: 4GB

e 0OS: Ubuntu 20.10

e Processor Allocated: 4
e Storage: 20GB

e RAM: 4GB

2.3 Tools

There are various tools available which can be used in testing related to implemented project. However,
doing little investigation about the suitability of the project tools for testing purpose were finalized.
Below are the mentioned tools used during the testing.

Nmap: Itis a free open-source tool which is used for network scanning developed by Gordon
Lyon. It is mainly used for discovering the host along with the network services. Nmap sends a
packet to target machine and based on the got reply analyzes the packets responses. It is most
widely used scanning tool to discover open port, version, protocol and OS etc.,(“Nmap: the
Network Mapper - Free Security Scanner,” n.d.)

Wireshark: It is highly used packet analyzer tool to get the information about the packets and
its flow along with the content and used protocols and number of operational fields. However,
live packet capturing in any network is possible with the help of Wireshark which makes the
troubleshooting easy. Also, it supports various platform for example Linux, window, ubuntu,
Solaris etc.(“Wireshark User’s Guide,” n.d.)

Hping3: For the demonstration DOS attack we are using this tool and this is a TCP/IP analyzer tool.
Also, it supports ICMP and UDP, Ping, Traceroute (“hping3,” n.d., p. 3).

Low Orbit lon Cannon (LOIC): It is used for testing of denial-of-service attack and it is written
in C# language. However, this tool was in use previously by Praetox but after that published
publicly and now it is a part of open-source technology.(AnonymousCH, n.d.)

Curl: Itis also a free and open-source tool. Curl basically uses Libcurl library tough it accepts any libcurl
protocol. This is a command line tool which is used by various users to transmit and receive information
consisting of various types of files.(“curl - How To Use,” n.d.).

JQ: The JavaScript Object Notation (JSON), we have used this to get the output in readable
format. However, it is a lightweight tool and used by most of the developer and JQ command is
use to do parsing in java.(“Parsing JSON with jq,” n.d.)

3.Implementation steps
Downloading and installation of Virtual box
Downloading and installation of Kali Linux
Downloading and installation of Ubuntu 18.04
Downloading and installation of Wireshark
Downloading and creating Docker images from repositories
Install python and all the required libraries.
Writing the customize rules in snort using text editor
Testing of the rules by performing the test cases.

N~ WNE

3.1) Accessing docker remote APIl: Remote API is a one of the features of docker with the help
of which admin can reveal docker daemon using the HTTP connection. However, this feature is
used by user so that he can interact with docker daemon with the help of rest-APl. Moreover,
these users have access to the list of running containers and information about the docker images
which are installed in remote host. Using REST-API there is a possibility that these users can run
and stop container services remotely.

There is a chance of cyber-attack, if by chance this docker remote APl is revealed or leaked. The
hacker will able to login and also able to get full access of host in order to execute any malicious
activity. It is known that docker required root privilege to perform. However, if the attacker is able
to disclose this root privilege using rest API, which is possible then container inside docker and
the host machine on which this entire system is running will come under danger and there is a
high probability of data theft and information leak. If the docker remote API is activated once then
there is no need of authentication for setting up docker.

ExecStart=/usr/bin/dockerd -H fd:f/ --containerd=/run/containerd/containerd.sock

Fig. Service file of Docker

ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375 --containerd=/run/containerd/containerd.sock

Fig. Edited docker service file

From the above fig the line which is begins with ExecStart has been modified. After editing it it has a TCP
scheme and 0.0.0.0 is nothing but default route so that every interface will able to communicate with it
and also with port 2375 non-SSL docker port by default. Once the file is saved then there is need of
reloading docker so that the modified changes will apply and work. Now we will look at what we can do
after this modification.

Using curl, attacker is able to get the information about the docker remotely and this the abuse of
docker REST API. Following information has been disclosed remotely.

e Docker version

e Information about the images of the container in the host machine

.6.1:2375
ngine -

11:54:48.60

but the above generated output is not readable so to read that we are going to use the JSON. The below
Image is illustrating the details of the docker container. However, this information is access via attacking
vm. Tough this much details is more than enough for any skilled hacker to find the exploit related to it.

® Code Beautify JSON Formater | Hex Color Codes | HMAC Generator Wy p | Search | Recent Links | More -| Signin
JSON Viewer™ |

1d° 97c1862b78ba8bd) 6c65412446921c49592b22¢ Nan

==aY , sampe e B v & B 0 Resumode: ==Y F Coer T8 4Dl

Load Url 3
Browse

Tree Viewer 10

Sign Up for 60-Day
Free Trial

Beautity

Minity

Validate 3
JSON to XML

JSONto CSV

Fig. Readable with JQ

3.2) Controlling container from attacking VM(Kali).

