

Packer Detection using visualisation

MSc Research Project

Cyber Security

Norman Kolarikkal

Student ID: x19226365

School of Computing

National College of Ireland

Supervisor: Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

I hereby certify that the information contained in this (my submission) is information pertaining to

research I conducted for this project. All information other than my own contribution will be fully

referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic work

is illegal (plagiarism) and may result in disciplinary action.

Signature:

Norman Kolarikkal
…………………………………………………………………………………………

Date:

18-09-2021
…………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the

assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Student

Name:

Norman Kolarikkal
………………………………………………………………………………………

Student ID:

X19226365
…………………………………………………………………………………

Programme:

Cyber Security
………………………………………………

Year:

2020-2021
………………………

Module:

Msc Research Project
…………………………………………………………………………………………

Supervisor:

Imran Khan
………………………………………………………………………………………

Submission

Due Date:

16-August-2021
…………………………………………………………………………………………

Project Title:

Packer detection using visualisation
……………………………………………………………………………………

Word Count:

5137
……………………Page Count……………19……………………………….…

Packer classification using visualization methods.

Norman Kolarikkal

X19226365

Abstract

Malware is software for harming a computer system. Current methods for detecting malware

heavily use signatures such as hashes. However, these methods can easily be deceived using

methods such as packing. We, therefore, proposed use of visualization and Convolutional Neural

network (CNN) model to detect and classify packers as well to detect if a packed sample is

malicious or benign. We would be converting image to a RGB image and then use CNN on the

images to classify packed samples. Our model was able to work on multiple types of files with

us testing our algorithm on exe files and apk files.

1 Introduction

The main goal of malware is to gain unauthorized access or to deny access to systems. As per

(Johnson, n.d.), by March 2020, there were about 677 million reports of new malware samples being

found. Malware analysts face a great challenge due to the increased number of malware samples.

Figure 1: Cumulative detection of malware worldwide from 2015-2020

(Johnson, n.d.)

Static and dynamic analysis are the traditional methods to detect malware. Static analysis is the

method of collecting information such as file size of the malware, its hash signature, etc. without

running the malware. Malware authors/ attackers have, however, started to hide the malicious code

using tools such as packers, crypters, or protectors (Arntz, n.d.). When file is executed, packers will

unpack/extract the code from the file. Crypters use code obfuscation and encryption to fool detection

methods (Arntz, n.d.). Attackers usually use both packers and crypters to prevent reverse engineering

of the malicious code (Arntz, n.d.). Automated packer tools such as UPX are easily available and

made it easy for attackers to create malware requiring a complex skillset to reverse engineer the

malware. Static analysis is disturbed by code obfuscation through methods such as compression and

encryption.

Information collected by running malware in sandbox is called dynamic analysis. Information such

as network calls and registry changes can be easily identified using dynamic analysis. Dynamic

analysis is more robust against code obfuscation methods; however, they usually require more

resources than static analysis.

Recently, visualization methods have been proposed to analyze malware binaries. The visualization

methods have proven to be effective because most variants of malware binaries are generated using

automated technology or reusing some modules (Fu et al., 2018).

Visualization algorithm also face a similar issue that packed samples usually make it difficult to get all

the bytes.

As the malware variants increases, it is becoming more important that research is done on the

evasion techniques such as packers. (Rahbarinia et al., 2017) surveyed both malware and benign

software samples and found that about 58% of malware samples and 54% of benign samples used

well-known packers. Around 35% of the malware samples used custom packers. Therefore, we

propose to use the visualization method to first convert the file to an RGB-coloured image and then

use CNN to train the model to recognize the patterns of well-known packers. This would help in

analyzing the malware samples as it can detect if a particular sample requires unpacking. In case it

requires unpacking, it could also determine which tool was used for packing, if a well-known packer

were used.

1.1 Research Hypothesis

We would be trying to find out if our visualisation model would be able to find out if a file is packed

and detect which packer was used. Therefore, our null hypothesis (H10) and alternative hypothesis

(H1α) would be as follows:

H10: Visualisation algorithm would not be able to detect packer.

