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Packer classification using visualization methods. 

 

Norman Kolarikkal 

X19226365 

Abstract 

Malware is software for harming a computer system. Current methods for detecting malware 

heavily use signatures such as hashes. However, these methods can easily be deceived using 

methods such as packing. We, therefore, proposed use of visualization and Convolutional Neural 

network (CNN) model to detect and classify packers as well to detect if a packed sample is 

malicious or benign. We would be converting image to a RGB image and then use CNN on the 

images to classify packed samples. Our model was able to work on multiple types of files with 

us testing our algorithm on exe files and apk files. 

 

1 Introduction 

 

The main goal of malware is to gain unauthorized access or to deny access to systems. As per 

(Johnson, n.d.), by March 2020, there were about 677 million reports of new malware samples being 

found. Malware analysts face a great challenge due to the increased number of malware samples. 

 

 

Figure 1: Cumulative detection of malware worldwide from 2015-2020 

(Johnson, n.d.) 

Static and dynamic analysis are the traditional methods to detect malware. Static analysis is the 

method of collecting information such as file size of the malware, its hash signature, etc. without 

running the malware. Malware authors/ attackers have, however, started to hide the malicious code 

using tools such as packers, crypters, or protectors (Arntz, n.d.). When file is executed, packers will 

unpack/extract the code from the file. Crypters use code obfuscation and encryption to fool detection 

methods (Arntz, n.d.). Attackers usually use both packers and crypters to prevent reverse engineering 

of the malicious code (Arntz, n.d.). Automated packer tools such as UPX are easily available and 

made it easy for attackers to create malware requiring a complex skillset to reverse engineer the 

malware. Static analysis is disturbed by code obfuscation through methods such as compression and 

encryption. 

Information collected by running malware in sandbox is called dynamic analysis. Information such 

as network calls and registry changes can be easily identified using dynamic analysis. Dynamic 



analysis is more robust against code obfuscation methods; however, they usually require more 

resources than static analysis. 

Recently, visualization methods have been proposed to analyze malware binaries. The visualization 

methods have proven to be effective because most variants of malware binaries are generated using 

automated technology or reusing some modules (Fu et al., 2018). 

Visualization algorithm also face a similar issue that packed samples usually make it difficult to get all 

the bytes. 

As the malware variants increases, it is becoming more important that research is done on the 

evasion techniques such as packers. (Rahbarinia et al., 2017) surveyed both malware and benign 

software samples and found that about 58% of malware samples and 54% of benign samples used 

well-known packers. Around 35% of the malware samples used custom packers. Therefore, we 

propose to use the visualization method to first convert the file to an RGB-coloured image and then 

use CNN to train the model to recognize the patterns of well-known packers. This would help in 

analyzing the malware samples as it can detect if a particular sample requires unpacking. In case it 

requires unpacking, it could also determine which tool was used for packing, if a well-known packer 

were used. 

1.1 Research Hypothesis 

We would be trying to find out if our visualisation model would be able to find out if a file is packed 

and detect which packer was used. Therefore, our null hypothesis (H10) and alternative hypothesis 

(H1α) would be as follows: 

H10: Visualisation algorithm would not be able to detect packer. 

H1α: Visualisation algorithm would be able to detect packers. 

We also want to check if our algorithm would be able to detect if a packed sample is a malware. 

Therefore, our second hypothesis is as follows: 

H2: Proposed visualisation algorithm would not be able to detect malware even if the sample is 

packed. 

H2α: Proposed visualisation algorithm would not be able to detect malware even if the sample 

is packed. 

1.2 Research Question 

From our research hypothesis, the following are the research questions we are trying to investigate: 

Q1: How effective will using a CNN algorithm with visualization be in detecting and classifying 

packers? 

Q2: How effective will the proposed algorithm be in classifying malware from benign samples 

even if they are packed? 

1.3 Conclusion 

The remaining sections of the research paper are as follows: Section 2 discusses the previous 

research carried out. The method followed by us for the research is discussed in section 3. The 

design is described in Section 4, while Section 5 covers the implementation of the artefact. Section 

6 covers the evaluation of our model while we discuss the areas of future research in section 7. 

2 Related Work 

 

We discuss the recent works on visualisation, malware and packer detection in this section. Sub- 

section A contains the related works on malware detection. We discuss recent methods 

researched on packer detection in sub-section B. Finally, we discuss visualisation methods 



researched in sub-section C. Sub-section C also describes the use of visualisation method in 

malware classification and packer classification as well. 