1)Running Docker container from Host machine. We had created a customized test container
(TEST_aniket_container) using alpine because it is light weight image.

aniket@singhaniket:~%

aniket@singhaniket:~%

aniket@singhaniket:~$

aniket@singhaniket:~$ sudo docker run -itd --name TEST aniket container alpine
[sudo] password for aniket:
f8d594583c5879cbdf9efes5cazo6fcl425a2a275ec424f0cab5cB8589FdB75T57
aniket@singhaniket:~%

aniket@singhaniket:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
NAMES
f8d594583c58 alpine "fbin/sh" 11 seconds ago Up 10 seconds
TEST aniket contailner
db5de96608305 alpine "fbin/sh" 41 minutes ago Up 41 minutes
zealous_nash

Fig. Newly created container

Now try to access the details of this container from the attacker VM.However the details of
“TEST_aniket_container” is visible.

singhaniket:~3% curl -s

Fig. Container Details

Now the above created container can also be stop by attacking VM. Using culr command
container has been stopped.

Fig. Stopping Container
Now the container is stopped below is the output which illustrates that no container

(TEST _aniket_container) is available as a running process.

aniket@singhaniket:~$

aniket@singhaniket:~$ sudo docker ps

CONMTAINER ID IMAGE COMMAND CREATED STATUS

TS5 NAMES

db5d09608305 alpine "f/bin/sh"” About an hour ago Up About an hour
zealous_nash

aniket@singhaniket:~$ I

Fig. Container Process

Now we have started the same container again from the attacking VM.

Fig. Starting container

Below is the output illustrating that the container is running again.

aniket@singhaniket:~5% sudo docker ps

CONTAINER ID IMAGE COMMAMND CREATED STATUS

T5 NAMES

f8d594583c58 alpine "fbin/sh" 44 minutes ago Up 58 seconds
TEST aniket container

db5d@9668305 alpine "/bin/sh" About an hour ago Up About an hour

zealous_nash
aniket@singhaniket:~5%
aniket@singhaniket:~%
aniket@singhaniket:~% I

Fig. Running Container process

Hence it is proved that abusing rest APl attacker can gain the access of container and start and
stop it remotely.

4)Implementation of test cases: This section illustrates that how the implementation and
the testing of each scenario has been completed.

4.1. Test case 1- ICMP connection.

It is required for any attacker to make a connectivity before doing any attack. If the connectivity is
through then only, he is able to execute the attacks. From the fig below is it visible that connectivity
between attacking vm and the container is through.

x —#F ping F2.17.8.1
LA17.e.1 (LAF.e.1) S -
: dlocmp » i .88 ms
icmp =z i . 6TFE m
icmp

+ rom F2. 7.8 .
+ rom 7.0,
+ rom 7

+ rom
Ffrom
+ rom
+ rom
+ rom
+ rom
+ rom

icmp
icmp
icmp

HHEHRREHEERRRR

- LA1A7.89 .1 ping statistics - -
19 pac ni , 18 receiwved, 8% packet Lloss, Time 2053ms
roect minga Smdew B.65674,09 . 987,11 .037,/0.121 ms

Alerting and protecting the connectivity.

Now we will try to identify that the implemented IDS is detecting it or not because connectivity is
through between attacking VM and host machine.

PING 172.17.0.1 (172.17.0.1) 56(84) bytes of data.

64 bytes from 172.17.0.1: icmp_seq=1 ttl=64 time=0.384 ms
64 bytes from 172.17.0.1: icmp_seq=2 ttl=64 time=0.365 ms
64 bytes from 172.17.0.1: icmp_seq=3 ttl=64 time=0.442 ms
64 bytes from 172.17.0.1: icmp_seq=4 ttl=64 time=0.276 ms
64 bytes from 172.17.0.1: icmp_seq=5 ttl=64 time=1.06 ms

64 bytes from 172.17.0.1: icmp_seq=6 ttl=64 time=0.281 ms
64 bytes from 172.17.0.1: icmp_seq=7 ttl=64 time=497 ms

64 bytes from 172.17.0.1: icmp_seq=8 ttl=64 time=0.968 ms
64 bytes from 172.17.0.1: icmp_seq=9 ttl=64 time=0.620 ms
64 bytes from 172.17.0.1: icmp_seq=10 ttl=64 time=0.839 ms
@

— 172.17.M8.1 ning statistics —

10 packets transmitted, 10 received, 0% packet loss, time 9123ms
rit min/avg/max/magev = ¥.Z2/b/50.18b/4Y0.0634/145.81b ms

From the above ping request we can illustrate that 10 packets sent and all the packets are analyzed and
monitored by our implemented ids as demonstrated below.

