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1. Introduction

The research necessitates the use of a dataset containing both DDoS attack and benign traffic
characteristics. As a part of data pre-processing, it is necessary to perform feature selection,
encoding the class variables, constructing a subset of datasets, and building the model and
conduct the evaluation of the model. The goal of the configuration manual is to help users set
up this research project code on their system so that they can use it to evaluate the study or
modify it to meet their specific needs. The prerequisites and environment set up section offers a
complete guidance for creating a project environment as well as a list of requirements for
replicating the results achieved through the research. Code Execution section contains the
complete developed code as well as the parameters for customizing various portions of the
project.

2. Requirement

2.1 System Requirement

The process of machine learning involves overhead of resources on the host machine.
Hence, it is critical that the hardware configuration on the employed machine be
capable of doing such tasks. The following are the system's minimum requirements:

e CPU: Intel i5 6™ Gen or Intel i7 5™ Gen Processor with 2.4 GHZ
e RAM: 8gb DDR4
e Storage: 15 GB of free space HDD or SSD

2.2 Windows Machine requirement

e Working internet Connection
e Web Browser — MS Edge/ Chrome/ Firefox
e MS Excel — for analyzing the datasets.

2.3 Software Application requirements
e Anaconda - 64 bits
e Python 3 (Recommended)



Dataset Collection

The dataset used to create this model is a CSV file containing web traffic, including both
DDoS attack and normal traffic. It is available for download from an internet repository
that provides a dataset for cybersecurity research. [1]. The source for downloading the
dataset can be found at https://www.unb.ca/cic/datasets/ids-2017.html

The size of the dataset file is around 2.1 GB due to which it requires a strong internet
connection. Below snapshot shows the preview of the dataset in excel sheet.
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4. Packages and Imports for Code

The model was developed on a python code using jupyter notebook, the code involves
several packages and imports which are mentioned as follows:

e Matplotlib 3.1.2
e Numpy 1.18.0
e Pyparsing 2.4.6
e scikit-learn 0.22
e scipy14.1

e sklearn

e pandas

e KMeans

e mpl_toolkits
e Seaborn

e train_test_split
e Sklearn.metrics
e SVC

5. Feature Selection and Data Preprocessing

In order to perform the feature selection, the Correlation Coefficient technique is
implemented using the below code on the complete dataset.


https://www.unb.ca/cic/datasets/ids-2017.html

In [144]: # Correlation matrix

def plotCorrelationMatrix(df, graphwidth):

#filename = df.dataframeName

df = df.dropna('columns’) # drop columns with Nan

df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values

if df.shape[1] < 2:
print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2')
return

corr = df.corr()

plt.figure(num=None, figsize=(graphWidth, graphwidth), dpi=8@, facecolor='w', edgecolor='k")

corrMat = plt.matshow(corr, fignum = 1)

plt.xticks(range(len(corr.columns)), corr.columns, rotation=9@)

plt.yticks(range(len(corr.columns)), corr.columns)

plt.gca().xaxis.tick_bottom()

plt.colorbar(corrMat)

plt.title(f'Correlation Matrix for ', fontsize=15)

plt.show()

Correlation function is created using the above code, and is called by passing the data frame
in it, along with the graph width:

|: plotCorrelationMatrix(ddos test df1, 19)

The output of the function returns is list of features which has strong relationship with the
target variable:

In [151]:

In [152]:

out[152]:

In [153]:

out[153]:

# with the following function we can select highly correlated features
# it will remove the first feature that is correlated with anything other feature

def correlation(dataset, threshold):

col_corr = set() # Set of all the names of correlated columns

corr_matrix = dataset.corr()

for i in range(len(corr_matrix.columns)):

for j in range(i):
if abs(corr_matrix.ilec[i, j]) » threshold: # we are interested in absolute coeff value

colname = corr_matrix.columns[i] # getting the name of column
col_corr.add(colname)

return col_corr

corr_features = correlation(ddos_test_df1, ©.99)
len(set(corr_features))