H1α: Visualisation algorithm would be able to detect packers.

We also want to check if our algorithm would be able to detect if a packed sample is a malware.

Therefore, our second hypothesis is as follows:

H2: Proposed visualisation algorithm would not be able to detect malware even if the sample is

packed.

H2α: Proposed visualisation algorithm would not be able to detect malware even if the sample

is packed.

1.2 Research Question

From our research hypothesis, the following are the research questions we are trying to investigate:

Q1: How effective will using a CNN algorithm with visualization be in detecting and classifying

packers?

Q2: How effective will the proposed algorithm be in classifying malware from benign samples

even if they are packed?

1.3 Conclusion

The remaining sections of the research paper are as follows: Section 2 discusses the previous

research carried out. The method followed by us for the research is discussed in section 3. The

design is described in Section 4, while Section 5 covers the implementation of the artefact. Section

6 covers the evaluation of our model while we discuss the areas of future research in section 7.

2 Related Work

We discuss the recent works on visualisation, malware and packer detection in this section. Sub-

section A contains the related works on malware detection. We discuss recent methods

researched on packer detection in sub-section B. Finally, we discuss visualisation methods

researched in sub-section C. Sub-section C also describes the use of visualisation method in

malware classification and packer classification as well.

A. Malware detection

Traditional malware detection depends on signature and behaviour analysis. However, using packers,

polymorphic and encoding techniques the malware can fool signature detection. Dynamic analysis is

more robust compared to static analysis; however, the cost poses an issue. Moreover, newer variants of

malware are able to remain dormant in case the malware detects sandbox environment (Baker, 2020).

(Saurabh, 2018) did malware analysis using advanced static analysis (analysis for strings and use of

disassembler is used to load linked libraries and imported functions) and advanced dynamic analysis

(Advance debugging on malware along with registry analysis). They used PEid to determine the

packer used. However, PEid can only determine common/well-known packers. As mentioned before,

in the study by (Rahbarinia et al., 2017), they found that 35% of the attackers have started using

custom packers.

As malware variant have started to remain dormant when a sandbox is detected, (Ijaz et al., 2019),

found that dynamic detection had given lower accuracy than static. They also explain the limitation of

static analysis is packed files. Similarly, (Murali et al., 2020) were able to show how newer malware

variants can avoid dynamic analysis by stopping the execution of malicious code if it detects a

debugging attempt. While static analysis would be able to overcome this issue, the difficulty of reverse

engineering often reduces the effectiveness of static analysis.

Recent research is being done on hybrid analysis to detect malware where both static and dynamic

analysis is used along with the use of machine learning models (Hadiprakoso et al., 2020; Kuo et

al., 2019). (Kuo et al., 2019) discovered about 5% increase in the detection of android malware

using hybrid analysis. (Kuo et al., 2019) similarly found an accuracy of 88% in malware detection

using their model. However, as discussed earlier, the presence of packers has caused the accuracy

of the models to drop (Fu et al., 2018).

B. Packer detection methods

Signature detection is one of the main methods to detect malware. However, detection using signature

is no longer viable due to the use of custom packers. (Omachi & Murakami, 2020) using k-nearest

neighbor algorithm of entropies were able to identify 125 out of 253 packers. However, the research

was done on double-packed samples. As discussed in (Kim et al., 2020), current packers are capable

of using more than 2 layers. (Kim et al., 2020) also introduces a taxonomy to measure the complexities

of the packers based on the layers of packing done by the packers. (Alkhateeb & Stamp, 2019)

suggested using Levenshtein distance and naïve Bayes classifier to classify packers. They were able

to get a higher accuracy compared to commercially available packer detections. (Hua et al., 2020)

tried classifying packed malware based on control flow graphs with them able to achieve 96.4%

accuracy in classifying packed files in their tests. They only used the function call graph for their

model.

(Sun et al., 2020) suggested running all methods with forged arguments to gather information about

the code. However, if the malware is able to detect presence of sandbox, this method may not work.