10

Action Stats:
Alerts: 10 (0.662%)

Logged: 10 (0.662%)
Passed: ® (0.000%)

Fig. Generation of alert by snort

From the above fig we can say the total number of packets sent was 10 and captured packets for
analysis was also 10. That means Snort-IDS is providing 100% accuracy.

Wireshark analysis: Below is the packet capture of the connectivity using Wireshark. It is illustrating that
ICMP request is exchange between attacker and the host machine.

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AEm i@ mMERE QesEF IS

Ml
Jo

| |épp y a display filter - Ctrl-/= '] +
No. Time Source Destination Protocol Length Ir =
- : odla 17/2.17.0.1 180 E
2 0.000063475 172.17.0.1 192.168.1.112 ICMP 18e E
5 1.027672822 192.168.1.112 172.17.0.1 ICMP lee E
6 1.027717216 172.17.0.1 192.168.1.112 ICMP lee E
9 2.051619611 192.168.1.112 172.17.0.1 ICMP le@ E
16 2.0651663513 172.17.0.1 192.168.1.112 ICMP lee E
13 3.875752565 192.168.1.112 172.17.0.1 ICMP i8@ E
14 3.875804971 172.17.0.1 192.168.1.112 ICMP lee E
17 4.877518526 192.168.1.112 172.17.0.1 ICMP lee E
18 4.877609747 172.17.0.1 192.168.1.112 ICMP lee E ™

»
Frame 1: 100 bytes on wire (800 bits), 100 bytes captured (880 bits) on interface al
Linux cooked capture vi

Internet Protocol Versiom 4, Src: 192.168.1.112, Dst: 172.17.08.1

Internet Control Message Protocol

rFvrww

Fig. Wireshark analysis

11

4.2. Test Case 2

Docker remote API abuse: In this one malicious container will try to attack the other container.

NMalicious
Container

Step 1) Attacker is trying network scanning using Nmap.

Fig. Docker Port Scan

From the above scan attacker now got an idea that port 2375 is open and this could be the attack
vector which can help attacker to find any exploit or vulnerable area.

Step 2) Now knowing that port is open attacker will try to do reverse shell. Now attacker is creating a
listener using Netcat as shown below.

run --rm -v/:/mnt ubuntu ch

Netcat using port 4444 for listening, as we fired a command, we entered inside the container with the
root privileges as shown below.

12

whoami

The below fig also illustrates the newly created/ launched container (chroot/mnt/bin/bash..)

aniket@singhaniket:~$ sudo docker ps

[sudo] password for aniket:

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

427897ad1des ubuntu "chroot /mnt fbin/ba." 6 minutes ago Up 6 minutes
kind swartz

db5d896688305 alpine "fbin/sh" 3 hours ago Up 3 hours
zealous_nash

Step3) AS we have got the access to the container which is having a root privilege. Now attacker can
modify the /etc/passwd file.

n/nologin

w o W

t:/bin/bash

1

Fig. content inside /etc/passwd file

The /etc/passwd file have root user inside it. Now with the help of this attacker will modify and create
one more entry in the same file and will copy all the privileges of the root user to to created new entry
which is in our case “hacker_test”

13

If we compare the root user Aniket and “Hacker_test”. The few things modified referencing the root
user and now hacker is also a root user.

Also, there is a new folder (hacket_test) in the home directory along with the root user as shown
below.

Also, the attacker is able to send request to another container. So that there is a possibility of
container-to-container attack. As shown below.

ping 172.17.0.3

=
-]

As a result, if attacker is able to do such changes, he can get all the access and all the services will run
under his command. Hence, protection against such attacks is very crucial.

14

Protection: Snort-ids capability to detect such attack

Action Stats:
Alerts: ©.971%)
Logged: ©.971%)
Passed: ©.6000%)
Limits:
Match:

Queue:

Log:

Event:

Alert:
Verdicts:

The above fig illustrates that Implemented snort-IDS is generating an alert if any suspicious activity
monitored.

1) generation of alert when unauthorized user tries to access.
Decoding Ethernet

D8/27-00:44:08, 530589

72.17.0.1:2375

2) Generation of alert when one container tries to connect another container.