21

corr_features

G

Average Packet Size’,
Avg Bwd Segment Size',

' Avg Fwd Segment Size',
' Bwd Header Length',
' ECE Flag count’,

Fwd Header Length’,
Fwd Header Length.1',
Fwd TIAT Max',

Idle Max',

Idle Min',

' SYN Flag Count’,
' subflow Bwd Bytes',




6. Coding

The su

bset of dataset is created using the derived features and the target variable ‘Label’ is

deleted from the dataset. Which is then suppled to below set of code, which is used to find the
value of K using the EIbow method

In [2]:

In [3]:

#Clean Dataset

df = pd.read csv('Dataset DDoS1 Benign DDosHulk 18Features Unlabelled.csv')
df.dataframeName = 'Dataset DDoSl1 Benign DDosHulk 18Features Unlabelled.csv’

nRow, ncol = df.shape
print(f'There are {nRow} rows and {nCol} columns’)

There are 150001 rows and 18 columns

#finding number of clusters

wess = []
for 1 in range(1,11):
model = KMeans(n_clusters = i, init = "k-means++")

model. fit(df)
wcss.append(model.inertia_)
plt.figure(figsize=(10,12))
plt.plot(range(1,11), wcss)
plt.xlabel( 'Number of clusters')
plt.ylabel('wcss")
plt.show()

The value of K found using elbow method is passed to Kmeans algorithm which creates the

cluster
In [4

The ou
the unl

In [5]:

Out[5]

of the data based on its characteristics

]: | # K means model

centers = np.array(model.cluster centers )

model = KMeans(n_clusters = 2, init = "k-means++")
label = model.fit_predict(df)
plt.figure(figsize=(10,18))

uniq = np.unique(label)

df = np.array(df) #for converting df to array
for i in unig:
plt.scatter(df[label == i, @], df[label == i, 1], label = i)
plt.scatter(centers[:,8], centers[:,1], marker="x", color="k')
#This is done to find the centroid for each clusters.
plt.legend()

plt.show()

tput generated from the above code is in the form of array which is then appended to
abeled dataset using below piece of code:

label # printing Label to check if the values 1is feeded into it

: array([6, @, @, ..., 1, 1, 11)

:  labeldf = pd.DataFrame(label) # creating Label.csv file to check the @ and 1 values
labeldf.to_csv('Label.csv')

: | ColPosition = 18
Kmeansdata=pd.DataFrame(df)
#Kmeansdataf 'Decision'] = Label

Kmeansdata.insert(ColPosition, "Decision", label) # adding label field to datafile



This gives the dataset, that was labeled using k-means clustering. The newly created dataset
is then supplied to SVM model to train and test the model. The snapshot below illustrates the
piece of code:

12]: frem sklearn.model selection impert train test split

X =svmdf.drop('Decision’, axis=l) # droping Decision data, df is now without Label for training and testing
y =svmdf['Decision']

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0@.4,random_state=8, stratifyzy)

X.head()

The data is spilt into X — independent variables and y — target Variables which is then used by
SVM classifier for training and testing the model

In [15]:

Out[15]:

In [16]:

Out[16]:

In [17]:

Out[17]:

# Run this block of code if you want to skip the scaler part - before running comment the standard scalar part from above code
#from sklearn.preprocessing import StandardScaler

#X_train = StandardScaler().fit_transform(X) #optional - if you need the data to be scaled in standard manner
#X_test = StandardScaler().fit_transform(X_test)

from sklearn.svm import SVC

kername = 'rbf’
svclassifier = SVC(kernel= kername, C = @.01)
svclassifier.fit(X_train, y_train)

#y_train_pred = svclassifier.predict(X_train)
o st o) & el PR A El st
y_test_pred

array([@, @, @, ..., 0, @, @], dtype=int64)

from sklearn.metrics impert accuracy_score,confusion_matrix

confusion_matrix(y_test,y _test_pred)
array([[46197, 8],

[ 5@, 13754]], dtype=int64)
accuracy_score(y_test,y_test_pred)

©.9%91666885553241

The output of the model is measured in terms of accuracy score which is calculated using the
confusion matrix.