(Korczynski, 2017) unpacked the packed file and reconstructed the file in a format that was easier to

analyze. However, the tools used for the research did not allow their use on multilayer packers. (Lim

& Nicsen, 2016) used static analysis to detect if a file is packed or not with them being able to achieve

an accuracy of 98.16%. They extracted the features of files and scored them according to a

predetermined risk and weight.

C. Visualization methods

There have been a number of recent research where visualization methods have been used to detect

malware and packers effectively. (Corum et al., 2019) were able to distinguish benign pdf samples from

malicious pdf samples by converting the file to an image using byte plot and Markov plot. They were

able to achieve an F1-score of 99.48% in classifying malicious pdf from benign pdfs. (Kartel et al.,

2020) used visualization and image processing using machine learning to classify malware. They raise

an interesting argument against using machine learning in tha tit is possible to misclassify malware files

as benign files if they are trained with the wrong data. (Kartel et al., 2020) raised an issue with machine

learning that there is a lack of visibility on why the model classified a sample as malware or benign

after comparing existing models. (Venkatraman & Alazab, 2017) used feature extraction on known

malware and used a threshold-based in the extracted features to then classify a sample as malware.

However, the method would be difficult to be implemented in the case of many extracted features due

to the limitation on processing power.

(Fu et al., 2018) used an RGB image of the malware to get more information than the grey-scaled

images. They populated the red, blue, and green channels with more information (such as entropy and

relative size of file) rather than converting a grey-scale image to an RGB image. However, the method

suggested was not able to classify packed malware. We would be building our model based on the

visualization method suggested in this paper.

Figure 2: Output of the model proposed by (Fu et al., 2018) on samples belonging to Backdoor.Win32.Hupigon

(Li et al., 2019) use a graph-based approach to classify packers. They also include an updater in their

model which goes through the result of the model to improve the system after the training phase.

(Donahue et al., 2013) used Markov byte plot to visualize malware samples. They also noted some

similarities between packed and unpacked image samples. As shown in Figure 2, both images showed

a red line in the middle of the image. We believe that our model could show similar similarities, and

this could be a potential route to detect malware without executing the file.

Figure 3: Comparison of packed and unpacked sample images by (Donahue et al., 2013)

However, one of the issues with the existing visualization research done on packed files is that

there is no research done on multi-level packers. Our work will also be done on lower-layer level

packers.

D. Research Niche

As discussed in the previous sections, traditional static analysis methods such as opcode analysis

and hash signatures cannot be used for malware that employs tactics such as code obfuscation

or polymorphism. Packers are one of the well-known methods of obfuscation used by malware

authors. We hope that our model would be able to detect and classify the packers.

Many algorithms using machine learning have been implemented including ones using K-

nearest neighbor and naïve Bayes. However, they have been tested for well-known packers such

as UPX. Our proposed model will use CNN model along with visualization. We hypothesize

that our model would be able to detect and classify well-known packers. We also hypothesize

that our model would be able to find similarities between packed and unpacked malware

samples. This would help in malware detection and reduce the effort in detection and

classification.

The below table contains a summary of the main research papers we went through for our model.

Table 1: Summary of research papers

Research paper Summary Comments

(Fu et al., 2018) Used GLCM to extract

features from a RGB

converted image.

We would be using a

similar approach for our

visualization model. We

would be using CNN

algorithm instead of using

GLCM to extract features

from the image.

(Donahue et al., 2013) Used Markov Byte plot to

convert the file to an

image. They were able to

spot similarities between

packed and unpacked

samples of the same

malware

From the research, we

think that using

visualization, it would be

possible to detect malware

even without unpacking

sample.

(Li et al., 2019) They added an updater

model to improve the

model.

-

Our Contribution as compared to (Fu et al., 2018) is that with our algorithm we should be able

to classify files that are not PE files which was the main focus of their research. We would be

running our algorithm against android malware and benign samples as a proof of concept.