: 188688081 e : €0 i . [Priority: @] {ICMP}

: 188688081 Vi is pingin I a . [Priori {ICHMP}

ping ntailner” [Friori : @ {ICHMP]}

s pinging contalner” [Priority: @ {ICHMP]}

: 1888881 i is pinoim a1 i - [Prioritw: € fICHMP]}

: 18886881 o is pingim thu container” [Priority: € {ICHP]

:1888881:0 ine is pinging G ntainer” [Priority: @ {ICHMP}

:1888881:0 is pinging container” [Priority: @ {ICHMP}
s ping ntailner” [Pri

ping

P8 /27-00:59:22.902493 [1:1000002: is pinged by Container"” [Priority: 0] {ICMP} 172.17.
192.168

P8 /27-00:59:22.903914 [:1000002: is pinged by Container” [Priority: ©] {ICMP} 172.17.
192.168
: .984413 [1:1000002: pinged by container” [Priority: e8] {ICMP} 172.17.

.905853 [:1000002: is pinged by Container” [Priority: ©] {ICMP} 172.17.

.909460 [1:1000002: is pinged by Container"” [Priority: 0] {ICMP} 172.17.
4) Blocking of SSH connection request.

Commencing packet processing (pid:gﬁﬂﬁ)
Decoding Ethernet

08/27-01:28:14.958081 [**] [1:100002:0] SSH connection detected [**] [Priority: 192.168.1.112
33714 -> 172.17.0.1:22

15

4.3. Test case 3 Denial of services

With the help of Hping3 we are generating the high volume of the traffic to test he DOS attack. As
from the below fig it is clearly visible that when the packets forwarded to the container there is 100%
packet drops and also, we are not able to ping the container that means the reachability from the
container is lost.

This is the specialty of the DOS attack it make the services unavailable which are running by pumping
huge volume of the traffic more the actual bandwidth allocated. So, it consumes the entire resources
and choke the entire services. Here the number of packets which are transmitted (-c 12000) and the
size of each packets are (-s 110). Adding to it we have used “—flood” so that fast forwarding of the
packet will take place. We are also using the “—rand -source” which is forwarding the malicious packet
from the random sources (IP, ports).

: ~3 -V -c 12000 5 S -w 65 --flood --rand-source 172.17.0.1
using eth3 : 2.168.0.38, MTU:
HPING 172.17.0. th3 172.17.0.1): 40 he s + 110 data byt
hping in flood mode, no replies will g

~C
---'172.17.0.1 hping statistic ---

4181797 packets transmitted, ©® packets receive 100% packet 1
round-trip min/avg/max = 0.0/0.0,/0.0

2~ I

Fig Dos attack launch by Hping3

Our implemented snort-based ids is capable of detecting it and result if generation of alert.

[Pricoritw:
CPrioritw
CPriority:
[Priority
[Prioritw
CLPrioritw
[Frioritwy
CPriority:
CPricrity

CPrioritw

i E=I R

®8/13-80:a45:43. 3>3339] £ CPrioritw
TCPS} 1909.48.219.39: 7633 = A7

©@8/13 -©90:45:43.323373 1 €] CPriority
TCP } ATF2 . AT .« E (=]

68 /13 -00:45: 43 _ 3: = LPrioritw:
TCP 27 .154 .139.85: 7634 ATz

MM RMAR AR M AR AR

Fig. Alert generated by Snort

The below is the analysis by snort along with the type of packet (TCP) captured during the attack.
Approximately 99% of the TCP packets are captured.

16

Run time fTor packet processing was 54.265404 seconds

Snort processed 71706 packets.

Snort ranmn for © days © hours © minutes 5494 seconds
Pkts /fsec:

Memory usage summary:
Total non-mmapped bytes (arena): S7176064
Bytes in mapped regions (hblkhd) 30130176
Total allocated space (uordblks) 361494912
free space (fordblks): S3561152
releasable block (keepcost):

Packet I/O Totals:
Received:
Analyzed:

Dropped:
Filtered:

Outstanding:

Injected:

Breakdown by protocol (includes rebuilt packets):
Eth 71706 000%)
VLAN (S -.9000%)
Ira 71674 -955%)
Frag o -000%)
ITCMP o -.000%)
1Line 12> & = (= B | 7%)

TR

Fig. TCP packet capture by IDS

4.4. Test case 4 Dos attack Using UDP packets

To perform the UDP-based DOS attack we had used LOIC (Low orbit ION Canon) tool. The below fig
illustrates that to launch attack we have to two option 1 we can put the URL of the target and the
second is to put the IP address of the target machine. Then we need to select the port and protocol in
our case we had selected it as a UDP and port 80. Also, we can increase or decrease the frequency of
the attack. Final step is to hit the enter by clicking on “IMMA CHARGING MAHLAZER” button. The
main advantage of using this tool that any user can able to launch the Dos attack even if he is not
technically skilled.

