ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Cybersecurity

Chaitanya Londhe
Student ID: X19212518

School of Computing
National College of Ireland

Supervisor: Imran Khan

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Chaitanya Anand Londhe
Student ID: X19212518
Programme: M.Sc. Cybersecurity Year: 2020-2021
Module: Academic Internship
Lecturer: Mr. Imran Khan
Submission Due
Date: 16™ August 2021
Project Title: Applying Machine learning and Deep Learning Techniques for

Improvement in Network Intrusion Detection System
Word Count: 2570 Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Chaitanya Londhe

Date: 16/08/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Chaitanya Londhe
Student ID: X19212518

1 Introduction

Due to recent expansion, and the advancement in growth of the Internet and digital
technologies over the past decade, network security is a crucial field of research. It employs
methods, such as antivirus software, firewalls, and intrusion detection systems to protect the
integrity of the system and all its connected characteristics within the Internet. One of them is
a threat detection component that allows the needed security through the constant
surveillance of network traffic for disturbing or uneasy behavior which is Network-based
intrusion detection. During the last 10 years, professionals have created several Machine
Learning (ML) and Deep Learning (DL) techniques to improve the effectiveness of the
Network Intrusion Detection System (NIDS) in recognizing malware assaults. There is
indeed a significant amount of area for investigation into adding ML and DL approaches to
NIDS to successfully identify perpetrators on the network. This research is therefore
exploitable across NIDS.

2 Tools used for research implementation:

For a long time, Python is now the most important language for developers of machine
learning and artificial intelligence. Python offers a broad variety of flexibility and functions
for developers to increase not only their usability but also their development consistency.
Accordingly, Python is utilized to implement this project as well. It has employed library
package like Keras, Scikit-Learn, TensorFlow, etc. Python is a highly utilized language
which uses mathematical formulas and maps to analyze data. In this project, the machine
learning models are applied on the newly generated dataset. And the deep learning models
are performed and then the evaluation of all the models was carried out. All these steps are
carried out using python language in the Google Colab tool, since it has very user friendly
interface and is very easy to use. The implementation steps are as follows:

3 Importing Libraries

3.1 Before starting with our implementation, the very first step is to import all the
required libraries for model building. A library is basically a set of methods
and functions that let us execute a lot of activities without writing a code for it.

3.2 In this project, numerous libraries are installed and imported like pandas,
sklearn, numpy, matplotlib, itertools, etc. for using it for various purposes.

o import numpy as np
import pandas as pd
from sklearn import svm
from sklearn.metrics import classification report
from sklearn import metrics
from sklearn.metrics impert (precision_score, recall score,fl_score, accuracy_score,mean_squared_error,mean_absolute_error)
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from math import *
import matplotlib.pyplot as plt
from PIL import Image
import seaborn as sns
import itertools
import io
import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
from plotly.subplots import make subplots
import plotly.figure factory as ff
import warnings
warnings.filterwarnings("ignore")

#matplotlib inline

from sklearn.model selection import train_test split

from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.metrics import classification_report

from sklearn.svm import OneClassSVM

from sklearn.pipeline import Pipeline

Fig 1: Importing libraries

4 Importing the Dataset

This dataset was initially produced for the analysis of DDoS data by the University of New
Brunswick. The said dataset came from 2018, and will not be modified in the future, although
fresh dataset versions are available. The dataset itself was derived on university logfiles, which
reported several DoS assaults during the public timeframe. The Label column is the most
essential part of the data when constructing machine-learning notebooks, as it indicates whether
the packets that have been delivered are or are not malicious. In the dataset there are eighty
columns, each of which represents an IDS logging system entry in place by the University of
New Brunswick. The concepts 'intrusion’ and 'detection system' make an IDS. Since its system
categorizes traffic forward and behind, columns are available for both. All the variables in the
dataset are numerical accept the Label variable which is categorical. A network connection is a
sequence of packets that begin and terminate at a certain period during which the data travels
from the source IP to the destination IP address where every connection is either labelled as
benign or as malicious with just one particular form of assault in this dataset. Following are the
steps for importing and processing of the dataset.

4.1 In this step, the dataset for NIDS consisting of the complete information
about incoming and outgoing packets, is imported and since it is a CSV file,
and is stored in a tabular format.

4.2 As the dataset is very complex and large, it is converted into a pickle so that
it consumes less amount of memory.

o class dataset:
pass
sample data = pd.read csv("CSE-CIC-IDS2818.csv")
sample data.to pickle(CSE-CIC-ID52818.pkl")

Fig 2: Importing the Dataset

5 Data Pre-processing

Pre-processing of the data is the primary step to be taken before starting with the process in the
realm of machine learning. Data pre-processing is essentially used to convert and transform
unprocessed and raw data to a much better and more comprehensible format. Real world data
may generally be partial, irregular, incorrect, unstructured, and may be missing. Data pre-
processing is being used to circumvent all this. It supports cleaning, formatting, organizing, and
preparing raw data for implementation in the model of developing machine learning. Data Pre-
processing cannot be carried out in a single process and is thus dispersed in many phases.

