ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Cyber Security

Akshay Wakhare
Student ID: X19208103

School of Computing
National College of Ireland

Supervisor: Prof. Vikas Sahni

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name:
Akshay Ashok Wakhare
Student ID: X19208103
Programme: MSc in Cyber Security Year: 2020-2021
Module: MSc Internship
Lecturer: Prof. Vikas Sahni
Submission Due
Date: 06/09/2021
Project Title: Malware Detection in Android platform using DNN
Word Count: ... 865............ Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Akshay Ashok Wakhare

Date: = ... 0570972021 e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Malware Detection in Android platform using DNN

Akshay Wakhare
Student ID: X19208103

1 Introduction

The configuration manual document gives an overview and insights of the research carried
out as the part of the Industry Internship. This manual will provide the details of the system
configuration, Tools utilized while performing the research and the implementation of the
project. In this project two deep learning models were developed as part of the research. The
implementation section will guide through the process carried out in the development phase
along with the final results of the research. The internship task report is also mentioned in this
manual.

2 System Configuration

The system used while performing the activity was personal as the internship was Remote.
The configuration of the system is as follows:

2.1 Hardware Configuration

Operating system: Windows 10

Processor: Intel i5-10th gen

System Compatibility: 64-bit

Hard Disk: Hybrid (256GB SSD + 1 TB HDD)
RAM: 8GB

2.2 Software Configurations:
Prior to start the model building phase following software, tools and libraries were installed
in the system.

Software/Tools Version Information

Python 3.85 To develop the model python
is used in this project.

Anaconda - It is windows suitable
platform that allows users
computations, package

management and model
deployments. (Anaconda |
The World's Most Popular
Data Science Platform, 2021)

TensorFlow 2.5.0 For running deep neural

networks the TensorFlow is
the important library.
(TensorFlow, 2021)

Keras

2.5.0

It is used to provide powerful
deep learning APIs to boost
the performance and for
scaling. (Team, 2021)

NumPy

1.19.5

It is an open-source tools
used to perform complex
mathematical problems in
data. (NumPy, 2021)

Sci-Kit Learn

0.24.1

It is the library which is
utilized for problems such as
Classification, Regression as
well as for data pre-
processing. (scikit-learn:
machine learning in Python
— scikit-learn 0.24.2
documentation, 2021)

3 Implementation

In this section the step-by-step guide is mentioned to run the project in any windows system.

1. Download and Install

Anaconda
(https://www.anaconda.com/products/individual)

in windows system.

i2) ANACONDA NAVIGATOR

i Leaming e.)

ANACONDA

3o Now.

Fig.1 Anaconda Navigator
2. Open the Jupyter Notebook from Anaconda.

2

https://www.anaconda.com/products/individual

— Home Page - Select or create a . X + o - o X

C @ localhost8889tree * @+ x@®
i Apps NC Study/Courses Companies RIC 1085 Other bookmarks | [E Reading list
— Jupyter Qut | Logout
Files Running Clusters
Select items to perform actions on them Upload | Neww | &
0 -~ W Name & Last Modified File size
o ayearaga
[a year ago
[14 hours ago
[amonth ago

oo

17 minutes ago

a year ago

6 months ago

[}

& month aga
Kali_Lat a year ago

@ yaar ago

a yaar ago
15 hours aga

amonth ago

9 months ago

]

& month aga

2 months ago

T O I
o

a year ago

[

ayear ago

a year ago

Fig. 2 Jupyter Notebook

3. After opening jupyter notebook click on new notebook (python 3) in which the
development part for model will be covered.