3 Research Methodology

As per our understanding from the related works, we would be using a visualisation approach

similar to the one taken by (Fu et al., 2018). However, the main difference would be that we

would be using the byte probability occurring in the file as compared to the file sections and that

we would be using file size instead of relative section size. The following figure shows a high-

level methodology used in the research:

3.1 Preparing datasets:

Figure 4: Methodology

Our dataset mainly consists of malware samples downloaded from virusshare. We mainly

focused on malware samples as it would help with our second hypothesis as well. We created a

set of 11591 samples. These samples consisted of 3,893 samples of files packed with UPX, 3,893

samples of unpacked files and 3,807 samples of zip files.

We have also downloaded approximately 2000 samples of apk files consisting of malware and

benign samples. As checking whether our model would work with files other than PE files is not

the main focus of our research, we would be working with a considerably smaller dataset. We

would be using the same dataset to evaluate our second hypothesis.

3.2 Visualisation algorithm:

As discussed before, we would be using visualisation algorithm similar to (Fu et al., 2018). Our

algorithm is as follows:

Our goal with the visualisation algorithm is to get a RGB image with each channel/colour having

a different information such as the occurrence of byte in the file and the size of file. In our

algorithm, we convert the byte values in the file and use the values for green colour matrix. The

occurrence of byte in the file is passed on the red channel. The size of the file is passed on the

blue channel. The process is as shown below:

3.3 Pre-processing Image:

Figure 5: Visualization algorithm

For CNN algorithm, we need images of same sizes. To do this, we would be using de-sampling

the image to reduce its dimension to a maximum of 128. For images having dimensions less than

128, we resize the images, which is basically to zoom smaller images to the preferred dimension.

3.4 Training and testing

We would be using CNN model with 14 layers. Our dataset would be passed into training and

testing with 90% of the images in the dataset being used for training and the rest for validation.

3.5 Evaluation

We would be running our trained model against an evaluation dataset and using accuracy and

precision to evaluate our model’s performance.

4 Design Specification

A. Models used

For the purpose of this research, we have used a visualisation model and a CNN model for

classifying output images from the visualisation model.

Visualisation model:

As mentioned before, we use a similar approach to visualisation as proposed by (Fu et al., 2018).

However, as their algorithm was used on PE files, we have done the following changes:

1. We have used the same method for green channel. We use the gray-scale converted

image matrix for the green channel.

2. For the Red channel, we have created a matrix having the value of the number of

occurrences of that particular byte.

3. For the blue channel, as compared to the method by (Fu et al., 2018), we have used the

file size. (Fu et al., 2018) used relative section sizes in the PE file for the blue channel.

CNN model:

We have implemented CNN model using tensorflow keras. It has many packages which help in

building a CNN model. We have the following layers:

Table 2: CNN Layers

Layer

Output Shape

Paramameter

number

rescaling_1 (Rescaling) (None, 128, 128, 3) 0

conv2d (Conv2D) (None, 128, 128, 16) 448

max_pooling2d

(MaxPooling2D)

(None, 64, 64, 16)

0

conv2d_1 (Conv2D) (None, 64, 64, 32) 4640

max_pooling2d_1

(MaxPooling2D)

(None, 32, 32, 32)

0

conv2d_2 (Conv2D) (None, 32, 32, 64) 18496

max_pooling2d_2

(MaxPooling2D)

(None, 16, 16, 64)

0

flatten (Flatten) (None, 16384) 0

dense (Dense) (None, 128) 2097280

dense_1 (Dense) (None, 3) 387

B. Hardware and Software Specifications

Hardware details: We have used a 10th Generation i5 Processor laptop with 8 GB RAM.

Software Details: Below are the list of software used in the research.

1. Python: We have coded our implementation in python. In our research, we use python

version 3.8.10.

2. Jupyter: We ran our code using jupyter. We used version 7.22.0 in our research

3. Python packages: We use multiple available python packages including numpy,

tensorflow and PIL. The versions are as below:

Table 3: Package versions

Package Version

Numpy 1.19.5

PIL 8.2.0

Tensorflow 2.5.0

Matplot 3.3.4

5 Implementation

The implementation for our research is as shown in the below diagram:

Figure 6: Implementation steps

1. We started by downloading malware samples from virusshare.com and downloaded the

set into training and evaluation dataset.