5.1 Further, that pickle is stored in a data frame. Then all the integer variables in
that data frame are converted into float (continuous values) to avoid later
disturbance in the implementation regarding and execution of different data
types. Also, all the Na values are dropped (if any).

L https://datatofish.com/integer-to-float-dataframe/

ol o df = pd.read_pickle(" CSE-CIC-ID52818.pkl")

df["Flow Pkts/s"] = pd.to_numeric{df["Flow Pkts/s"], errors="coerce’)

df["Protocol’] = df[’'Protocol’].astype(float)

df['Dst Port'] = df["'Dst Port’].astype(float)

df["Tot Fwd Pkts'] = df['Tot Fwd Pkts'].astype(float)

df["Tot Bwd Pkts'] df['Tot Bwd Pkts'].astype(float)
df["TotLet Fwd Pkts'] = df['TotLen Fwd Pkts'].astype(float)
df["Totlen Bwd Pkts'] = df['TotLen Bwd Pkts'].astype(float)
df["Flow Duration'] = df['Flow Duration’].astype(float)

df .dropna(inplace=True)
df .info(verbose=True)

[+ <class 'pandas.core.frame.DataFrame’>
Int64Index: 6537 entries, & to 6557
Data columns (total 281 columns):

Column Mon-Null Count Dtype

B Dst Port 6537 non-null floate4
1 Protocol 6537 non-null float64d
2 Timestamp 6537 non-null object

3 Flow Duration 6537 non-null floate4
4 Tot Fwd Pkts 6537 non-null float64a
= Tot Bwd Pkts 6537 non-null floateq
5] TotLen Fwd Pkts 6537 non-null floate4
7 TotLen Bwd Pkts 6537 non-null float6d
2 Fwd Pkt Len Max 6537 non-null floated
=] Fwd Pkt Len Min 6537 non-null floated
1@ Fwd Pkt Len Mean 6537 non-null float64
11 Fwd Pkt Len Std 6537 non-null floateq
12 Bwd Pkt Len Max 6537 non-null floate4
13 Bwd Pkt Len Min 6537 non-null floate4
14 Bwd Pkt Len Mean 6537 non-null float64d
15 Bwd Pkt Len 5td 6537 non-null floated
16 Flow Byts/s 6537 non-null floate4
17 Flow Pkts/s 6537 non-null float64a
18 Flow IAT Mean 6537 non-null floateq
19 Flow IAT Std 6537 non-null floate4
28 Flow IAT Max 6537 non-null float6d
21 Flow IAT Min 6537 non-null floated

Fig 3: Converting int values into float

v ° df.drop('Flow Pkts/s', inplace=True, axis=1)
df.drop(' Timestamp', inplace=True, axis=1)
df.drop('Flow Byts/s', inplace=True, axis=1)

df
o Dst Flog [0t Tot Totlen Totlen ;:: E:: Fud Pkt Fud Pkt
Port Protocol Duration Fud - Bud Fud Bud Len Len Len Mean Len Std

Pkts Pkts Pkts Pkts Max Min

0 443.0 60 1413850 90 70 553.0 37730 2020 0.0 61444444 87.534438
1 49684.0 6.0 2810 20 1.0 38.0 00 380 00 19.000000 26.870058
2 443.0 6.0 2798240 11.0 150 1086.0 10527.0 3850 0.0 98.727273 129392497
3 443.0 6.0 1320 20 00 0.0 0.0 00 0.0 0.000000 0.000000
4 443.0 6.0 2740160 90 13.0 12850 61410 517.0 0.0 142777778 183.887722
6553 &080.0 60 102380 30 40 3260 1290 3260 00 108.666667 188216188
6554 &050.0 6.0 4740 20 00 0.0 0.0 00 0.0 0.000000 0.000000
8555 &050.0 60 108600 30 40 3260 1290 3260 00 108656667 188216188
6556 &030.0 6.0 4870 20 00 0.0 0.0 00 0.0 0.000000 0.000000
6557 G030.0 6.0 113980 3.0 4.0 3260 129.0 3260 0.0 108.6566667 185.216188

6537 rows x 78 columns

4

Buwd
Pkt
Len
Max
1460.0
0.0
1460.0
0.0

1460.0

112.0
0.0
112.0
0.0
112.0

Bud
Pkt
Len
Min

0.0

Bwd Pkt
Len Mean

539.000000
0.000000
701.800000
0.000000

472384613

32250000
0.000000
32.250000
0.000000

32.250000

Bwd Pkt
Len Std

655.432936
0.000000
636.314186
0.000000

611.180489

53767245
0.000000
53767245
0.000000

53.767245

Flow

9425 6664
140.500
11192.960
132.000

13048.380

1706.500
474000
1810.000
487.000¢

1899666

Fig 4: Drop unnecessary columns

4

5.2 Next, the ou tput variable, which is categorical, is then converted into a
binary column into 0 and 1. So, the category ‘Benign’ is converted into a 0
and ‘Bot’ is converted into 1.

