

Implementation of Open-source IDS (Snort) to Secure
docker container

MSc Research Project

MSc. Cybersecurity

Aniket Singh

Student ID: X19222645

School of Computing

National College of Ireland

Supervisor: MR. Imran Khan

National College of Ireland

 MSc Project Submission Sheet

School of Computing

Student Name:

Aniket Singh

Student ID:

X19222645

Programme:

MSc. Cybersecurity

Year:

2020-21

Module:

Research Project

Supervisor:

Mr. Imran khan

Submission Due Date: 16-08-2021

Project Title:

Implementation of open-source IDS (Snort) to

Secure docker container

Word Count:

 Page-31

 Count- 5765

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Aniket Singh

Date:

16-08-2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including

multiple copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the

project, both for your own reference and in case a project is lost

or mislaid. It is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if

applicable):

4

Abstract

Technology is moving towards cloud computing. Moreover, to achieve high performance fully

functional trustworthy and reliable virtual environment container technology had created a huge

dependency. Additionally, for rapid and well-organized large-scale deployment of any

application or the services containers are core components nowadays. However, containers-based

technology provides such kind of structural process which combines multiple resources for

example CPU, memory, storage, disk etc., which than forms a complete independent container

along with only required dependencies which makes it a lightweight container which is also

considered as lightweight virtual environment also known as Docker containers. Tough, docker

is having many of the security concerns and this encouraged me to do my research in such a way

that, which can detect malicious activity outside containers to keep the containers reliable and

vulnerability free. Hence, introduced signature based IDPS which is after implementation not

only successfully able to generate real-time alert but also block unwanted traffic followed by

efficient surveillance and protection against unauthorized remote access by abusing the REST-

full (Representational State Transfer) API which means compromising the entire system, perhaps

this is achieved by writing our own customized rule in .config file.

Keywords: Docker containers, IDPS, Virtualization, cloud computing.

Table of Content

1. Introduction ... 6-7

2. Research Question ... 7

3. Literature Review .. 7

3.1. Challeges faced ... 7

3.2. Proper Isolation ... 8

3.3. Hardning of Host .. 8

3.4. Securing the Network ... 8

3.5. Review of the current work .. 9

3.5.1. Previous applied method-1 .. 9

3.5.2. Previous applied method -2 ... 9

3.5.3. Previous applied method -3 ... 9

3.5.4. Previous applied method -4 ... 9

3.5.5. Previous applied method -5 ... 9

3.5.6. Previous applied method -6 ... 10

3.5.7. Previous applied method -7 ... 10-11

3.5.8. Previous applied method -8 ... 11

5

3.5.9. Previous applied method -9 ... 11

4. Research Methods & Specification .. 12

4.1. Architecture design including all elements .. 12

4.2. Flow diagram .. 12

4.3. Pseudo code for rule based IDPS .. 14-15

5. Implementation .. 16-17

5.1. Plan to evaluate the proposed approach .. 16-17

6. Expected functionality to carry out implementation .. 16-17

6.1. Test-case wise summary table .. 18

7. Result ... 19

7.1. Summary table of result .. 19

7.2. Test-case wise result ... 19

7.2.1. Ping request by attacker ... 19

7.2.2. Blacklisting of the ping .. 20

7.2.3. Reverse shell gain ... 20

7.2.4. Container to container communication detection .. 21

7.2.5. Container to Host communication detection .. 21

7.2.6. TCP-BASED dos attack detection ... 22-23

7.2.7. UDP-BASED dos attack detection .. 23-24

8. Conclusion and future work ... 24-25

9. Video Presentation .. 25

10. Appendix .. 25-27

11. References .. 27-30

6

1.Introduction
The rapid growth in inventions had evolved the technology. Tough, such development had

helped in achieving the plethora’s of milestones and cloud in one of such developments, which

not only provides the faster processing or computation of the data, but also provides the location-

independent computation.(Wan, 2011) Trusting on cloud nowadays is also one of the biggest

concerns because there is no complete transparency in the processing of the user’s data.

However, due to location independent processing it opens many security challenges which need

a complete consideration in relation to the cloud services. Moreover, Virtualization which

includes “hypervisor” and “Container” based technology. Hypervisor-based technology provides

hardware level-based virtualization on the other hand container-based technology involves

virtualization which mainly supports OS level virtualization approach. Container based

virtualization is most widely used nowadays and also in future because of its light-weight nature

and location independent processing.(Singh and Singh, 2016)

The container technology has been adapted by many giant companies for example Azure, IBM,

Google and AWS etc., The main advantage of using this technology is easily scalable and

lightweight, due to which infrastructure can be established anywhere in the world, also sharing of

the infrastructural resources becomes smooth because of the fundamental of sharing kernel of the

operating system. However, this fundamental mainly deals with Linux functionality additionally,

it uses the Namespace and C-groups for the isolation as compared to hypervisor in virtual

machine perhaps it has many security challenges which requires sincere attention. (Manu et al.,

2016)

Contribution in container-based technology consists of Open-VZ, Linux V-Server, LXC (Linux

container) but among all of them docker containers are one of the most reliable and practically

used container with the proven better result technology.(Bhatia et al., 2018) Like every coin has

two phases similarly, docker also has many advantages and disadvantage which involves severity

against Denial of services (Dos) which result in stop the services of containers that is breaking

down the container services. Moreover, protection against this type of attack is very much

necessary, which can be possible via intrusion detection system. An efficient intrusion detection

method can not only help in protecting against the Dos attack but also secure it from unwanted

breaking down.(Chelladhurai et al., 2016)

To monitor suspicious activity there is a need of some system and that is intrusion detection

system which can detect the unwanted dangerous activity so that the running services like any

applications, servers, database inside the container can be protected against the malicious impact

and tough proper surveillance with IDS can help in overcoming such unauthorized activities.