A. Malware detection 

Traditional malware detection depends on signature and behaviour analysis. However, using packers, 

polymorphic and encoding techniques the malware can fool signature detection. Dynamic analysis is 

more robust compared to static analysis; however, the cost poses an issue. Moreover, newer variants of 

malware are able to remain dormant in case the malware detects sandbox environment (Baker, 2020). 

(Saurabh, 2018) did malware analysis using advanced static analysis (analysis for strings and use of 

disassembler is used to load linked libraries and imported functions) and advanced dynamic analysis 

(Advance debugging on malware along with registry analysis). They used PEid to determine the 

packer used. However, PEid can only determine common/well-known packers. As mentioned before, 

in the study by (Rahbarinia et al., 2017), they found that 35% of the attackers have started using 

custom packers. 

As malware variant have started to remain dormant when a sandbox is detected, (Ijaz et al., 2019), 

found that dynamic detection had given lower accuracy than static. They also explain the limitation of 

static analysis is packed files. Similarly, (Murali et al., 2020) were able to show how newer malware 

variants can avoid dynamic analysis by stopping the execution of malicious code if it detects a 

debugging attempt. While static analysis would be able to overcome this issue, the difficulty of reverse 

engineering often reduces the effectiveness of static analysis. 

Recent research is being done on hybrid analysis to detect malware where both static and dynamic 

analysis is used along with the use of machine learning models (Hadiprakoso et al., 2020; Kuo et 

al., 2019). (Kuo et al., 2019) discovered about 5% increase in the detection of android malware 

using hybrid analysis. (Kuo et al., 2019) similarly found an accuracy of 88% in malware detection 

using their model. However, as discussed earlier, the presence of packers has caused the accuracy 

of the models to drop (Fu et al., 2018). 

B. Packer detection methods 

Signature detection is one of the main methods to detect malware. However, detection using signature 

is no longer viable due to the use of custom packers. (Omachi & Murakami, 2020) using k-nearest 

neighbor algorithm of entropies were able to identify 125 out of 253 packers. However, the research 

was done on double-packed samples. As discussed in (Kim et al., 2020), current packers are capable 

of using more than 2 layers. (Kim et al., 2020) also introduces a taxonomy to measure the complexities 

of the packers based on the layers of packing done by the packers. (Alkhateeb & Stamp, 2019) 

suggested using Levenshtein distance and naïve Bayes classifier to classify packers. They were able 

to get a higher accuracy compared to commercially available packer detections. (Hua et al., 2020) 

tried classifying packed malware based on control flow graphs with them able to achieve 96.4% 

accuracy in classifying packed files in their tests. They only used the function call graph for their 

model. 

(Sun et al., 2020) suggested running all methods with forged arguments to gather information about 

the code. However, if the malware is able to detect presence of sandbox, this method may not work. 

(Korczynski, 2017) unpacked the packed file and reconstructed the file in a format that was easier to 

analyze. However, the tools used for the research did not allow their use on multilayer packers. (Lim 

& Nicsen, 2016) used static analysis to detect if a file is packed or not with them being able to achieve 

an accuracy of 98.16%. They extracted the features of files and scored them according to a 

predetermined risk and weight. 

C. Visualization methods 

There have been a number of recent research where visualization methods have been used to detect 

malware and packers effectively. (Corum et al., 2019) were able to distinguish benign pdf samples from 

malicious pdf samples by converting the file to an image using byte plot and Markov plot. They were 

able to achieve an F1-score of 99.48% in classifying malicious pdf from benign pdfs. (Kartel et al., 



2020) used visualization and image processing using machine learning to classify malware. They raise 

an interesting argument against using machine learning in tha tit is possible to misclassify malware files 

as benign files if they are trained with the wrong data. (Kartel et al., 2020) raised an issue with machine 

learning that there is a lack of visibility on why the model classified a sample as malware or benign 

after comparing existing models. (Venkatraman & Alazab, 2017) used feature extraction on known 

malware and used a threshold-based in the extracted features to then classify a sample as malware. 

However, the method would be difficult to be implemented in the case of many extracted features due 

to the limitation on processing power. 