¥ [8] ds = df.replace(’Benign’, 8)

ol ° dataset_m = ds.replace('Bot", 1)
dataset_m

Fud Buwd
ngg Fi:: FEEE DO::";EE Pt Si:; s?;: i:g s?;: :sg Byt;‘}rg Pkt::: Rgi: ayt':f«'dh pktgff: Rgi: SUbFizg SUbf|l=

Cnt Count Cnt Avg Avg avg Avg Avg avg Pkts By
0.0 00 10 0.0 270.375000 61.444444 539.000000 0.0 00 00 0.0 00 00 9.0 553
0.0 00 00 0.0 25333333 19.000000 0.000000 0.0 00 00 0.0 00 00 2.0 39
0.0 00 10 1.0 446653846 98.727273 701.800000 0.0 00 00 0.0 00 00 11.0 1084
0.0 00 00 0.0 0.000000 0.000000 0.000000 0.0 00 00 0.0 00 00 2.0 q
0.0 00 10 1.0 337.545455 142777778 472.384615 0.0 00 00 0.0 00 00 9.0 1285
0.0 00 10 1.0 65.000000 108.666667 32.250000 0.0 00 00 0.0 00 00 3.0 32§
0.0 00 00 0.0 0.000000 0.000000 0.000000 0.0 00 00 0.0 00 00 2.0 q
0.0 00 10 1.0 65.000000 108.666667 32.250000 0.0 00 00 0.0 00 00 3.0 326
0.0 00 00 0.0 0.000000 0.000000 0.000000 0.0 00 00 0.0 00 00 2.0 q
0.0 00 10 1.0 65.000000 108.666667 32.250000 0.0 00 00 0.0 00 00 3.0 326

Fig 5: Converting output variable into Os and 1s

5.3 After this conversion, the data is then standardized and rescaled to get a good
shape of distribution of the dataset.

~ ° #5Standardize Data
from sklearn.preprocessing import StandardScaler
from numpy import set_printoptions
scaler=Standardscaler ()
rescaled_data=scaler.fit_transform{dataset_m)
set_printoptions(precision=3)
print{rescaled_datal[@:5,:])

-16%2e-82 -9 .874e-82 3 .548e+80
-8802+08 -2.155e-81 1.874e+80

El -723e+00 32.434e=+08 3 .544e+80
e

e.e2e=+00 1.874e+902 -8.121e-91

a

=]

7

-2852+808 -9.430e-21 -5.180e-082
-751e+00 1.782e-021 3.947e+00
- 298s+00 2.000a+00 2.000a+00 -200a+00 e.o00ac+0a 2.080e+00
-175e-82 9.558a-02 6.536e-02 -a87e-01 4.589e-21 -1.58%9e=-81
-183e-82 1.7582-91 -9.647e-82 -8.843e-62 -1.881le-81 -7.844e-82
-2.2562-81 -1.8992-81 -2._.388e-681 -2.1582-01 -1.909=2+08 9.558e-82]
[5.158=2+8@ -7.388e-82 -2.99@e-81 -1.290e-81 -1.344e-21 -1.183e-81
-56.3782-82 -6.5642-981 -9.268e-82 -5.826e-081 -56.27@e-01 -4.233e-01
-1.2232-01 -32.4262-81 -4.365e-81 -1.691le-81 -2.365e-01 -2.371e-01
-2.6662-82 -2.9762-01 -1.972e-81 -2.267e-81 -2.351e-81 -5.245e-82
-2.682e-81 -1.852e-01 -2.872e-061 -2.122e-81 -5.225e-82 4.641e+88
8.86882+00 2.e828a+08 @.288e+88 -1.19%92-81 -1.7842-81 -5.794e-62
6.860e-02 -9.874e-92 -5.578e-81 -32.889e-01 -4.868e-201 -3 .264e2-81
e.e80=+00 4.5641le+908 -9.38%9e-9@1 -9.947e-01 1.808e+0@ -5.180e-82
2.2880e+08 -5.3289%92-01 -8.121e-81 -2.756e-81 -5.826e-01 -3.496e-01
2.220s+00 2.8+ 2.280e+00 2 .200a+28 e.00ac+0a 2.080e+00
-1.2982-81 -1.183e2-21 -1.344e-81 -6.378e-82 -8.34@e-01 -1.755e-81
-8.887e-82 1.758e-91 -9.647e-82 -8.843e-062 -1.881le-01 -7.844=-82
-2.2562-81 -1.89%92-91 -2.388e-81 -2.158e-01 -1.989=+8@ -1.183e-@81]
-9 .347e-81 -7.3288e-82 -2 _897e-081 1.542e-81 32.217e-01 3.16%9e-081
4.174=-81 1.864=2+028 -9.368e-02 2.465=-21 4.271le-01 3.983e+00
-1.2232-81 5.245e+022 4.3241le+80 -1.6362-81 -2.282e-81 -2.264e-91
-2.6672-82 -2.883e-01 -1.885e-91 -2.167e-81 -2.243e-01 -5.253e-82
-2.588e-81 -1.78%92-01 -1.963e-681 -1.984e-081 -5.225e-82 -2.155e-81
8.86882+00 2.e828a+08 @.288e4+060 2.1782-81 4.479e-21 -1.8@8e-81
-2.157e-82 -9.874=-82 3 .548e2480 4 _985e8400 a_227=+08 5.184=+880
2.880e+08 -2.155e-01 1.874e+80 1.2852+88@ -9.430e-81 -5.1806e-82
2.888=s+08 1.874=+083 -245e-G1 4.920=+08 8.4652-81 5.245e+080

Fig 6: Standardizing the data®

- -

EONREN

2

https://elearning.dbs.ie/pluginfile.php/1301058/mod_resource/content/1/Data%2BDescriptive%281%29%281
%29.html

5.4 Here, the variable ‘Label’ is set as target and the rest of the variables in the
dataset are set as features (input variables). And then the overview of that
dataset is then printed to check if it consists of any number of missing values
or not, which in this case is 0.