2. We then run visualization model on both the datasets.

3. We used the training dataset to train the CNN model. For the CNN model, the training

dataset was further divided into training and validation datasets with a 9:1 split.

4. Finally, once the CNN model is trained, we run the trained model on the evaluation set.

6 Evaluation

A. Hypothesis 1: Would our model be able to detect packers

a. Summary

For the research, we would be focusing on classifying upx packed files and zipped files. Our

model had a validation accuracy of 95.34%. The details loss and accuracy of the model is as

follows:

b. Evaluation

Figure 7: Accuracy and loss of the model

For evaluation, we passed a set of 11578 images with around 3000 images of unpacked, upx

packed and zip files passed through our visualisation algorithm. Below are the results of

evaluation:

Table 4: Evaluation matrix

Class Precision Recall Accuracy F1 -

Score

Original 51.564 93.58 68.0473 66.4902

UPX

Packed

69.4785 23.27 70.5447 34.8662

Zip 94.1082 79.3 91.7247 86.0741

Figure 8: Results of evaluation

From figure 8, our proposed algorithm was able to classify unpacked samples from upx packed

and zipped files. Out of 3893 unpacked files, our algorithm was able to correctly detect 3643

samples as unpacked, while only 906 samples out of 3893 were correctly detected as packed

samples and 2939 samples of 3792 were successfully detected as zipped samples.

We compare our results on packer classification with the research by (Omachi and Murakami,

2020). They used k-nearest neighbour on the entropy of the files. With the method, they were

able to successfully identify 125 out of 253 samples. Our trained model was able to correctly

classify 7488 samples correctly out of 11578 samples.

B. Hypothesis 2: Would our model be able to classify malware samples from benign

samples

a. Summary

As discussed before, we would be running apk file samples to check for this hypothesis. We got

a validation accuracy of 81% with our model. Details are as follows:

b. Evaluation

For evaluation purpose, we passed a set consisting of 10 malware apk samples, 10 zipped

malware apk samples and 10 benign apk samples. The details of the samples used are as follows:

Table 5: Evaluation dataset description

Filename File type Predicted Actual

a7ddc91af4d63163ec942d4297

cb254519dfe38a8bafceafafbf96

30ff7f2d32.8c32a989e1f5eed4e

f6ed4a0dc3fd6ae.zip.png

Zipped

apk

malware

malware

a8054925585483e6dbc0ca0366

a5460d3f9f5909f491e465f479a

db112e5db54.8f47cf382b9c48c

4c08eca5caa5b9e1c.zip.png

Zipped

apk

malware

malware

a8726d22a5480651c395c88d9c

c24c0cc7d8b2d2d626526454ef

96daf0bcd999.09dc1c81c827f2

74e2dbf99a542af83d.zip.png

Zipped

apk

malware

malware

a8e029ea800433fe6fc6ebcc677

f922387d8fff07871c5097ba5d7

bed70ac15f.2bf4fe977c684fc01

9a3b21a53999bf7.zip.png

Zipped

apk

malware

malware

Figure 9: Hypothesis 2 result

a96c8c2977aae28bf37a5576c4

5af326c50e6684c5191116c486

2fcffb33aea5.2bb4d95bc46c30

644a82263eeffe4b31.zip.png

Zipped

apk

malware

malware

a975260826bb19a9f4735b77b2

e02a947f94f9785c8b30d73410

b67d73678090.9f82a19cd754b

944b490c5ac6d432477.zip.png

Zipped

apk

malware

malware

aa0fb35aad2b6beb77cbdacd07

828806513dae1975be030060fe

703cce1d9054.0d1366528bf22

76fdc686b1f3deb38e5.zip.png

Zipped

apk

malware

malware

aa2be0ac79028bf59168218894

a61c9990630bac3054416d4185

714f6aa33eff.37f7e5e37f40f05

e371903ec76b2d01a.zip.png

Zipped

apk

malware

malware

ab0a824f00e4aee68a17dad861

82b6ffe83d6d7d07d572d31183

cf4a8c1723da.13efad96f27cd58

3f37b4c22f3af4e6a.zip.png

Zipped

apk

malware

malware

com.jb.gosms.pctheme.venus.a

pk.png

apk

malware

benign

com.jetcost.jetcost.apk.png apk benign benign

com.jk.dailytext.apk.png apk malware benign

com.joris.uokay.apk.png apk malware benign

com.josegd.monthcalwidget.ap

k.png

apk

malware

benign

com.joshbegley.dronestream.ap

k.png

apk

malware

benign

com.jrummy.apps.google.play.a

pi.apk.png

apk

malware

benign

com.mercury.wpad.apk.png apk malware benign

com.metro.bangalore.apk.png apk malware benign

com.mg.ola.shortcut.apk.png apk malware benign

com.mikeperrow.spiral.apk.png apk malware benign

com.miteksystems.android.mob

iledeposit.brandable.rbcgeorgia.

apk.png

apk

malware

benign

com.mobilerise.mystreetview.a

pk.png

apk

malware

benign

com.moneris.pos.apk.png apk malware benign

com.muhanov.apk.png apk malware benign

fec9aa964070c3044edd7ab8d2

ac819a799e99feff7d058b2befc

07f97cc67e5.apk.png

apk

malware

malware

fef1b6eb8d7285c53176b64119

cacc879d9c634436fea81738d9

73695bd45711.apk.png

apk

benign

malware

ff09fd183d2f7a1e94951852c01

c5e2303f6f24e80587879bc6f5f

7b81a2afbd.apk.png

apk

malware

malware

ff21b2149e5f4e915bbf3f94ddd

12555f2a8dd8f5ec0a666410c6e

b7c87513c4.apk.png

apk

benign

malware

ff82cc0c97dc6588f4b26533c0f

a8a88752f6795b6d51fff38fdeb

85c82f2051.apk.png

apk

malware

malware

ffc588993173d8b4a19a9ee878

88d53f1b13c957e47a89027439

deb73ad3ba4d.apk.png

apk

malware

malware

ffd5efd46b2b861b8b11e71c6ba

00ea891c854029ebb407500c38

aed86e9e880.apk.png

apk

malware

malware

ffdae5b124392d6c22806f11264

87c219b360c444072ea62110ed

c16e109f5a4.apk.png

apk

malware

malware

ffe64c04d97cf22ce30a3d43df9

bfff084834f1b2cbaf4890f9615

3264a9997e.apk.png

apk

malware

malware

fff8e36e72ca18a049929c7f2f58

4f57b6fa2a03dfbe40fbc491b2e

06e58edac.apk.png

apk

malware

malware

The result of the run is as follows:

Table 6: Evaluation matrix

Class

True

Positive

False

Positive

True

negative

False

negative

Precision

Recall

F1-score

malware 17 14 1 2 54.83871 89.47368 68

benign 1 2 17 14 33.33333 6.666667 11.11111

From the evaluation dataset, we could see that the algorithm had a lower accuracy for benign

programs. This is to be expected, as the number of samples used were considerably lower than

the dataset used for packer classification. However, we were able to classify zipped files as

malware which supports our second hypothesis.

(Donahue, Paturi and Mukkamala, 2013) used a Markov Byte plot to convert PE file to an

image. They were able to give an example where they found similarities in packed and

unpacked malicious samples. We were able to use our method to classify samples as malicious

or benign. Our method was able to detect zipped files as malicious as well. Moreover, we were

able to classify apk files as well instead of just PE files.

Similarly, the method proposed by (Fu et al., 2018) classified samples as malicious or benign.

One of their limitations was that their algorithm only classified unpacked PE files. With our

method, we were able to classify both packed PE files and non-PE files as well. However, we

had a lower accuracy at 81% on classifying malicious files as compared to the 97.47%

accuracy obtained by (Fu et al., 2018). We believe that increasing the dataset would help in

increasing the accuracy in classifying malicious samples as we used a smaller dataset of

2000 samples as compared to 7000 samples used by (Fu et al., 2018).