Low Orbit lon Cannon | When harpoons, air strikes and nukes fails | v.1.0.8.0

N7 Z2lnr i) Sl

TCP / UDP message

Launching DoS attack using UDP method

Dot o o

Fig. LOIC-UDP-BASED DOS attack

Detection and protection from the launched DOS attack. The launch DOS attack has been detected by
Snort-based IDS. From the below fig it is clearly reflecting that snort had identified the UDP based dos
attack.

17

Snort processed 20628 packets.
Snort ran for ® days ©® hours ©® minutes 36 seconds
Pkts/sec:

Memory usage summary:
Total non-mmapped bytes (arena): 6217728
Bytes in mapped regions (hblkhd): 30130176
Total allocated space (uordblks): 3883712
Total free space (fordblks): 2334016
Topmost releasable block (keepcost): 254400

Packet I/O0 Totals:
Received:
Analyzed: 177 .201%)
Dropped: 0.000%)
Filtered: ©.000%)
Outstanding: ©.000%)
Injected:

Breakdown by protocol (includes rebuilt packets):
Eth: 20628 (100.000%)
VLAN: © ©.000%)
IP4: 20598 99.855%)

Frag: e ©.000%)
TCMP - 19 A_A92%)

UDP: 20569 99.714%)

ction Stats:
Alerts
Logged
Passed
L imits =

Match
Queue
Log
Event
Alert

erdicts :
AlLow
BlLock
ReplLace
Whitelist
Blacklist

LL LN}

(AL I L I I)

!
S

QooQ0O0ON

201%)
0e0%)
0e0%)
0e6%)
0%
OOO%)
0e0%)

BE OB RE O BE R R W

'alalalalalala

Fig. Alert generated by Snort.

18

5- Creation of rules in snort

We had used Python and in python used library is SCAPY.

SCAPY: | had used this because it is one of the most powerful and highly interactive
python libraries used for manipulation of packets. Moreover, coding and decoding of
the packets over wide range of protocol supported by it. That is sending and
receiving of the packets along with that matching the request and answering as per
the request. Additionally, it supports many of the networking troubleshooting
parameters like traceroute, ping, scanning, tcpdump, arp, nmap, arpspoofing, tshark
etc.,Apart from that it is also known for sending irregular frames, injection of our
own encapsulation (802.11), and support combining technique for example “ARP
cache poisoning + hopping of VLAN, decoding Voice over IP on encrypted channel
called WEP.

1)

@

19

2)

@ aniket@singhaniket: fetc/snort/rules
GNU nano 2.9.3 DDOS UDP.py

Below is the out put of the alert from the above script. However, we had used the
grep to show the specific set of output rather than entire logs.

aniket@singhaniket: fetc/snort/ruless

aniket@singhaniket: fetc/snort/ruless$ cat ddos.rules | grep trin

alert udp SEXTERNAL_NET any -= SHOME_NET 31335 (msg:"DDOS Trin®® Daemon to Mast
er *HELLO* message detected"; content:"*HELLO*"; reference:arachnids,185; refer

ence:url,www.sans.org/newlook/resources/IDFAQ/ oo.htm; classtype:attempted-d
os; sid:232; rev:5;)
aniket@singhaniket: fetc/snort/rules$ I

3)

‘@ aniket@singhaniket: /etc/snort/rules

GNU nano 2.9.3 DDOS ICMP.py

count)

20

Below is the output of the alert from the above script. However, we had used the
grep to show the specific set of output rather than entire logs.

aniket@singhaniket: /etc/snort/rules$ cat ddos.rules | grep TFN
alert icmp SEXTERNAL _NET any -> SHOME _NET any (msg:"DDOS Probe"; icmp_id:67

8; itype:8; content:"1234"; reference:arachnids,443; classtype:attempted-recon;
sid:221; rev:4;)

4)

@ aniket@singhaniket: /etc/snort/rules
GNU nano 2.9.3 ICMP RAER.DY

count)

Below is the output of the alert from the above script. However, we had used the
grep to show the specific set of output rather than entire logs.