 

(Fu et al., 2018) used an RGB image of the malware to get more information than the grey-scaled 

images. They populated the red, blue, and green channels with more information (such as entropy and 

relative size of file) rather than converting a grey-scale image to an RGB image. However, the method 

suggested was not able to classify packed malware. We would be building our model based on the 

visualization method suggested in this paper. 
 

Figure 2: Output of the model proposed by (Fu et al., 2018) on samples belonging to Backdoor.Win32.Hupigon 

(Li et al., 2019) use a graph-based approach to classify packers. They also include an updater in their 

model which goes through the result of the model to improve the system after the training phase. 

(Donahue et al., 2013) used Markov byte plot to visualize malware samples. They also noted some 

similarities between packed and unpacked image samples. As shown in Figure 2, both images showed 

a red line in the middle of the image. We believe that our model could show similar similarities, and 

this could be a potential route to detect malware without executing the file. 
 

Figure 3: Comparison of packed and unpacked sample images by (Donahue et al., 2013) 

However, one of the issues with the existing visualization research done on packed files is that 

there is no research done on multi-level packers. Our work will also be done on lower-layer level 

packers. 

D. Research Niche 

As discussed in the previous sections, traditional static analysis methods such as opcode analysis 

and hash signatures cannot be used for malware that employs tactics such as code obfuscation 

or polymorphism. Packers are one of the well-known methods of obfuscation used by malware 

authors. We hope that our model would be able to detect and classify the packers. 



Many algorithms using machine learning have been implemented including ones using K- 

nearest neighbor and naïve Bayes. However, they have been tested for well-known packers such 

as UPX. Our proposed model will use CNN model along with visualization. We hypothesize 

that our model would be able to detect and classify well-known packers. We also hypothesize 

that our model would be able to find similarities between packed and unpacked malware 

samples. This would help in malware detection and reduce the effort in detection and 

classification. 

The below table contains a summary of the main research papers we went through for our model. 

Table 1: Summary of research papers 
 

Research paper Summary Comments 

(Fu et al., 2018) Used GLCM to extract 

features from a RGB 

converted image. 

We would be using a 

similar approach for our 

visualization model. We 

would be using CNN 

algorithm instead of using 

GLCM to extract features 

from the image. 

(Donahue et al., 2013) Used Markov Byte plot to 

convert the file to an 

image. They were able to 

spot similarities between 

packed and unpacked 

samples of the same 

malware 

From the research, we 

think that using 

visualization, it would be 

possible to detect malware 

even without unpacking 

sample. 

(Li et al., 2019) They added an updater 

model to improve the 

model. 

- 

 

Our Contribution as compared to (Fu et al., 2018) is that with our algorithm we should be able 

to classify files that are not PE files which was the main focus of their research. We would be 

running our algorithm against android malware and benign samples as a proof of concept. 

3 Research Methodology 

As per our understanding from the related works, we would be using a visualisation approach 

similar to the one taken by (Fu et al., 2018). However, the main difference would be that we 

would be using the byte probability occurring in the file as compared to the file sections and that 

we would be using file size instead of relative section size. The following figure shows a high- 

level methodology used in the research: 



 
 

 

3.1 Preparing datasets: 

Figure 4: Methodology 

Our dataset mainly consists of malware samples downloaded from virusshare. We mainly 

focused on malware samples as it would help with our second hypothesis as well. We created a 

set of 11591 samples. These samples consisted of 3,893 samples of files packed with UPX, 3,893 

samples of unpacked files and 3,807 samples of zip files. 

We have also downloaded approximately 2000 samples of apk files consisting of malware and 

benign samples. As checking whether our model would work with files other than PE files is not 

the main focus of our research, we would be working with a considerably smaller dataset. We 

would be using the same dataset to evaluate our second hypothesis. 

3.2 Visualisation algorithm: 

As discussed before, we would be using visualisation algorithm similar to (Fu et al., 2018). Our 

algorithm is as follows: 

Our goal with the visualisation algorithm is to get a RGB image with each channel/colour having 

a different information such as the occurrence of byte in the file and the size of file. In our 

algorithm, we convert the byte values in the file and use the values for green colour matrix. The 

occurrence of byte in the file is passed on the red channel. The size of the file is passed on the 

blue channel. The process is as shown below: 



 
 

 

3.3 Pre-processing Image: 

Figure 5: Visualization algorithm 

For CNN algorithm, we need images of same sizes. To do this, we would be using de-sampling 

the image to reduce its dimension to a maximum of 128. For images having dimensions less than 

128, we resize the images, which is basically to zoom smaller images to the preferred dimension. 