Because IDS can we implemented in such a way that in can detect unwanted traffic and disallow

and block the suspicious users to remotely gain the system access. However, implementation of

IDS majorly depends on the requirement hence it is categorized based on the different

requirements as a Host-based, Network-based signature and anomaly-based detection system.

(Lee et al., 2011)

It has been seen that for the security and protection of the cloud environment there are multiple

deployments. However, it is also observed that IDS had provided the great contribution in order

to protect virtual machine but in case of container technology it is far behind. Hence it is required

to think and consider this deployment for the protection of container technology. This is the main

7

reason behind the selection of this research so that efficient demonstration related to the secure

deployment of the docker container with the help of implemented rule based IDPS.(Flora and

Antunes, 2019)

In this research I had demonstrated the numbers of attacks which includes Denial of service

(Dos) and gaining unwanted remote access via reverse shell using the attacker VM so that such

vulnerability can be demonstrated in an efficient way. Moreover, these attacks for example

denial of service will impact the services of the containers it will utilize the complete resources

so that containers will not work properly and all the services related to it will stop. Additionally,

to get the unauthorized access, hacker abuses REST API, the main motive of this attack is to get

the remote access that means attacker will dominate and can make unwanted changes which

result in complete comptonization of the system. Tough, implementation of rule-based ids will

mitigate against such malicious activity and Docker container can work properly and all the

services will work efficiently. However, this research focus on the security of the docker

containers. The main aim of the implemented IDPS is to stop unwanted traffic and also in case

when any unwanted user tries to access, or any request occurs from illegitimate user than blocks

it in real time. Additionally, it will protect the containers from such attacks and also guard the

host machine on top of which our containers are running.

2.Research question
How to secure deployment of docker container from various malicious attacks and threats?

Knowing that there is no extra layer of isolation between host machine and container.

3.Literature Review
In this section I am going to describe the past studies and work along with the deep inspection

and overview of current hurdles faced and why it is required to protect the docker containers and

its deployment from malicious activities along with understanding of associated risks.

3.1) Challenges faced: In a multi-tenancy cloud environment, there are various critical running

services which required full proof security otherwise there is a huge chance of social and

economic losses via cyber-attack. Moreover, running virtual environment which includes virtual

machines consists of hypervisor which establishes an extra layer of protection and this protection

acts as a partition in the middle of host machine and the application running inside the VM this

feature of virtual machine makes it more secure than docker container technology. In Container

technology communication between host machine and application happens with the help of

kernel of the host machine but in Virtual machine there is no direct communication between host

kernel and the running application in VM. Also, multiple containers can share the same kernel.

Tough, it is easy for attacker to target containers and if the hacker is able to get the access of one

of the containers, then probably, he will make all the containers malicious or harm the running

services also there is chance the entire system get compromised.(Sultan et al., 2019)

8

The above figure illustrates the difference between the VM and containers. Moreover, it is

clearly visible that containers are lightweight hence are used extensively. But in multitenancy

cloud environment most of the containers utilizes the same host kernel due to this there is a

chance of huge information discloser which may result in cyber-attack. Perhaps, to secure docker

container it is mainly relay on few elements as follows, Proper isolation, hardening of the host

and securing the network.

3.2) Proper Isolation: Major components of the docker containers are depend on Linux kernel

functionality. Linux by default with namespace feature provides the partitioning but in case of c-

groups it is different. Moreover, Cgroups are activated based on the requirements of docker

container deployment. Containers in the multi-tenant cloud environment share the same host

kernel which means utilizing the same network bridge which introduces vulnerability in the

isolation process, resulting in ARP poisoning.(Combe et al., 2016)

The security of the docker containers can be narrow down by enabling the few options during the

deployment of the container and these options are “-cap-add=<CAP>”, “-uts = host”, “-

net=host”, “-ipc =host” etc., However these options are mainly used in establishing the

communication between container and host machine which then opens up a considerable

vulnerability. For example, if the two containers have different name space that means the

running process for both the containers are different from each other. But if option (-net = host)

is used at the time of container deployment then both the container will share the same network

resources tough increasing the possibility of providing complete access of the host stack

resulting in sniffing of the network and privilege escalation. Also, there are options if used

during the configuration of container will result in demolishing the Transport layer security

(TLS).(Talbot et al., 2020)

3.3) Hardening of the host: Linux uses certain modules so that it can provide some sort of

security during the deployment of the container. It basically generates invisible kind of

restriction. Perhaps, App-Armor, SE-Linux, Sec-Comp do not come with such restriction.

Moreover, in case of APP-Armor all the privileges are open (full-permission) to access any

filesystem, network etc., Additionally, using SE-Linux docker container shares the resources in

the same domain. However, it has been observed that default behavior while doing the host

hardening do not provide the protection to container from other containers. (Combe et al., 2016),

(Talbot et al., 2020)

3.4) Securing the network: For remote management and distribution of the image docker

daemon utilizes the network resources. Also, to administratively control the docker daemon

UNIX sockets are used which are manage by root: docker, placed in /var/run/docker.sock. That

means basically if any user has access of such socket, then he can access host and also run any of

9

the containers which are running on top of host in privilege mode. This is one of the drawbacks

because there is a chance of gaining the root access with the help of UNIX socket and once the

access granted then it can be used in case of TCP socket as well. Hence, to mitigate those it is

necessary to take safety measures while downloading the any files or images keep in mind to use

trusted network or resources. Moreover, it is very crucial to deeply inspect, verify and download

the images in relation to docker containers because once it is downloaded then those files will

connect to any registry over TLS.(Wenhao and Zheng, 2020)

3.5) Review of current work: This section will demonstrate different snort-based IDS and

related research with various previous applied methods and constraints with its improved

methodology including different platforms for example Network or Cloud.