C. Discussion

As compared to the method in [3], our model has a lower accuracy. This is to be expected as we

generalized the visualisation method to fit multiple types of files instead of just PE files. We

were able to run our algorithm against a smaller dataset of apk files consisting of malicious and

benign samples. We were able to get a validation accuracy of 81% with our model. We believe

that increasing the number of samples in the dataset would help increasing the accuracy of our

model comparable to the accuracy we received for exe files.

After running the model against evaluation dataset, we could see that our model was able to

correctly predict zipped files more precisely compared to packed files. However, original files

had more than both zipped and packed files.

We were also able to classify zipped malware apk supporting our second hypothesis that our

algorithm would be able to classify packed malware samples.

From our understanding, using a fully convolutional network (FCN) would give a better result

as we would be able to use the images without reshaping or downsampling. Downsampling and

reshaping images could result in information getting lost. However, as our images had high

resolution, the computing power required for running FCN model increased as well.

7 Conclusion and Future Work

From the results of our tests, we were able to support both our hypothesis that our model was

able to classify packed files as well as classify packed malicious files as malware. We were able

to detect the packers used by using CNN and visualisation. From the output of our model, we

were able to observe an accuracy of around 95% while classifying the exe files and around 81%

while classifying apk files.

Future research could be done on using the image without reshaping the image from the output

of visualisation model. Another area of interest would be the information used for visualisation

algorithm. Future research could be done on entropy of the file instead of size or the occurrence

of byte in the file. We also believe that the method used could be able to classify malware

samples without unpacking samples. We believe this is also a good area for future research.

8 References

Alkhateeb, E. M., & Stamp, M. (2019). A Dynamic Heuristic Method for Detecting Packed Malware Using

Naive Bayes. 2019 International Conference on Electrical and Computing Technologies and Applications,

ICECTA 2019. https://doi.org/10.1109/ICECTA48151.2019.8959765

Arntz, P. (n.d.). Explained: Packer, Crypter, and Protector - Malwarebytes Labs | Malwarebytes Labs.

Retrieved April 13, 2021, from

https://blog.malwarebytes.com/cybercrime/malware/2017/03/explained-packer-crypter-and- protector/

Baker, K. (2020). What is Malware Analysis? https://www.crowdstrike.com/cybersecurity-

101/malware/malware-analysis/

Corum, A., Jenkins, D., & Zheng, J. (2019). Robust PDF Malware Detection with Image Visualization and

Processing Techniques. Proceedings - 2019 2nd International Conference on Data Intelligence and

Security, ICDIS 2019, 108–114. https://doi.org/10.1109/ICDIS.2019.00024

Donahue, J., Paturi, A., & Mukkamala, S. (2013). Visualization techniques for efficient malware detection.

IEEE ISI 2013 - 2013 IEEE International Conference on Intelligence and Security Informatics: Big

Data, Emergent Threats, and Decision-Making in Security Informatics, 289– 291.

https://doi.org/10.1109/ISI.2013.6578845

Fu, J., Xue, J., Wang, Y., Liu, Z., & Shan, C. (2018). Malware Visualization for Fine-Grained

Classification. IEEE Access, 6, 14510–14523. https://doi.org/10.1109/ACCESS.2018.2805301

Hadiprakoso, R. B., Kabetta, H., & Buana, I. K. S. (2020). Hybrid-Based Malware Analysis for Effective and

Efficiency Android Malware Detection. Proceedings - 2nd International Conference on Informatics,

Multimedia, Cyber, and Information System, ICIMCIS 2020, 8–12.

https://doi.org/10.1109/ICIMCIS51567.2020.9354315

Hua, Y., Du, Y., & He, D. (2020). Classifying Packed Malware Represented as Control Flow Graphs using

Deep Graph Convolutional Neural Network. Proceedings - 2020 International Conference on Computer

Engineering and Application, ICCEA 2020, 254–258. https://doi.org/10.1109/ICCEA50009.2020.00062

Ijaz, M., Durad, M. H., & Ismail, M. (2019). Static and Dynamic Malware Analysis Using Machine Learning.