3.4 Training and testing 

We would be using CNN model with 14 layers. Our dataset would be passed into training and 

testing with 90% of the images in the dataset being used for training and the rest for validation. 

3.5 Evaluation 

We would be running our trained model against an evaluation dataset and using accuracy and 

precision to evaluate our model’s performance. 

4 Design Specification 

A. Models used 

For the purpose of this research, we have used a visualisation model and a CNN model for 

classifying output images from the visualisation model. 

Visualisation model: 

As mentioned before, we use a similar approach to visualisation as proposed by (Fu et al., 2018). 

However, as their algorithm was used on PE files, we have done the following changes: 

1. We have used the same method for green channel. We use the gray-scale converted 

image matrix for the green channel. 

2. For the Red channel, we have created a matrix having the value of the number of 

occurrences of that particular byte. 

3. For the blue channel, as compared to the method by (Fu et al., 2018), we have used the 

file size. (Fu et al., 2018) used relative section sizes in the PE file for the blue channel. 

CNN model: 

We have implemented CNN model using tensorflow keras. It has many packages which help in 

building a CNN model. We have the following layers: 

Table 2: CNN Layers 



 
Layer 

 
Output Shape 

Paramameter 

number 

rescaling_1 (Rescaling) (None, 128, 128, 3) 0 

conv2d (Conv2D) (None, 128, 128, 16) 448 

max_pooling2d 

(MaxPooling2D) 

 
(None, 64, 64, 16) 

 
0 

conv2d_1 (Conv2D) (None, 64, 64, 32) 4640 

max_pooling2d_1 

(MaxPooling2D) 

 
(None, 32, 32, 32) 

 
0 

conv2d_2 (Conv2D) (None, 32, 32, 64) 18496 

max_pooling2d_2 

(MaxPooling2D) 

 
(None, 16, 16, 64) 

 
0 

flatten (Flatten) (None, 16384) 0 

dense (Dense) (None, 128) 2097280 

dense_1 (Dense) (None, 3) 387 

 

B. Hardware and Software Specifications 

Hardware details: We have used a 10th Generation i5 Processor laptop with 8 GB RAM. 

Software Details: Below are the list of software used in the research. 

1. Python: We have coded our implementation in python. In our research, we use python 

version 3.8.10. 

2. Jupyter: We ran our code using jupyter. We used version 7.22.0 in our research 

3. Python packages: We use multiple available python packages including numpy, 

tensorflow and PIL. The versions are as below: 

Table 3: Package versions 
 

Package Version 

Numpy 1.19.5 

PIL 8.2.0 

Tensorflow 2.5.0 

Matplot 3.3.4 

 

5 Implementation 

The implementation for our research is as shown in the below diagram: 



 

Figure 6: Implementation steps 

1. We started by downloading malware samples from virusshare.com and downloaded the 

set into training and evaluation dataset. 

2. We then run visualization model on both the datasets. 

3. We used the training dataset to train the CNN model. For the CNN model, the training 

dataset was further divided into training and validation datasets with a 9:1 split. 

4. Finally, once the CNN model is trained, we run the trained model on the evaluation set. 

6 Evaluation 

A. Hypothesis 1: Would our model be able to detect packers 

a. Summary 

For the research, we would be focusing on classifying upx packed files and zipped files. Our 

model had a validation accuracy of 95.34%. The details loss and accuracy of the model is as 

follows: 



 
 

 

b. Evaluation 

Figure 7: Accuracy and loss of the model 

For evaluation, we passed a set of 11578 images with around 3000 images of unpacked, upx 

packed and zip files passed through our visualisation algorithm. Below are the results of 

evaluation: 

Table 4: Evaluation matrix 
 

Class Precision Recall Accuracy F1 - 

Score 

Original 51.564 93.58 68.0473 66.4902 

UPX 

Packed 

69.4785 23.27 70.5447 34.8662 

Zip 94.1082 79.3 91.7247 86.0741 



 

Figure 8: Results of evaluation 

From figure 8, our proposed algorithm was able to classify unpacked samples from upx packed 

and zipped files. Out of 3893 unpacked files, our algorithm was able to correctly detect 3643 

samples as unpacked, while only 906 samples out of 3893 were correctly detected as packed 

samples and 2939 samples of 3792 were successfully detected as zipped samples. 