3.5.1) Previous applied Method-1: The author had demonstrated a secure surveillance
approach called OUT-VM also known as MNPD (malicious network packet detection) which
basically designed to monitor cloud environment which includes VMs at virtualization plus
network layers. It is necessary to provide the protection to running servers in cloud network
hence to do that behavioral analysis of the incoming and outgoing packets is much needed.
So that complete cloud network will get better defense against intrusions. However, traffic
monitoring at hypervisor level provides the safety against VM-to-VM attacks. The
demonstrated approach worked but the level of the security was not much efficient along
with that cost of implementation was also high and system was generating false positive
alarm which was consuming CPU(Mishra et al., 2017) . To overcome that author had come
up with new approach called HIDCC moreover this approach mainly focused on reducing
the false positive alarms but the deployment cost was higher.(Hatef et al., 2018)

3.5.2) Previous applied Method-2: The author had proposed HIDS which includes
anomaly detection with misused-based detection. Adding to it this approach was the
combination of packet header and network traffic anomaly detection (PHAD+NATAD).
Perhaps, this approach utilizes the network traffic but the processing of the and analyzing
packets was taking too much time which were making the detection mechanism slower.
However, to reduce that author proposed to use classifiers which introduces the budget
issues(Aydın et al., 2009).

3.5.3) Previous applied Method -3: The proposed intrusion detection for private cloud
uses the snort rules along with multi sensors for the detection of the behavior of the network
traffic pattern. Moreover, in this approach scanning of the port along with monitoring the
behavior of the OS. However, during the testing of the project the various sensors provides
the different set of result for the same set of data. The used dataset was MIT-DARPA 1999.
Tough managing the sensors for example modifying the rules for each sensor was bit
difficult along with that analysis of each sensors detection pattern was also bit tedious which
consumes lots of the time in processing resulting in slower detection.(Sengaphay et al.,
2016)

3.5.4) Previous applied Method-4: Basically, the beginning of any attack starts with port

scan hence it is required to consider a hypothesis which protects from harmful unseen or secret

port scan attack. To solve this problem author has proposed an algorithm which recognizes the

host with active malicious content. The proposed algorithm known as Threshold random walk

(TRW).(Jaeyeon Jung et al., 2004) However, this approach has some boundaries for example, the

10

identification algorithm behaves slower because of the generation of false positive alarm which

resulted in utilizing higher CPU resources. In addition, that to overcome such challenges author

comes up with new algorithm called as (EPSDR) efficient port scan detection rule which consists

of two methods first is packet capturing and another is preprocessing. Moreover, this approach

enhances the performance and analysis along with the detection mechanism. EPSDR approach

generated 10% higher improvement then TRW but the major drawback of this it supports only

TCP traffic do not have UDP packet capturing capabilities.(Patel and Sonker, 2016)

As observed from proposed method it is clearly identified that there is a need of further research

and improvement required to make the network more secure. Knowing that the attack parameters

are increasing with the increase in the technology.

3.5.5) Previous applied Method -5: Honeypot based IDS had been proposed by an author

in order to get protection against the suspicious activity. In this approach honeypot is basically

used to capture the data and the captured data seems to be a malicious with the harmful payloads.

Once the data collection done then it is shared with IDS system for identification and protection

against suspicious activity by understanding the pattern and behavior or the payload it creates the

rules.(Sagala, 2015) But it is observed that as soon as the interaction between honeypot and IDS

increases it starts consuming lots of the bandwidth and start utilizing the system resources.

Tough, to solve this issue and for further improvement author had suggested an algorithm called

Low-interaction honeypot and for the configuration backtrack is used for the smooth

communication between IDS and Honeypot. During the demonstration the identification of

attack parameter worked well but it faced a major problem in dealing with high volume of the

traffic which is an indication for any attacker to plan DOS attack and make the all services

unavailable. Not only DOS attack but also the system was responding to attacker’s request which

opens up vulnerability in the system. Hence, to mitigate such challenges author had proposed

improvised method called High-interaction honeypot but this approach was also not able to

handle high volume of the traffic.(Xiaoyong and Dongxi, 2005)

3.5.6) Previous applied Method -6: To encounter the previously faced issues and the

challenges author suggested and presented the new method to deal with the huge traffic so that

no packets were dropped and proper inspection takes place. The author had used the detection

method called FPGA for the identification and detection of perilous content and suspicious

activity via DPI (deep packet inspection).(Thinh et al., 2012) This DPI includes both static and

dynamic analysis. However, this algorithm also faced many challenges and limitations. for

example,

• It inspects the specific set of packets and detects the header or payloads inside it.

• The capacity of analyzing the packets were limited up to 32 entries

• Few time it detected a smaller number of entries even if the numbers of matched entries

were high.

• Many of the hardware platform dealing with power consumption issue due to hardware

compatibility issue.