4. In new notebook first import all the required libraries.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from sklearn.preprocessing import LabelEncoder
import seaborn as sns

from scipy import stats

5. After that import the provided dataset.

dynamic = pd.read csv('D:/Thesis/dynamicl.csv"')

6. From this the data pre-processing will be done using following code.

In []: # Checking Null and Empty Values
df = pd.concat([dynamic.isnull().sum(),dynamic.eq("").sum()],keys=["Nulls", Empty'],axis=1)
df.head(500)

In []: # Encoding the Target Labels
le = LabelEncoder()
resencode = le.fit transform{dynamic["Class"])
resencode
dynamic['Class'] = resencode
dynamic

In []: # Checking data skewness
pd.set_option('display.max_rows', 16000)
dynamic.skew()

In []: # Applying cube Root to normalise the skewness
for keys in dynamic.columns:
print (keys)
if dynamic[keys].skew() > 1 or dynamic[keys].skew() < -1:
dynamic[keys] = np.cbrt(dynamic[keys])

In []: pd.set_option('display.max rows', 16008)
dynamic.skew()

In []: # Importing the dataset values into target variable
Features = dynamic.iloc[:, [296,469,53,428,266,68,323,8,0,107,294,290,468,332,187,244,213,143,38,301]] .values
Result = dynamic.iloc[:, -1].values

In []: # Applying train and test Split
from sklearn.model_selection import train_test split
Features_train, Features_test, Result train, Result test = train test split(Features, Result, test size = 0.2, random_state = 42

7. After data pre-processing the model is defined and trained.

In []: | # Reshaping 2-dimentional input train data
sampled Features_train = sampled_Features_train.reshape(len(sampled_Features train), 1, sampled Features_train.shape[1])

In []: |# Reshaping 2-dimentional input test data
Features_test = Features_test.reshape(len(Features_test), 1, Features_test.shape[1])

In []: #Defining model
DLSTM = Sequential()
First Layer
DLSTM.add(LSTM(units = 32, activation = 'relu’, return_sequences = True, input_shape=(sampled_Features_train.shape[1], sampled_F
DLSTM. add(Dropout(@.2))
Second Layer
DLSTM.add(LSTM(units = 32, activation = 'relu’))
DLSTM. add(Dropout(©.2))
Output Layer
DLSTM.add(Dense(units=1, activation = 'sigmoid'))
DLSTM. add(Dropout(@.2))

In []: DLSTM.compile(optimizer = 'adam', loss = 'mse', metrics = ['accuracy'])

In []: # history = DLSTM.fit(sampled Features_train, sampled Result_train, epochs =166, batch_size = 32)

history = DLSTM.fit(sampled Features_train, sampled Result train, validation_data = (sampled_Features_train, sampled Result_trair
»

8. The Accuracy and Loss graphs are calculated after model training.

Plotting Accuracy Graph
plt.plot(history.history['accuracy"])
plt.plot(history.history['val_accuracy'])
plt.title(" model accuracy')
plt.ylabel(' accuracy"’)

plt.xlabel(' epoch’)

plt.legend(['train’, "test"'], loc="upper right®)
plt.show()

Plotting Loss Graph
plt.plot(history.history['loss"])
plt.plot(history.history['val_loss"])
plt.title("model loss')

plt.ylabel(loss")

plt.xlabel(' epoch®)

plt.legend(["train’, "test"'], loc="upper right®)
plt.show()

9. In this step the model is tested using test data. The confusion matrix and roc & auc
score are calculated using following code.

Prediction of the train model with testing data

Result pred = DLSTM.predict(Features test)

Result pred = (Result pred » 0.5)

print(np.concatenate((Result pred.reshape(len(Result_pred),1), Result_test.reshape(len(Result_test),1)),1))

Calculating the Confusion Matrix

from sklearn.metrics import confusion matrix, accuracy score
cm = confusion_matrix(Result_test, Result pred)

print(cm)

accuracy score(Result test, Result pred)

from sklearn.metrics import roc_auc_score

Accuracy = cm.diagonal().sum() / cm.sum()
print("Accuracy: " + str(Accuracy))

Precision = cm[1,1] / (cm[@,1] + (cm[1,1]))
print("Precision: " + str(Precision))

Sensitivity = em[1,1] / (cm[1,@] + (cm[1,1]))
print("Sensitivity: " + str(Sensitivity))