¥ [12] Target=dataset _m['Label’] #output

Target

B8 @

1 @

2 a

3 a

4 @

6553 1

6554 1

B555 1

6556 1

6557 1

Mame: Label, Length: 8537, dtype: int64

Fig 7: Setting the target variable

v o Features=dataset_m.loc[:, dataset_m.columns != 'Label']

Features
- Dst Floy 10t Tot Totlen fTotlen E:ﬂ EE? Fud Pkt Fud Pkt g:i
Port Protocel Duration Fud Bud Fud Bud Len Len Len Mean Len Std Len
Pkts Pkts Pkts Pkts Max Min Hax
0 443.0 6.0 1413850 90 7.0 5530 37730 2020 00 61444444 87534433 1460.0
1 49684.0 6.0 2810 20 10 380 00 3280 00 19.000000 26.870058 0.0
2 443.0 6.0 2798240 M0 150 10860 105270 3850 00 98727273 129.392497 1460.0
3 443.0 6.0 1320 20 00 0.0 00 00 00 0.000000 0.000000 0.0
4 4430 6.0 2740160 90 130 12850 6140 5170 00 142777778 183.867722 1460.0
6553 6080.0 6.0 102390 30 40 3260 1290 3260 00 108666667 185.216188 1120
6554 5080.0 6.0 4740 20 00 0.0 00 00 00 0000000 0.000000 0.0
6555 5080.0 6.0 108600 30 40 3260 1290 3260 00 108666667 185216188 1120
6556 8080.0 6.0 4870 20 00 00 00 00 00 0000000 0.000000 00
6557 5080.0 6.0 113980 30 40 3260 1290 3260 00 108666667 185.216188 1120

6337 rows x 77 columns

Fig 8: Setting the features

= 9 @

ndl ° def dataoverview(dataset_m, message):

~ ° dataoverview(dataset_m, 'Overview of the Training dataset')

[

Overview of the Training dataset:
Rows: 6537
Number of features: 78

Features:
['Dst Port', 'Protoceol’, 'Flow Duration®, "Tot Fwd Pkts', 'Tot Bwd Pkts', 'Totlen Fwd Pkts', 'Totlg

Missing wvalues: @

Unique values:

Dst Port 198
Protocol 3
Flow Duration 3249
Tot Fwd Pkts a5
Tot Bwd Pkts 1@
Idle Std 441
Idle Max 138
Idle Min 385
Label 2
TotlLet Fwd Pkts 398

Length: 78, dtype: inte4

print({f ' {message}:\n")

print("Rows:", dataset_m.shape[@])

print("\nNumber of features:", dataset_m.shape[1])
print(”\nFeatures:™)

print(dataset_m.columns.tolist())

print("\nMissing values:", dataset_m.isnull().sum().values.sum(})
print(”\nUnique values:™)

print{dataset_m.nunique())

F

5

ig 9: Dropping the Na values and getting an overview of the data

.5 The dataset is further divided into two subsets by splitting it in the ratio of 80
and 20 for training and testing respectively. The size of the training data is
set as 80% of the actual data randomly and the rest of the 20% of the actual
data as the testing data, which means, every time the code is executed, the
training data will split from any part of the data randomly (can be 80% of the
upper part, can be 80% of the middle part, can be 80% of the lower part etc.).

[

fro
x_t
x_t
X_t

m sklearn.model_selection import train_test_split
rain,X_test,Y_train,¥Y_test = train_test_split(Features,Target,train_size=8.828,random_state=2)
rain.info(verbose=True)
est.info(verbose=True)
Fud IAT Mean 1388 non-null floate4d
Fwd IAT Std 1388 non-null floatea
Fwd IAT Max 1388 non-null float64
Fud IAT Min 1382 non-null floato4d
Bud IAT Tot 1388 non-null floate4d
Bwd IAT Mean 1388 non-null floatea
Bwd IAT Std 1388 non-null float64
Buwd IAT Max 1382 non-null floato4d
Bwd IAT Min 1388 non-null floate4d
Fwd PSH Flags 1388 non-null floatea
Bwd PSH Flags 1388 non-null float64
Fwd URG Flags 1388 non-null floated
Bwd URG Flags 1388 non-null floate4
Fwd Header Len 1388 non-null floatea
Bwd Header Len 1388 non-null floats4
Fud Pkts/s 1382 non-null floato4d
Bud Pkts/s 1382 non-null floated
Pkt Len Min 1388 non-null floatea
Pkt Len Max 1388 non-null floats4
Pkt Len Mean 1382 non-null floato4d
Pkt Len S5td 13288 non-null floated
Pkt Len Var 1388 non-null floatea
FIN Flag Cnt 1388 non-null floats4
SYN Flag Cnt 1388 non-null floated
RST Flag Cnt 13828 non-null floate4d

Fig 10: Sp]iﬁing the data into training and testing

7

5.6 During this step, the data is split in 4 parts: X-train, X-test, Y-tarin and Y-test
as training part of the features, testing part of the features, training part of the
output and testing part of the output variable respectively.