aniket@singhaniket: fetc/snort/rulesS cat ddos.rules | grep tfn2k
alert icmp SEXTERNAL_MNET any -= SHOME_MET any (msg:"DDOS icmp possible co
mmunication”™; icmp_id:0; itype:8; content:"AAAAAAAAAA";:; reference:arachnids,42s

; classtype:attempted-dos; sid:222; rev:2;)
aniket@singhaniket: fetc/snort/rules$
aniket@singhaniket: fetc/snort/rules$ l

5)

@ aniket@singhaniket: /etc/snort/rules

GNU nano 2.9.3 TCPpayload.py

, count)

21

Below is the output of the alert from the above script. However, we had used the
grep to show the specific set of output rather than entire logs.

aniketdsinghaniket:) ort/rul _
alert tcp SEXTERNAL_NET any -=> HHHHE NET 22 (msg:"EXPLOIT ssh CRC32 overflow
":; flow:to server,established; content:" |90 96 90 90 90 90 90 290 90 90 90 90

90 90 96 98|"; reference:bugtraq,2347; reference:cve,2001-8144; reference:cve,2
801-8572; classtype:shellcode-detect; sid:1326; rev:6;)

aniket@singhaniket: fetc/snort/ruless I

e

Creation of customized rules in snort.

[Action][protocol] [IP address(source)] [port(source)] -> [IP address (destination)] [destination (port)]

Source Address Direction
Destination Address

Action Protocol
'\ R Source Poﬂ Destination Port

alert icmp 192.168.1.10 any -> any any (msa TCMP Attempt Attack™: sid:1000005)

Rule Header Rule Option

Above fig illustrates the format to write the customized rule. Now we will discuss the use of
each element for the formation of the rule.

1) ALERT: The option alert describes the action of the rule.

2) ICMP: Here our rule will look for ICMP packets. we can modify the protocol (TCP,
UDP etc.,) as per our requirement.

3) Source Address: source IP address here we can define the IP address. if we want to
check for the packet from the specific source then we have to hardcode the IP
address or else we can leave it as “any” So that by default all the IP address will be
matched.

4) Source port: We can define the source port as per the protocol for example port 23
is TCP port used for telnet or SSH port 22. Other wise use “any” then it will include
all the ports.

5) Direction (->): for source to destination one directional communication, we use (->)
and for bidirectional communication we can also use (<>).

22

6) ANY: This option in the above format is nothing but the destination IP address.
However, to reach certain defined destination we can replace “ANY” with specific
IP address. Same is the case with destination port.

7) Rule option: When any written rule matches, we get the notification in the form of
alert with the message that we have described for the defined rule. However, SID
field is used to uniquely identifying the snort rule.

@ aniket@singhaniket: /etc/snort/rules
GNU nano 2.9.3 custome.rules

The above are the customized set of rules that were written in order to make IDS alert ang
identify the different set of protocol and the generated traffic along with that allowing and
deny the specific ports.

Controlling of traffic from external network to home network is very crucial because by default
all the traffic is forwarded to home network tough there is no need of all the traffic hence
restriction on the unwanted and malicious traffic is very much needed which is already been
achieved by writing the python code using scapy library and in addition we have implemented
few customized rules using text editor as well. That is the main advantage of using the snort.

6)Conclusion: To detect the malicious activity the implementation of snort-based ids with the
help of python scripts and customized rule is able to detect the privilege escalation attack,
unwanted request via ping, Denial of service related to both TCP, UDP protocols in real time.
Moreover, the abuse of rest APl in docker is also protected along with hidden scanning of the
network. Above we had also seen the different test case wise implementation which illustrates
the different attack and defense provided by our implemented IDS to secure the deployment of
docker containers.

23

7.Reference

1)AnonymousCH, n.d. LOIC on Linux Ubuntu 13.04 without WINE! (HD).

2)curl - How To Use [WWW Document], n.d. URL https://curl.se/docs/manpage.html (accessed 8.13.21).
3)hping3, n.d. URL https://tools.kali.org/information-gathering/hping3 (accessed 8.13.21).

4)Nmap: the Network Mapper - Free Security Scanner [WWW Document], n.d. URL https://nmap.org/
(accessed 8.13.21).

5)Parsing JSON with jg [WWW Document], n.d. URL http://www.compciv.org/recipes/cli/jg-for-parsing-
json/ (accessed 8.13.21).

6)Wireshark User’s Guide [WWW Document], n.d. URL
https://www.wireshark.org/docs/wsug_html_chunked/ (accessed 8.13.21).

24