We compare our results on packer classification with the research by (Omachi and Murakami, 

2020). They used k-nearest neighbour on the entropy of the files. With the method, they were 

able to successfully identify 125 out of 253 samples. Our trained model was able to correctly 

classify 7488 samples correctly out of 11578 samples. 

B. Hypothesis 2: Would our model be able to classify malware samples from benign 

samples 

a. Summary 

As discussed before, we would be running apk file samples to check for this hypothesis. We got 

a validation accuracy of 81% with our model. Details are as follows: 



b. Evaluation 

For evaluation purpose, we passed a set consisting of 10 malware apk samples, 10 zipped 

malware apk samples and 10 benign apk samples. The details of the samples used are as follows: 

 
 

Table 5: Evaluation dataset description 
 

Filename File type Predicted Actual 

a7ddc91af4d63163ec942d4297 

cb254519dfe38a8bafceafafbf96 

30ff7f2d32.8c32a989e1f5eed4e 

f6ed4a0dc3fd6ae.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

a8054925585483e6dbc0ca0366 

a5460d3f9f5909f491e465f479a 

db112e5db54.8f47cf382b9c48c 

4c08eca5caa5b9e1c.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

a8726d22a5480651c395c88d9c 

c24c0cc7d8b2d2d626526454ef 

96daf0bcd999.09dc1c81c827f2 

74e2dbf99a542af83d.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

a8e029ea800433fe6fc6ebcc677 

f922387d8fff07871c5097ba5d7 

bed70ac15f.2bf4fe977c684fc01 

9a3b21a53999bf7.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

Figure 9: Hypothesis 2 result 



a96c8c2977aae28bf37a5576c4 

5af326c50e6684c5191116c486 

2fcffb33aea5.2bb4d95bc46c30 

644a82263eeffe4b31.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

a975260826bb19a9f4735b77b2 

e02a947f94f9785c8b30d73410 

b67d73678090.9f82a19cd754b 

944b490c5ac6d432477.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

aa0fb35aad2b6beb77cbdacd07 

828806513dae1975be030060fe 

703cce1d9054.0d1366528bf22 

76fdc686b1f3deb38e5.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

aa2be0ac79028bf59168218894 

a61c9990630bac3054416d4185 

714f6aa33eff.37f7e5e37f40f05 

e371903ec76b2d01a.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

ab0a824f00e4aee68a17dad861 

82b6ffe83d6d7d07d572d31183 

cf4a8c1723da.13efad96f27cd58 

3f37b4c22f3af4e6a.zip.png 

 

 
Zipped 

apk 

 

 

 
malware 

 

 

 
malware 

com.jb.gosms.pctheme.venus.a 

pk.png 

 
apk 

 
malware 

 
benign 

com.jetcost.jetcost.apk.png apk benign benign 

com.jk.dailytext.apk.png apk malware benign 

com.joris.uokay.apk.png apk malware benign 

com.josegd.monthcalwidget.ap 

k.png 

 
apk 

 
malware 

 
benign 

com.joshbegley.dronestream.ap 

k.png 

 
apk 

 
malware 

 
benign 

com.jrummy.apps.google.play.a 

pi.apk.png 

 
apk 

 
malware 

 
benign 

com.mercury.wpad.apk.png apk malware benign 

com.metro.bangalore.apk.png apk malware benign 

com.mg.ola.shortcut.apk.png apk malware benign 

com.mikeperrow.spiral.apk.png apk malware benign 

com.miteksystems.android.mob 

iledeposit.brandable.rbcgeorgia. 