6 Feature Extraction and Selection

Standardization means that each attribute’s dispersion is modified to a mean of zero and a
standard deviation (unit variance). For a model based on dispersal of variables, it is important
to standardize the attributes. Therefore, the standardization is performed for feature scaling
before feeding the data to the model like KNN. Feature Selection is a procedure in which we
may choose features from the dataset, either programmatically or manually, that can
contribute the most to the prediction variable or output.

6.1 In this step, the RandomForestClassifier library is utilized for selecting the
topmost 15 important features from the entire data set to make the further
implementation much easier and faster. In this, the Random Feature
Elimination (RFE), a feature selection method is applied for eliminating all the
features that are not essential.

° from sklearn.feature_selection import RFE
import itertools
rfc=RandomForestClassifier()

f#ficreate the RFE model and select 15 attibutes
rfe=RFE(rfc,n_features_to_select=15)
rfe=rfe.fit(X_train,¥_train)

#summarize the selection of the attributes

feature_map=[(i,v)for i,v in itertools.zip longest(rfe.get_support(),X_train.columns)]
selected features=[v for i,v in feature _map if i==True]

selected features

[» ['Dst Port',
'"Flow Duration’,
'"Flow IAT Mean',
"Flow IAT std',
"Flow IAT Max',
"Fwd IAT Tot",
"Fud IAT Mean',
"Fud IAT Std",
"Fud IAT Max",
"Fwd IAT Min",
"Fuwd PSH Flags',
"Fud Pkts/s',
"Pkt Len 5td",
'SYN Flag Cnt’',
"Init Fwd Win Byts']

Fig 11: Feature extraction and selection

6.2 After the feature selection is done programmatically a new data frame is
created that consist of only those selected features that are received from the
RFE method.

° dataset = dataset_m[['Dst

Flo

"Flow

'Flof
'Flof
' Fud
" Fud
" Fud
" Fud
' Fud
' Fud
' Fud
'Pkt
"SYN
"Ini

w Duration’,
IAT Mean',
w IAT Std',
w IAT Max',
IAT Tot',
IAT Mean',
IAT Std*,
IAT Max®,
IAT Min',
PSH Flags',
Pkts/s",
Len Std',
Flag Cnt"',

Port',

t Fwd Win Byts", 'Label']]

dataset
C Dst Port Flow Duration Flow IAT Mean Flow IAT Std Flow IAT Max Fwd IAT Tot Fwd IAT Mea
0 443.0 141385.0 9425.666667 19069.116850 73403.0 141385.0 17673.12
1 49684.0 281.0 140.500000 174855375 264.0 281.0 281.00
2 443.0 279824.0 11192.960000 24379.448340 112589.0 279728.0 27972.80
3 443.0 132.0 132.000000 0.000000 132.0 132.0 132.00
4 443.0 274016.0 13048.380950 26311.627030 114077.0 273946.0 34243.25
3141 8080.0 458.0 458.000000 0.000000 458.0 458.0 458.00
3142 5080.0 214500 3575.000000 8382.901646 20684.0 446.0 223.00
3143 8080.0 4820 482.000000 0.000000 4820 482.0 482.00
3144 8080.0 9612.0 1602.000000 3555.189559 8852.0 454.0 227.00
3145 8080.0 515.0 515.000000 0.000000 515.0 515.0 515.00

3125 rows x 16 columns

Fig 12: Creating new and final data frame
6.3 Further, the steps 5.4, 5.5 and 5.6 are repeated to get a finalized dataset
including separated target, features and a training and a testing part of new
generated dataset for further model implementation with only 16 columns.

7 Machine Learning Models

Model fitting is an estimation about how a machine learning model is generalized to
comparable data to the one it is trained on. The well-fitted model typically yields

accurate findings. Model fitting is a key component of machine learning. If the model doesn't
match our dataset appropriately, the results can't be true and can't depend on the results to be
predictable. Model Evaluation is an essential aspect of the approach of machine learning
model building. It helps to identify the best model for the selected dataset and how well the
selected model works in the near future.