11

Additionally, author had introduced new approach to overcome on the above challenges and the

proposed algorithm which was known as “NETFPGA-based bloom filter”. This approach dealt

with the packet drop issues but it was examined that not able to handle DOS attack which

reduces the accuracy of the suggested method.(Al-Dalky et al., 2014)

3.5.7) Previous applied Method -7: In order to secure the cloud environment and

minimizing the previous faced challenges author introduces Virtual host-based IDS which

mainly work on the three parameters

• Event auditor

• Cloud intrusion data sets

• IDS services

However, Ids includes analyzer inside its architecture so that it can surveillance and inspect the

packets payloads and entire analysis uses CIDD (cloud intrusion detection datasets),

Additionally, this research demonstrated 80% of the attacks in cloud environment and the

number of generated false alarm was not greater in numbers. Along with it uses the DARPAA

datasets to increase the efficiency level of the detection technique. But the main limitation of the

of this approach was latency and the main reason behind this latency was the generated

background traffic from DARPAA dataset and if this traffic is more than 2mbps which resulted

in instability.(Slominski et al., 2015)

The optimized the above-mentioned challenges back propagation neural network (BPN)

algorithm was suggested by the author.(Chiba, 2016) Using this approach many of the attacks

were identified for example, DOS, ARP spoofing, DNS poisoning, scanning of the port, gaining

complete host control, breaking out of the services in cloud environment. Perhaps, this approach

also had many of the limitations.(Zhang et al., 2019)

• The level of accuracy was lower

• Slower convergence

• Slower inspection/identification

3.5.8) Previous applied Method -8: Unsecured and open port which are not in use are

ignored many times without any security. However, this leads the attacker to take a chance in

order to exploit the system tough it is very necessary to protect against such perilous and secret

port scan attacks. Hence author had proposed an algorithm to identify such scanning called as

Threshold random walk (TRW).(Jaeyeon Jung et al., 2004) Moreover, this approach worked well

but as per growing technology this approach looks little outdated. Additionally, to overcome this

author had proposed a new approach called EPSDR (efficient port scan detection rule) which

includes the collection of packets and processed it. But the main challenge with this approach

was not able to detect UDP scan it only capable of detecting TCP scan.(Patel and Sonker, 2016)

Moreover, it is required to research more related to such challenges which includes TCP and

UDP both protocol.

12

3.5.9) Previous applied Method -9: Knowing that traditional networks are now migrating

to cloud network the demand of containerization and virtualization is increasing day by day

considering this author had proposed Intrusion detection system for container technology and

introduced algorithm for the detection and monitoring was BOSC (Bag of system call).

However, these algorithms protect against the following attacks (privilege escalation, gaining

remote access, DOS, etc.,). Perhaps, author has mentioned that the proposed IDS will generate

100% TPR (true positive rate) and probably possibility of 2% FPR (False positive rate).

Moreover, at the time of demonstration it was observed that the designed system was not able to

established the interaction between MY-SQL-SLAP and DBMS (data base management system).

Also, sometime MY-SQL-SLAP was becoming unstable resulting in performance

degradation.(Abed et al., 2019)

Followed by it, Author came with another improved plan which will identify malicious payload

in real time placed inside containers and the used algorithm for such detection is called NGRAM

probability. Moreover, to detect hidden suspicious activity the used mechanism was SGT

(Simple good Turing) along with estimator which was also known as “maximum likelihood

technology” This approach was having little similarity as compared with the above approach the

main difference it consists of web application running inside containers. However, the main

motive of the author behind this design is to monitor the contents inside containers so that

another container can’t be harmed via it. The investigation showed that false positive rate 0-14%

along with recall value in between 78% to 100% also the level of accuracy found in between 85

to 97 percent. Moreover, this methodology of detection also faced the same problem as

mentioned above. The used SQLMAP was not generating the anticipated output and the

result.(Srinivasan et al., 2019).

13

 Fig. Summary Table of Literature Review

4.Research Methodology & Specification
4.1) Architecture Design: To implement rule-based IDS, the open source and lightweight

platform is used called snort. The main benefit of using such platform is, creation of rules

because we can customize the rule based on our understanding of network and its security.

However, these rules are only for the known attacks.

The rule creation processes support multiple programming language and easy use of text editor.

We can create rules and group them in different set of files. Additionally, the main configuration

files which includes all the rules and configurations in it is called “Snort.config”. This file is the

backbone of the IDS because in consists of all the all the written rules and information about

internal and external network connectivity. However, based on it the process of initialization of

snort takes place which result in construction of internal data -structure to capture the data.

Now we will be discussed about the architecture of the snort-based intrusion detection system

along with its all-core elements. like 1) Packet decoder 2) Preprocessor 3) Detection engine 4)

Logging and alerting system 5) Output modules.

4.1.1) Packet Decoder: It is used to collect the traffic from the network interfaces and based on

the collection of traffic packets, decoding and pre-processing on that captured packet takes place

which is called packet-based analysis. Simply we can say that it is a segregation of numbers of

14

packets which are captured from different set of interfaces. Finally, the analyzed packets were

converted into TCPDUMP file. The example of interfaces from where the packet is captured is

PPP, Fast-ethernet etc.,

4.1.2) Pre-processor: Pre-processor is one of the core components which is used to process the

captured packets like doing some sort of modification for the management and smooth

processing before that packet moves towards the next phase called detection engine.

Additionally, it carry-out the identification procedure to discover the asymmetry, malformation

and deformity in the header of the collected packets so that real time triggered alerts and alarm

can be generated. Our implemented IDS is going to collect the data packets analyze it and this

analysis is based on the written rules in the detection engine.

There are many techniques with the help of which attacker can manipulate the identification

process of IDS. For example, the created rule is going to match the defined signature

(“research/ricacadmic”) inside the HTTP packet information. However, there is the possibility

attacker can manipulate it by small modification in the string which are as fallows.

• “research/./ricacadmic”

• “research/examples/../ricacadmic”

• “research\ricacadmic”

• “research/.\ricacadmic”

The above written strings do not match with the written rules. Hence, using these, attacker can

able to bypass the IDS. It is also visible that various methods used by hacker for example it uses

web information resource identifier, characters in hexadecimal, Unicode characters which creates

illusion that the URL and input data is legitimate. Tough, preprocessor have such intelligence

and using those it can able to identify incoming inputs even if they are modified.

The pre-processor has a capability to perform the defragmentation of the packets. Moreover, by

default the packets size on internet or on any ethernet interface is approximately 1500 MTU.