Specificity = cm[@,8] / (cm[@,0] + (cm[@,1]))
print("Specificity: " + str(Specificity))

rf_roc_auc_score = roc_auc_score(y test, y pred)
print("ROC AUC Score: " + str(rf roc auc score))

F1_score = 2 * (Precision * Sensitivity) / (Precision + Sensitivity)
print('F1 Score: ' + str(Fl_score))

sns.heatmap(cm,cmap="8Blues’,annot=True, fmt="g")

10. The confusion matrix i.e., the final output of the model is plotted for both static and
dynamic model. Also, the roc & auc scores along with testing time are calculated as
model efficiency parameters.

1750

- 1500

1250

- 1000

- 750

=500

- 250

Confusion Matrix for Dynamic Model

1800
1600
98 - 1400

-1200

- 1000

- 800
- 14 - 600
- 400
-200

] []

0 1

Confusion Matrix for Static Model
ROC & AUC Scores:

Accuracy: 9.9422413793163448
Precision: ©.9877919320594479
Sensitiuity: 0.9437119675456389
Speciﬁcity: 0.9339086459770115
F1 Score: 6.9652489626556016

ROC & AUC scores for Dynamic model

Accuracy: 8.9294978383771201
Precision: 0.90876343072573044
Sensitivity: ©.8941504178272981
Specificity: ©.9492227979274611
F1 Score: 9.9908419083255378

ROC & AUC scores for Static model

Model Execution Time:

e The total time required to train the dynamic model with 100 epochs were 292.06
Seconds whereas the Testing time required to test the data on trained model was 0.21
milliseconds.

e For Static model total time required to train the model with 100 epochs were 393.67

Seconds whereas the Testing time required to test the data on trained model was 0.26
milliseconds.

In this research the feature importance is obtained using XGBoost for that the code is
attached in the file named feature_importance.ipynb. The final code files are attached with
project files named as Dynamic_RNN.ipynb and Static_ RNN.ipynb respectively.

4 Internship Task Report

The Internship Activity Report is a 1-page monthly summary of the activities performed by you and
what you have learned during that month. The Internship Activity Report must be signed off by your
Company and included in the configuration manual as part of the portfolio submission.

Student Name: Akshay Ashok Wakhare . Company: Uniken India__

Student number: _x19208103 . Month Commencing: June 2021- August2021

Role Description:

The aim of the internship was to study and understand the Mobile Threat Detection Model. Perform
research to suggest a solution for malware detection in android application by using deep learning
technology. The task performed are:

e Studied and analysed the current Mobile Threat Detection model documentation.

e Carried out the research for the malware detection in android OS.

e Performed development activity for proposed solution.

e Developed and evaluated the models.

e Performed the manual testing on the current MTD model for various threat detection
scenarios.

e Prepared the documentation for the activity performed.

Employer comments

e Akshay carried out the assigned tasks in time and demonstrated a good understanding
about the product. The research carried by him in the area of malware detection in
android has shown good results and can be used in current product.

e Akshay also performed the testing of the current MTD product to perform and detect
various mobile threats. He was dedicated towards his assigned work and managed to
perform the activity remotely.

e Given a proper guidance he can learn and understand delivering the artifacts to the
clients. And he will be good asset to any organization.

=
Pl

Student Signature: Date: September 5% 2021

Industry Supervisor Signature: %\>

Date: September 3™ 2021

References

Anaconda. 2021. Anaconda | The World's Most Popular Data Science Platform. [online]
Available at: <https://www.anaconda.com/>.

TensorFlow. 2021. TensorFlow. [online] Available at: <https://www.tensorflow.org/>.

Team, K., 2021. Keras: the Python deep learning API. [online] Keras.io. Available at:
<https://keras.io/>.

Numpy.org. 2021. NumPy. [online] Available at: <https://numpy.org/>.

Scikit-learn.org. 2021. scikit-learn: machine learning in Python — scikit-learn 0.24.2
documentation. [online] Available at: <https://scikit-learn.org/stable/>.