Proceedings of 2019 16th International Bhurban Conference on Applied Sciences and

http://www.crowdstrike.com/cybersecurity-

Technology, IBCAST 2019, 687–691. https://doi.org/10.1109/IBCAST.2019.8667136

Johnson, J. (n.d.). • Global new malware volume 2020 | Statista. Retrieved April 13, 2021,

from https://www.statista.com/statistics/680953/global-malware-volume/

Kartel, A., Novikova, E., & Volosiuk, A. (2020). Analysis of Visualization Techniques for Malware

Detection. Proceedings of the 2020 IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering, EIConRus 2020, 337–340.

https://doi.org/10.1109/EIConRus49466.2020.9038910

Kim, J. W., Namgung, J., Moon, Y. S., & Choi, M. J. (2020). Experimental comparison of machine

learning models in malware packing detection. APNOMS 2020 - 2020 21st Asia-Pacific Network

Operations and Management Symposium: Towards Service and Networking Intelligence for

Humanity, 377–380. https://doi.org/10.23919/APNOMS50412.2020.9237007

Korczynski, D. (2017). RePEconstruct: Reconstructing binaries with self-modifying code and import

address table destruction. 2016 11th International Conference on Malicious and Unwanted

Software, MALWARE 2016, anno 2008, 31–38.

https://doi.org/10.1109/MALWARE.2016.7888727

Kuo, W. C., Liu, T. P., & Wang, C. C. (2019). Study on android hybrid malware detection based on

machine learning. 2019 IEEE 4th International Conference on Computer and Communication

Systems, ICCCS 2019, 31–35. https://doi.org/10.1109/CCOMS.2019.8821665

Li, X., Shan, Z., Liu, F., Chen, Y., & Hou, Y. (2019). A consistently-executing graph-based

approach for malware packer identification. IEEE Access, 7, 51620–51629.

https://doi.org/10.1109/ACCESS.2019.2910268

Lim, C., & Nicsen. (2016). Mal-Eve: Static detection model for evasive malware. Proceedings of the

2015 10th International Conference on Communications and Networking in China, CHINACOM

2015, 283–288. https://doi.org/10.1109/CHINACOM.2015.7497952

Murali, R., Ravi, A., & Agarwal, H. (2020, February 1). A Malware Variant Resistant to Traditional

Analysis Techniques. International Conference on Emerging Trends in Information

Technology and Engineering, Ic-ETITE 2020. https://doi.org/10.1109/ic-ETITE47903.2020.264

Omachi, R., & Murakami, Y. (2020). Packer Identification Method for Multi-layer Executables with

k-Nearest Neighbor of Entropies. Proceedings of 2020 International Symposium on

Information Theory and Its Applications, ISITA 2020, C, 504–508.

Rahbarinia, B., Balduzzi, M., & Perdisci, R. (2017). Exploring the Long Tail of (Malicious) Software

Downloads. Proceedings - 47th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2017, 391–402. https://doi.org/10.1109/DSN.2017.19

Saurabh. (2018, December 1). Advance Malware Analysis Using Static and Dynamic Methodology.

2018 International Conference on Advanced Computation and Telecommunication, ICACAT

2018. https://doi.org/10.1109/ICACAT.2018.8933769

Sun, C., Zhang, H., Qin, S., Qin, J., Shi, Y., & Wen, Q. (2020). DroidPDF: The Obfuscation

Resilient Packer Detection Framework for Android Apps. IEEE Access, 8, 167460–

167474. https://doi.org/10.1109/access.2020.3010588

Venkatraman, S., & Alazab, M. (2017). Classification of Malware Using Visualisation of Similarity

Matrices. Proceedings - 2017 Cybersecurity and Cyberforensics Conference, CCC 2017,

2018- Septe, 3–8. https://doi.org/10.1109/CCC.2017.11

http://www.statista.com/statistics/680953/global-malware-volume/