7.1 In this step, various machine learning models are executed. Initially, the K-
Nearest neighbour model is implemented with the value of k as 3 and the
number of neighbours as 5 by default as these values are giving the best
accuracy and 0-2 false negatives approximately (approximation is said after
every result as the training of the testing dataset is given a random state and
can vary after every execution). This model gives 99% of accuracy

approximately with same percentage of precision, recall, f1-score
results.(Chudasma, no date)

v o # Load libraries

C

from sklearn.svm import SVC

from sklearn.naive_bayes import BernoulliNB

from sklearn import tree

from sklearn.model selection import cross val score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegression

import pandas as pd

from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier

from sklearn.model selection import train_test_split # Import train_test_split function
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation

Train KNeighborsClassifier Model
KNN_Classifier=KNeighborsClassifier(n_jobs=3)
KNN_Classifier.fit(X_train,Y_train)

KNeighborsClassifier{algorithm="auto", leaf size=38, metric="minkowski',
metric_params=None, n_jobs=3, n_neighbors=5, p=2,
weights="uniform")

Fig 13: KNN model

Model Accuracy for KNN :
1.8
Confusion matrix :
[[375 @8]
[& 258]]
Outcome values
375 8 8 258
Classification report :

precision recall Ffl-score support
1 1.2 1.88 1.8@ 375
a2 1.2 1.8a 1.2a 258
accuracy 1.86 625
macro avg 1.8 1.88 1.88 625
weighted avg 1.28 1.28 1.28 625

Fig 14: KNN model accuracy and evaluation matrix

7.2 In the next step, the Decision Tree classifier model is executed with the default
hyper parameters such as criterion as ‘gini’ and random_state as None, are
passed to this model to get the accuracy. It demonstrates that the dataset we
have altered is inaccurately labelled for splitting from the dataset. It is utilized
with Classification and regression tree, and the value is more precise and less
accurate than its best quality, entropy index; lower values suggest fewer

10

impurities. This model gives a 99-100% of accuracy approximately with 0-1
number of false negatives.?

° #Train Decision tree model
DTC Classifier=tree.DecisionTresClassifier()
DTC_Classifier.fit(X_train,¥_train)

DecisionTreeClassifier(ccp_alpha=8.8, class_weight=None, criterion="gini",
max_depth=None, max_features=None, max_leaf nodes=None,
min_impurity_decrease=8.8, min_impurity split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=8.8, presort="deprecated’,
random_state=None, splitter='best"’)

Fig 15: DTC model

[» Model Accuracy for DTC :
1.6
Confusion matrix :
[[275 @]
[8 252]]
Outcome values
375 @ 6 258
Classification report :
precision recall fl-score support
1 1.88 1.6 1.a8 375
e 1.88 1.6 1.a8 258
accuracy 1.e8 625
macro avg 1.8 1.88 1.a8 625
weighted avg 1.88 1.88 1.88 625

Fig 16: DTC model accuracy and evaluation matrix

7.3 The next model used is Artificial Neural Network (ANN). The information
processing technology is Artificial Neural Network. This model works like a
human brain. It is generally organised in 3 layers, input layer, hidden layer,
output layer. The input layer receives the input values for every observation
which do not change the data. The hidden layer provides a transformation to
an input value in the network and then connects with the output nodes also to
other hidden layers, generally known as ‘weighted connections’. The output
layer gets the link from the other two layers (input and hidden) and then it
combines and converts the data to generate the output values. Here, random
weights are assigned to the linkages initially. Then all the three layers are
connected and assigned the required parameters. Data preparation is similar to
the rest of the identification technology in the performance of ANN. The keras
library is utilized to run this model. The epochs (the number of times an
algorithm works through the complete training data) is set as 50 and then the
model is executed. This model gives 99.49% of accuracy with no false

3 https://datascience.foundation/sciencewhitepaper/understanding-decision-trees-with-python

11

negatives approximately. Here, the precision and the f1-score also give the
result of 97-99%. *

ol ° import keras
from keras.models import Sequential
from keras.layers import Dense

#Initializing ANN
ANN_classifier= Sequential()

#Adding the input layer and the first hidden layer
ANN_classifier.add(Dense(units=2, kernel_initializer="uniform',activation="relu',input_dim=15))

#Adding second hidden layer
ANN_classifier.add(Dense(units=8,kernel_initializer="uniferm',activation="relu'))

#Adding the output layer
ANN_classifier.add(Dense{units=1,kernel initializer="uniferm',activation="sigmoid'))

#Compiling the ANN
ANN_classifier.compile(optimizer="adam',loss="binary crossentropy’,metrics=["accuracy’'])

#Fitting the ANN to the training set
ANN_classifier.fit(X_train,Y_train,batch_size=15,epochs=58)

y_pred = ANN_classifier.predict(X_test)
y_pred

[» Epoch 1/5@

167/167 [] - 14s 1ms/step - loss: ©.3451 - accuracy: 8.8795
Epoch 2/5@
167/167 [] - @s 1ms/step - loss: 8.1151 - accuracy: 8.9954
Epoch 3/5@
167/167 [] - ©s ims/step - loss: 8.2449 - accuracy: 8.9989
Epoch 4/5@
167/167 [] - 8s 1ms/step - loss: 8.8766 - accuracy: 8.9978
Epoch 5/5@
167/167 [] - 8s 1ms/step - loss: 8.8568 - accuracy: 6.9938
Epoch 6/5@
A62/1 [1 -0 Am ten D425 - Lra - 0 94977

Fig 17: ANN mode

[+ Model Accuracy for ANN
1.8
Confusion matrix
[[258 @]
[@ 275]]
Outcome values
375 8 8 258
Classification report
precision recall fl-score support
1 1.86 1.688 1.8a 375
e 1.08 1.ea 1.8 25@
accuracy 1.8a 625
macro avg 1.86 1.688 1.8a 625
weighted avg 1.88 1.88 1.88 625