Which means any packet size more than 1500 MTU is going to be defragmented. Many times,

attacker used these capabilities and send the malicious fragmented payloads. Tough, ids won’t be

15

able to process over it because it does not match with the written rules. Perhaps, pre-processor

had such capability using that identification of such perilous payloads is possible.

4.1.3) Detection engine: The detection of the packets mainly depend on the written rules and the

rules are applied once it is a part of detection engine. However, the rules which are part of

detection engine also a part of internal data structure and based on the written rules the detection

process work. Moreover, the permission related to incoming about outgoing traffic is defined in

rules and upon identification of it generates the alerts.

Responding to various traffic packets which is going to take different set of time interval and it

depend on few elements:

• Quantity of the written rules

• Load on the network

• Depend on the speed and capability of internal used busses

• Depend on the strength of the machine on which intrusion detection is running.

Below is the Considered factors and protocols along with its characteristics while creation of

rule:

• Consideration of every IP header inside the actual traffic

• The transport parameter consists of header for example., TCP, UDP, ICMP etc.

• Taking care of application-level headers for example, FTP, TFTP, DNS, SMTP, SNMP.

• Awareness related to packet payload which includes strings in the packets.

4.1.4) Logging and alerting a system: After detection of perilous payload in the packets by

detection engine, the logs related to it is collected in /var/log/snort file. Additionally, alerts

along with the logs including the time of event are stored in the file called TCPDUMP. We can

also change the location of log files, based on any specific requirement or sometimes to make the

troubleshooting easy without damaging the actual log files.

4.1.5) Output Modules: The complete control and management of the generated output by logging

and producing system alerts. The performance of the output modules is completely based upon

the various things as follows:

• Access to /var/log/snort/alerts file

• Suitable of forwarding SNMP traps

• Suitable of forwarding message to syslog servers if configured

• Suitable of accessing the database like MySQL.

• Suitable for creating XML output

• Suitable for editing the configuration on firewall & docker if used.

• Suitable of sending SMB information to Microsoft based machine.

4.2) Flow Diagram: This section we are describing the flow of the implemented IDS along with

responsibility of each element of the snort-based IDS plus the flow of the traffic from each

element and decision making.

Step-1) The decoding of the packets done by Packet decoder once packets are received.

16

 Fig. Flow diagram of Rule based ids to protect Docker Container

Step-2) Once decoding process completed then the packet is forwarded to pre-processor to check

and detect the irregularity inside packet payload.

Step-3) Once the anomaly content detected in packet then it is passed to detection engine which

reads defined custom rule in snort.config file also known as internal data structure of snort.

Step-4) After that packet are matched as per the written rules and decision tree works

accordingly.

Step-5) Packet forwarding and discarding is entirely depending on created rule. That is matched

is equal to pass otherwise deny or block

Step-6)If the packets is found to be a legitimate packet with no malicious payload, then its fine

otherwise, it is again forwarded to snort.config file for rechecking the content and if any

suspicious payload found then the packet is going to block or deny.

Step-7) After that the packets with the perilous payload is tracked by Logging and alerting

system.

Step-8) After tracking and analyzing, the final legitimate packet without any anomaly is

forwarded towards the docker container.

Step-9) Hence it is proven that when packets reach to the docker container it does not have any

malicious content and the container is protected in comparison with other previous approach.

4.3) Pseudo code process for rule-based IDS: In this section we are providing the logic on top

of which the detection and identification process of the packets as per the defined rules are going

to work.

17

 Fig. Pseudo Code

5.Implementation
5.1) Evaluation and planning involved to evaluate the Implementation: The below design

illustrates the implemented solution which will protect the deployment of docker container from

the malicious activity. Here we are using Kali Linux as an attacking VM with 64-bit Debian

derived distributed system along with 50GB of HDD and 4GB RAM.

5.1.1) Selection purpose of Kali Linux: The user interface and its adaptability and suitability to

perform penetration testing is the key reason for the selection of Kali Linux.

Moreover, we are using Ubuntu 18.04 as a host machine in which our implemented snort-based

ids and containers are running. It is also 64-bit distributed system with 4GB RAM and allocated

hard disk drive space of 20GB.

5.1.2) Selection purpose of Ubuntu: The core advantage of using ubuntu is that it provides

great environment for Docker to work properly i.e., greater compactivity for docker is provided.

Moreover, easy and reliable GUI Graphical user interface.

18

 Fig. Implemented solution

6. Functionality that is expected to be completed during the implementation

Case 1: Targeting the docker host using Attacking VM: Using attacking VM we have forwarded
the ping request to check the alertness of the implemented IDS. However, IDS is completely able to
detect that which means packets are observed and analyzed before it reaches to the container. Doing
this we are stating that if any malicious content arrived then Snort will first process it and based on
defined rule blocking & accepting processing will take place.

Case 2: Compromising the ubuntu VM: In this case the hacker will attempt to escalate the
privileges of ubuntu vm remotely by abusing the REST-API by making use of SSH and Telnet. Moreover, if
hacker succeeds then probably, he will be able to access host along with the running containers inside it.
Additionally, attacker can forcefully stop and run newly created malicious container inside the host
machine also there is a high probability of data theft or discloser of critical confidential information.
Tough, to tackle such situation the implemented snort-based ids play an important role and protect
against such malicious activity by generating the alerts and blacklisting the specious IPs or the users.

Case 3: One malicious container attacking and affecting other container: In this case the
attacker for example able to get the access of container then from there hacker is trying to infect the
other containers or run and stop the services running inside the containers. Moreover, in militancy cloud
environment multiple containers work on single host kernel. Tough infecting other containers is not that
much difficult. Hence, the implemented IDS is monitoring the activities of the running containers and
any suspicious activity. However, any packets forwarded to other container will be analyzed by ids and
based on the analysis the decision will take place.