apk.png 

 

 
apk 

 

 
malware 

 

 
benign 



com.mobilerise.mystreetview.a 

pk.png 

 
apk 

 
malware 

 
benign 

com.moneris.pos.apk.png apk malware benign 

com.muhanov.apk.png apk malware benign 

fec9aa964070c3044edd7ab8d2 

ac819a799e99feff7d058b2befc 

07f97cc67e5.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

fef1b6eb8d7285c53176b64119 

cacc879d9c634436fea81738d9 

73695bd45711.apk.png 

 

 
apk 

 

 
benign 

 

 
malware 

ff09fd183d2f7a1e94951852c01 

c5e2303f6f24e80587879bc6f5f 

7b81a2afbd.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

ff21b2149e5f4e915bbf3f94ddd 

12555f2a8dd8f5ec0a666410c6e 

b7c87513c4.apk.png 

 

 
apk 

 

 
benign 

 

 
malware 

ff82cc0c97dc6588f4b26533c0f 

a8a88752f6795b6d51fff38fdeb 

85c82f2051.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

ffc588993173d8b4a19a9ee878 

88d53f1b13c957e47a89027439 

deb73ad3ba4d.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

ffd5efd46b2b861b8b11e71c6ba 

00ea891c854029ebb407500c38 

aed86e9e880.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

ffdae5b124392d6c22806f11264 

87c219b360c444072ea62110ed 

c16e109f5a4.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

ffe64c04d97cf22ce30a3d43df9 

bfff084834f1b2cbaf4890f9615 

3264a9997e.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

fff8e36e72ca18a049929c7f2f58 

4f57b6fa2a03dfbe40fbc491b2e 

06e58edac.apk.png 

 

 
apk 

 

 
malware 

 

 
malware 

 

 

 

The result of the run is as follows: 
 

 



Table 6: Evaluation matrix 
 

 
Class 

True 

Positive 

False 

Positive 

True 

negative 

False 

negative 

 
Precision 

 
Recall 

 
F1-score 

malware 17 14 1 2 54.83871 89.47368 68 

benign 1 2 17 14 33.33333 6.666667 11.11111 

 

From the evaluation dataset, we could see that the algorithm had a lower accuracy for benign 

programs. This is to be expected, as the number of samples used were considerably lower than 

the dataset used for packer classification. However, we were able to classify zipped files as 

malware which supports our second hypothesis. 

(Donahue, Paturi and Mukkamala, 2013) used a Markov Byte plot to convert PE file to an 

image. They were able to give an example where they found similarities in packed and 

unpacked malicious samples. We were able to use our method to classify samples as malicious 

or benign. Our method was able to detect zipped files as malicious as well. Moreover, we were 

able to classify apk files as well instead of just PE files.  

Similarly, the method proposed by (Fu et al., 2018) classified samples as malicious or benign. 

One of their limitations was that their algorithm only classified unpacked PE files. With our 

method, we were able to classify both packed PE files and non-PE files as well. However, we 

had a lower accuracy at 81% on classifying malicious files as compared to the 97.47% 

accuracy obtained by (Fu et al., 2018). We believe that increasing the dataset would help in 

increasing the accuracy in classifying malicious samples as we used a smaller dataset of  

2000 samples as compared to 7000 samples used by (Fu et al., 2018). 

C. Discussion 

As compared to the method in [3], our model has a lower accuracy. This is to be expected as we 

generalized the visualisation method to fit multiple types of files instead of just PE files. We 

were able to run our algorithm against a smaller dataset of apk files consisting of malicious and 

benign samples. We were able to get a validation accuracy of 81% with our model. We believe 

that increasing the number of samples in the dataset would help increasing the accuracy of our 

model comparable to the accuracy we received for exe files. 

After running the model against evaluation dataset, we could see that our model was able to 

correctly predict zipped files more precisely compared to packed files. However, original files 

had more than both zipped and packed files. 

We were also able to classify zipped malware apk supporting our second hypothesis that our 

algorithm would be able to classify packed malware samples. 



From our understanding, using a fully convolutional network (FCN) would give a better result 

as we would be able to use the images without reshaping or downsampling. Downsampling and 

reshaping images could result in information getting lost. However, as our images had high 

resolution, the computing power required for running FCN model increased as well. 

7 Conclusion and Future Work 

From the results of our tests, we were able to support both our hypothesis that our model was 

able to classify packed files as well as classify packed malicious files as malware. We were able 

to detect the packers used by using CNN and visualisation. From the output of our model, we 

were able to observe an accuracy of around 95% while classifying the exe files and around 81% 

while classifying apk files. 

Future research could be done on using the image without reshaping the image from the output 

of visualisation model. Another area of interest would be the information used for visualisation 

algorithm. Future research could be done on entropy of the file instead of size or the occurrence 

of byte in the file. We also believe that the method used could be able to classify malware 

samples without unpacking samples. We believe this is also a good area for future research. 
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