Fig 18: ANN model accuracy and evaluation matrix

4 https://stackoverflow.com/questions/68185988/valueerror-input-0-of-layer-sequential-is-incompatible-with-
the-layer-expected

12

8 Deep Learning Models

8.1 For deep learning approach, two models are implemented in this project Multi-
Layer Perceptron (MLP), which is a type of Deep Neural Networks (DNN)
and Convolutional Neural Network (CNN) to analyse the prediction of the
Network Intrusion Detection dataset. linvestigation of the variations in
accuracy while changing the number of parameters is done is this step. In these
models the data pre-processing method is like that of the other models. The
tenserflow library is utilized along with the other libraries and in this model
and keras function is imported from the tensorflow library. This model gives
the accuracy of 98.17% to 100% approximately and the validation of the
accuracy is 99% true approximately. The accuracy and the loss of this model is
visualised and as shown below.®

- ° model = Sequential()

model.add(Dense(12, input_dim=15, activation= "relu’))
model.add(Dense(8, activation= 'relu’))
model.add(Dense(1, activation= 'sigmoid’))
Compile model
model.compile(loss="binary_crossentropy', optimizer= 'adam', metrics=['accuracy'])
Fit the model
history=model.fit(train_features,train_label,epochs=58, batch_size=15)
scores=model.evaluate(train_features,train_label)
evaluate the model
#scores = model.evaluate(test features,test_label,verbose=3)

[» Epoch 1/58
148/148 [] - 1s 2ms/step - loss: 1845.1581 - accuracy: 8.5283
Epoch 2/5@
148/148 [] - s 1ms/step - loss: 24.1861 - accuracy: @.9388
Epoch 3/5@
14e/148 [] - ©s 2ms/step - loss: 14.8128 - accuracy: ©.9826
Epoch 4/58
148/148 [] - 8s 2ms/step - loss: 25.4854 - accuracy: 8.9456
Epoch 5/56@
148/148 [] - 8s 1ms/step - loss: 13.8823 - accuracy: ©8.9366
Epoch 6/58
148/148 [] - @s 2ms/step - loss: 1824.8279 - accuracy: 8.9846
Epoch 7/5@
148/148 [] - 8s 1ms/step - loss: 28.8885 - accuracy: 8.9893
Epoch 8/5@
148/148 [] - @s 1ms/step - loss: 8.8596 - accuracy: 8.9922
Epoch 9/5@
148/148 [] - s 1ms/step - loss: 6.3383 - accuracy: 8.995@
Epoch 18/58
148/148 [] - s 1ms/step - loss: 18.5864 - accuracy: @.9382
Epoch 11/58
14e/148 [] - ©s 1ms/step - loss: 7.8184 - accuracy: 8.9982
Epoch 12/58
148/148 [] - 8s ims/step - loss: 8.4445 - accuracy: 8.9988
Epoch 13/58
148/148 [] - 8s 1ms/step - loss: 13.5563 - accuracy: 8.9914
Epoch 14/58
14e/148 T 1 - @s Ims/step - loss: 7.2007 - accuracv: 8.9922

Fig 19: DNN model

5

https://elearning.dbs.ie/pluginfile.php/1301095/mod_resource/content/1/Deep%20Learning%20Tutorial.html
13

¥ [135] #printing the traing accuracy
print("\n¥%s: %.2fXx%" % (model.metrics_names[1], scores[1]*1e@))

accuracy: 99.86%

v [136] # predications
Pre_dict=model.predict_classes(test_features)
#comparing the results

acc_score=accuracy_score(test_label,Pre_dict)

The testing accuracy of the Model 99.6124831887752

v o print("The testing accuracy of the Model {}".format(str(acc_score*iee)))

Fig 20: Training and Testing set accuracy

v ° import keras

#7 layer MLP

create model

model = Sequential()
model.add(Dense(12, input_dim=15, activation= 'relu’))

model . add(Dense
model. add(Dense
model.add(Dense
model . add(Dense
model. add(Dense
Compile model

(
(
(
(
(

8,
8

8,
3,
L

activation= 'relu’))
activation= 'relu’))
activation= 'relu’))
activation= 'relu’))
activation= 'sigmoid”))

keras.optimizers.Adam(learning rate=8.885, beta_1=0.9, beta 2=0.999, amsgrad=False)
model.compile(loss= 'binary_crossentropy’ , optimizer= 'adam' , metrics=['accuracy'])

Fit the model

history=model.fit(train_features,train_label, validation_data=(test features,test label) ,epochs=5&, batch_size=15)
evaluate the model
scores = model.evaluate(test_features,test_label,verbose=3)