Case 4: Host (ubuntu) attacked by infected container: If we assume one of the containers got
compromised or infected by malicious user as per the above case then there is a chance, that hacker will
try to get access of host machine or escalate the privileges of another container. Moreover, the main
motive behind implementation of IDS is to protect the deployment of the docker container. Here we are
able to protect the container from another container as well as host machine along with it also
protecting from REST-API abuse.
In order to recapitulate we can say that, the implemented snort-based IDS is contributing in the
protection of Confidentiality integrity and availability (CIA) of the deployed containers. The implemented

19

Intrusion detection protection system not only surveillance the traffic but also takes an appropriate
action against the harmful payloads and blocks it so that containers and the host machine will work
without risk. Moreover, scanning of complete incoming and outgoing traffic to protect against
suspicious activity.

6.1) Test case wise summary table: This table illustrates types of testing with used method to get the
expected result.

 Fig. summary of the test cases

7.Result

20

7.1) Summary of the result as per the performed test cases.

Type of Test Detection Alert

Ping request YES YES

Blacklisting of ping request YES YES

Reverse shell YES YES

Container to container YES YES

Host to container access YES YES

TCP-based DOS YES YES

UDP-based DOS YES YES

7.2) Test case wise Result explanation:

7.2.1) Ping request by attacker to container.

 Fig.1

Generated alert by IDS

 Fig.2

Results: It is clearly visible that the total number of packets send is equal to the number of generated

alerts is 10 which indicates that ids is able to detect 100% forwarded packets.

7.2.2) Blacklisting of ping:

 Fig.3

21

Results: from the above figure it is clearly visible that Snort IDS is able to black list the ping request. Here

attacker is sending 6 packets and all the six packets are blacklisted and blocked by implemented IDS.

7.2.3) Attacker is requested for the reverse shell to get unauthorized remote access.

 Fig.1
Alert generated by snort.

 Fig.2

Result: Here, attacker is able to get the access of container. However, the root access of container is

same as the root access of host Machine. But Snort is generating an alert during the reverse shell.

7.2.4) Communication between two containers.

 Fig.1

22

Alert generation if one container ping another.

Fig.2

Result: one container can harm another with malicious content hence to avoid that monitoring of such

communication done via Snort IDS.

7.2.5) Communication between host and container.

 Fig.3

7.2.5.1) Container is trying to access host.

7.2.5.2) Blocking SSH action via Snort IDS

Result: from the above demonstration it is clearly visible that snort is able to protect from unwanted

SSH accessing.

23

7.2.6) Dos attack and its generated alert (Protocol-TCP)

 Fig.1

Below is the Generated alert by snort:

 Fig.2

 Fig.3

24

Result: It is clearly reflecting that snort is alerting to unwanted traffic along with information about

attacker to victim. Also, the information about the protocol used (TCP) with the port details. Moreover,

the accuracy of the analysis of the captured [packets id approximately 99%.

7.2.7) Dos attack and its generated alert (Protocol-UDP)

 Fig.1

 Fig.2

Result: It is clearly reflecting that snort is alerting to unwanted traffic along with information

about attacker to victim. Also, the information about the protocol used (UDP) with the port

details.

25

8.Conclusion and Discussion
Knowing that scalability of the cloud is mainly depend on the containers and its deployment

across the world. However, securing the deployment of the docker container is very important

because it is a huge part of any cloud service provider. Additionally, Confidentiality, integrity,

availability of any service provider using container technology is critically valuable. Moreover,

its protection must be bidirectional that is from inside and outside both. Tough, during our

research we have seen many of the protection methodologies for the protection of network and

cloud environment perhaps, discovered various limitation for example few approaches do not

support various protocols, few of them working with the older technology without even

upgradation. Many of the implemented research showed a considerable result but having latency,

slowness and sometime not even able to detect the attacks like DOS attack, few approach

supported only TCP based filtering and few UDP based.

As we know technology is growing and attack parameters are also growing. So, it is necessary to

improve the protection mechanism to reduce the malicious impact. All in one, our contribution

states that the implemented Snort-Based IDS is lightweight and scalable and has a capability to

monitor and detect the suspicious activity based on the written customized rule and the main

advantage it supports many programming languages for the creation of rules. It also able to

identify the DOS attack whether it is TCP or UDP based attack.

Focus on Novelty aspect:
The previous approaches illustrated the feasible result. However, the previous demonstrated

approach failed to showcase the case where attacker can gain unauthorized access of container in

order to execute the malicious activity. Moreover, the researcher had run the container and then

injected the malicious payload to evaluate the difference by executing the various technique as

mentioned above in the literature review section. Perhaps the older detection technique resulted

in high rate of false alarm. That is the detection mechanism was detecting and identifying any

activity which were different from the normal regular activity and many times these activities

were legitimate as well. However, few of the research detecting the malicious content but not

able to prevent from such malicious activities. Moreover, the implemented approach does both

detection and prevention which were not completely achieved by previous researcher. Because it

is better not only to detect but also provide protection from getting compromised tough it is

better to protect the containers.

The novelty aspect of the project also illustrating that as compared to the previous approach the

implemented approach is capable of detecting both TCP/UDP based attack along with it capable

of DDOS attack detection and protection against REST_API abuse which were not focused

earlier.

Comment/suggestion:

Other form of attacks detection: Detection of encrypted attacks along with CSRF (cross site
request forgery) would make an impactful enhancement in our approach. Detecting malware if it
is running inside container will also be a good achievement.

Improving the implemented approach for other containers technology: The main focus of
the research was security of the docker container because of its deployment in real production
environment in most of the cloud service provider. Moreover, the similar method of detection
can be applied to other Linux container technology because of the similarity in the architecture

26

Hosting Docker containers on the Cloud platform: Because of resource limitation the
research was demonstrated using Virtual machine instead of hosting the containers in Cloud.

Acknowledgment: I would like to thanks my supervisor Dr. Imran Khan for providing
me precious information and guidance along with own insights on security concerns and
challenges of container, which kept me motivated and encouraged me throughout the
journey. I would also like to thanks my family and friends for there limitless support and
help.

10.Video Presentation
1) Video PPT presentation:

https://drive.google.com/file/d/11Ff0itxtMOFLJO2IhZE93dGZNaJZnJmC/view

2) Demo Video Presentation:

https://drive.google.com/file/d/1rmpLQHxkz9JX3kE64wg6gQiIhKFVhOUj/view

10Appendix:

1) The below figure illustrates the utilization of resources during launch of DOS

attack.

https://drive.google.com/file/d/11Ff0itxtMOFLJO2IhZE93dGZNaJZnJmC/view
https://drive.google.com/file/d/1rmpLQHxkz9JX3kE64wg6gQiIhKFVhOUj/view

27

 Fig.1

2) Using the below command, we can check the container images.

 Fig.2

3) The below figure represents running container.

 Fig.3

4) The below fig represents starting new container.

 Fig.4

5) Below is the command to test snort rule file.

 Fig.5

28

Once the command run successfully, we can get the below output and if the rules are written

without any error, then snort validation will take place successfully.

 Fig.6

6) Once all the configuration part is ready and validation completed successfully then using

the below command, we can make our IDS ready to detect the activity.

 Fig.7

7) Below bar graph illustrates vulnerabilities docker in last five years with its type.

29

 Fig.8(Huang et al., 2019)

11.Reference

1)Abed, A.S., Azab, M., Clancy, C., Kashkoush, M.S., 2019. Resilient intrusion detection system

for cloud containers. Int. J. Commun. Netw. Distrib. Syst. 24, 1.

https://doi.org/10.1504/IJCNDS.2020.103857

2)Al-Dalky, R., Salah, K., Al-Qutayri, M., Otrok, H., 2014. Framework for a NetFPGA-based

Snort NIDS, in: 2014 9th International Symposium on Communication Systems, Networks

Digital Sign (CSNDSP). Presented at the 2014 9th International Symposium on Communication

Systems, Networks Digital Sign (CSNDSP), pp. 380–383.

https://doi.org/10.1109/CSNDSP.2014.6923858

3)Aydın, M.A., Zaim, A.H., Ceylan, K.G., 2009. A hybrid intrusion detection system design for

computer network security. Comput. Electr. Eng. 35, 517–526.

https://doi.org/10.1016/j.compeleceng.2008.12.005

4)Bhatia, G., Choudhary, A., Dadheech, K., 2018. Behavioral Analysis of Docker Swarm Under

DoS/ DDoS Attack, in: 2018 Second International Conference on Inventive Communication and

Computational Technologies (ICICCT). Presented at the 2018 Second International Conference

on Inventive Communication and Computational Technologies (ICICCT), pp. 985–991.

https://doi.org/10.1109/ICICCT.2018.8472953

5)Chelladhurai, J., Chelliah, P.R., Kumar, S.A., 2016. Securing Docker Containers from Denial

of Service (DoS) Attacks, in: 2016 IEEE International Conference on Services Computing

30

(SCC). Presented at the 2016 IEEE International Conference on Services Computing (SCC), pp.

856–859. https://doi.org/10.1109/SCC.2016.123

6)Chiba, Z., 2016. A Cooperative and Hybrid Network Intrusion Detection Framework in Cloud

Computing Based on Snort and Optimized Back Propagation Neural Network. Procedia Comput.

Sci. 7.

7)Combe, T., Martin, A., Pietro, R.D., 2016. To Docker or Not to Docker: A Security

Perspective. IEEE Cloud Comput. 3, 54–62. https://doi.org/10.1109/MCC.2016.100

8)Flora, J., Antunes, N., 2019. Studying the Applicability of Intrusion Detection to Multi-Tenant

Container Environments. 2019 15th Eur. Dependable Comput. Conf. EDCC Dependable

Comput. Conf. EDCC 2019 15th Eur. 133–136. https://doi.org/10.1109/EDCC.2019.00033

9)Hatef, M.A., Shaker, V., Jabbarpour, M.R., Jung, J., Zarrabi, H., 2018. HIDCC: A hybrid

intrusion detection approach in cloud computing. Concurr. Comput. Pract. Exp. 30, e4171.

https://doi.org/10.1002/cpe.4171

10)Huang, D., Cui, H., Wen, S., Huang, C., 2019. Security Analysis and Threats Detection

Techniques on Docker Container, in: 2019 IEEE 5th International Conference on Computer and

Communications (ICCC). Presented at the 2019 IEEE 5th International Conference on Computer

and Communications (ICCC), pp. 1214–1220.

https://doi.org/10.1109/ICCC47050.2019.9064441

11)Jaeyeon Jung, Paxson, V., Berger, A.W., Balakrishnan, H., 2004. Fast portscan detection

using sequential hypothesis testing, in: IEEE Symposium on Security and Privacy, 2004.

Proceedings. 2004. Presented at the IEEE Symposium on Security and Privacy, 2004.

Proceedings. 2004, pp. 211–225. https://doi.org/10.1109/SECPRI.2004.1301325

12)Lee, J.-H., Park, M.-W., Eom, J.-H., Chung, T.-M., 2011. Multi-level Intrusion Detection

System and log management in Cloud Computing, in: 13th International Conference on

Advanced Communication Technology (ICACT2011). Presented at the 13th International

Conference on Advanced Communication Technology (ICACT2011), pp. 552–555.