148/140 [

@

Epoch 22/5@

1 - 8s 2ms/step - loss: B.3154 - accuracy: ©.9969 - val_loss: @.9916

148/148 [
Epoch 23/5@
140/140 [

@

1-8

I}

2ms/step - loss: B.6393 - accuracy: 8.9947 - val loss: @.5817

@

] - 0s 2ms/step - loss: ©.3640 - accuracy: ©0.9988 - val_loss: @.6358

Epoch 24/5@
148/140 [

@

Epoch 25/5@

1 - 8s 2ms/step - loss: B.1194 - accuracy: ©.9963 - val_loss: @.7454

148/148 [
Epoch 26/5@

@

1 - 8s 2ms/step - loss: B.5384 - accuracy: 8.9953 - val_loss: @.7524

@

148/140 [
Epoch 27/5@
148/140 [

1 - 0s 2ms/step - loss: @.2287 - accuracy: ©8.9957 - val_loss: @.7625

s

Epoch 28/5@
148/148 [

1 - 8s 3ms/step - loss: 1.2738 - accuracy: ©.9929 - val_loss: @.7984

@

Epoch 29/5@

1 - 8s 3ms/step - loss: B.08627 - accuracy: ©.9928 - val_loss: @.6696

@

148/140 [
Epoch 38/5@
148/140 [

1 - 0s 3ms/step - loss: @.0181 - accuracy: ©0.9941 - val_loss: @.6113

Epoch 31/5@
14a/14a T

1 - 8s 2ms/step - loss: B.1831 - accuracy: ©.998@ - val_loss: @.6076

As 2ms/sten - lass: B.A823 - accuracy: 8.9917 - val loss: A.634A

val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:

val accuracv:

.9922

.6942

L8932

.9952

.6913

.%9@3

.9913

.69a3

.9826

.9835

L0855

Fig 21: Validating the model

~ [139] print(np.mean({history.history["accuracy’]))

print(np.mean(history.history["val_accuracy']})

8.9987214534282685
B6.98593822538491516

Fig 22: Accuracy and validation of the accuracy

14

~ o plt.plot({history.history['accuracy'])
plt.plot(history.history["wval accuracy”])
plt.title('model accuracy')
plt.ylabel('accuracy")
plt.xlabel("epoch’)
plt.legend(['train’, 'val'], loc="upper left")
plt.show()

model accuracy

100 i
frain — e
-
N ~NJ W__\/;,-\\/
0.98 - {\/
0.96 -

094 4

accuracy

092 4

09l

o 10 20 30 40 50
epoch

Fig 23: Visualisation of the actual and predicted accuracy

° plt.plot(history.history['loss"])
plt.plot(history.history['val_loss'])
plt.title('model loss")
plt.ylabel(loss")
plt.xlabel('epoch")
plt.legend(["train", ‘'val'], loc="upper left")
plt.show()

C» maodel loss

— ftrain

epoch

Fig 24: Visualisation of the actual and predicted loss

8.2 After the execution of DNN model the Convolutional Neural Network (CNN)
model is implemented. The keras library is utilised in this model and the
ConvlD, Flatten and MaxPooling1D functions ported from the library named
keras.layers. Further, the features and the targets are assigned with x and y
variable respectively. Further, the data frame features then converted into a
numpy to apply the reshape attribute over it. Then, the dataset is split into
training and testing part where the test size is set as 20% of the data and
training size is set as 80% of the data. Then the model is executed, giving the
accuracy 99.87% approximately with the loss of 22.13% approximately.®

5 https://www.datatechnotes.com/2020/02/classification-example-with-keras-cnn.html

15

° model = Sequential()
model.add(ConvlD(64, 2, activation="relu", input_shape=(15,1)}))
model . add(Dense(16, activation="relu"))
model . add(MaxPoolinglD())
model . add(Flatten())
model.add(Dense(2, activation = "softmax'))
model.compile(loss = 'sparse_categorical_crossentropy’,
optimizer = "adam”,
metrics = ['accuracy'])

¥ [152] model.summary()

Model: "sequential_4"

Layer (type) Output Shape Param #
convld (ConvlD) (None, 14, 64) 192
dense_15 (Dense) (None, 14, 18) 184
max_poolingld (MaxPoolinglD) (None, 7, 16) a
flatten (Flatten) (None, 112) @
dense_ 16 (Dense) (None, 2) 226

Total params: 1,458
Trainable params: 1,458
Non-trainable params: @

Fig 25: Model summary

° model.fit(X_train, ¥_train, batch_size=16,epochs=58, verbose=8)

acc = model.evaluate(X_train, Y_train)
print("Loss:", acc[®], " Accuracy:", acc[1])

> 79/79 [=== === =====] - @s 1ms/step - loss: 8.4873 - accuracy: @.9988
Loss: ©.48732283245162964 Accuracy: 8.9%880868553567432

Fig 26: Accuracy of actual and prdicted sets

9 Conclusion

As it can be observed here the some of the Machine learning Models are most of the time
giving more accurate results than the Deep Learning models, while neural networks, the deep
learning models are giving more accuracy than ANN in less computational time. So, it can be
concluded that the Deep Learning models can give better accuracy than ANN, when it comes
to neural networks, but the KNN and Decision Tree algorithms are the best fit models for this
dataset (Results may vary by different dataset). Though in case of large and complex
datasets. Deep Learning algorithms are much preferable for better accuracy and validation.
The limitations of this research are as follows; Use of only one dataset is done and executed
for all the models and Visualization of only one model is shown.

References

Chudasma, P. (no date) ‘Network Intrusion Detection System using Classification Techniques in Machine
Learning’, p. 74.

16