13)Manu, A.R., Patel, J.K., Akhtar, S., Agrawal, V.K., Murthy, K.N.B.S., 2016. Docker

container security via heuristics-based multilateral security-conceptual and pragmatic study, in:

2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT).

Presented at the 2016 International Conference on Circuit, Power and Computing Technologies

(ICCPCT), pp. 1–14. https://doi.org/10.1109/ICCPCT.2016.7530217

14)Mishra, P., Pilli, E.S., Varadharajan, V., Tupakula, U., 2017. Out-VM monitoring for

Malicious Network Packet Detection in cloud, in: 2017 ISEA Asia Security and Privacy

31

(ISEASP). Presented at the 2017 ISEA Asia Security and Privacy (ISEASP), pp. 1–10.

https://doi.org/10.1109/ISEASP.2017.7976995

15)Patel, S.K., Sonker, A., 2016. Internet Protocol Identification Number Based Ideal Stealth

Port Scan Detection Using Snort, in: 2016 8th International Conference on Computational

Intelligence and Communication Networks (CICN). Presented at the 2016 8th International

Conference on Computational Intelligence and Communication Networks (CICN), pp. 422–427.

https://doi.org/10.1109/CICN.2016.89

16)Sagala, A., 2015. Automatic SNORT IDS rule generation based on honeypot log, in: 2015 7th

International Conference on Information Technology and Electrical Engineering (ICITEE).

Presented at the 2015 7th International Conference on Information Technology and Electrical

Engineering (ICITEE), pp. 576–580. https://doi.org/10.1109/ICITEED.2015.7409013

17)Sengaphay, K., Saiyod, S., Benjamas, N., 2016. Creating Snort-IDS Rules for Detection

Behavior Using Multi-sensors in Private Cloud, in: Kim, K.J., Joukov, N. (Eds.), Information

Science and Applications (ICISA) 2016, Lecture Notes in Electrical Engineering. Springer,

Singapore, pp. 589–601. https://doi.org/10.1007/978-981-10-0557-2_58

18)Singh, S., Singh, N., 2016. Containers amp; Docker: Emerging roles amp; future of Cloud

technology, in: 2016 2nd International Conference on Applied and Theoretical Computing and

Communication Technology (ICATccT). Presented at the 2016 2nd International Conference on

Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 804–807.

https://doi.org/10.1109/ICATCCT.2016.7912109

19)Slominski, A., Muthusamy, V., Khalaf, R., 2015. Building a Multi-tenant Cloud Service from

Legacy Code with Docker Containers, in: 2015 IEEE International Conference on Cloud

Engineering. Presented at the 2015 IEEE International Conference on Cloud Engineering, pp.

394–396. https://doi.org/10.1109/IC2E.2015.66

20)Srinivasan, S., Kumar, A., Mahajan, M., Sitaram, D., Gupta, S., 2019. Probabilistic Real-

Time Intrusion Detection System for Docker Containers, in: Thampi, S.M., Madria, S., Wang,

G., Rawat, D.B., Alcaraz Calero, J.M. (Eds.), Security in Computing and Communications,

Communications in Computer and Information Science. Springer, Singapore, pp. 336–347.

https://doi.org/10.1007/978-981-13-5826-5_26

21)Sultan, S., Ahmad, I., Dimitriou, T., 2019. Container Security: Issues, Challenges, and the

Road Ahead. IEEE Access 7, 52976–52996. https://doi.org/10.1109/ACCESS.2019.2911732

22)Talbot, J., Pikula, P., Sweetmore, C., Rowe, S., Hindy, H., Tachtatzis, C., Atkinson, R.,

Bellekens, X., 2020. A Security Perspective on Unikernels, in: 2020 International Conference on

32

Cyber Security and Protection of Digital Services (Cyber Security). Presented at the 2020

International Conference on Cyber Security and Protection of Digital Services (Cyber Security),

pp. 1–7. https://doi.org/10.1109/CyberSecurity49315.2020.9138883

23)Thinh, T.N., Hieu, T.T., Van Quoc Dung, Kittitornkun, S., 2012. A FPGA-based deep packet

inspection engine for Network Intrusion Detection System, in: 2012 9th International Conference

on Electrical Engineering/Electronics, Computer, Telecommunications and Information

Technology. Presented at the 2012 9th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1–4.

https://doi.org/10.1109/ECTICon.2012.6254301

24)Wan, Z., 2011. A Network Virtualization Approach in Many-core Processor Based Cloud

Computing Environment, in: 2011 Third International Conference on Computational

Intelligence, Communication Systems and Networks. Presented at the 2011 Third International

Conference on Computational Intelligence, Communication Systems and Networks, pp. 304–

307. https://doi.org/10.1109/CICSyN.2011.70

25)Wenhao, J., Zheng, L., 2020. Vulnerability Analysis and Security Research of Docker

Container, in: 2020 IEEE 3rd International Conference on Information Systems and Computer

Aided Education (ICISCAE). Presented at the 2020 IEEE 3rd International Conference on

Information Systems and Computer Aided Education (ICISCAE), pp. 354–357.

https://doi.org/10.1109/ICISCAE51034.2020.9236837

26)Xiaoyong, L., Dongxi, L., 2005. An automatic scheme to construct Snort rules from

honeypots data. J. Syst. Eng. Electron. 16, 466–470.

27)Zhang, G., Brown, P., Li, G., Farouk, A., Zhen, D., 2019. Research on personal intelligent

scheduling algorithms in cloud computing based on BP neural network. J. Intell. Fuzzy Syst. 37,

3545–3554. https://doi.org/10.3233/JIFS-179158

33

