===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Cybersecurity

Ramesh Jaiswar
Student ID: x20102691

School of Computing
National College of Ireland

Supervisor: Ross Spelman

‘-—
National College of Ireland \ National

MSc Project Submission Sheet CollegeOf
c Project Submission Shee
Ireland
School of Computing

Student Name:

Ramesh Jaiswar
Student ID: X20102691
Programme: MSC in Cybersecurity Year: 2020 - 2021
Module: MSC Internship
Supervisor: Ross Spelman
Submission Due
Date: 16/08/2021
Project Title: DDoS Attack prediction and classification at Application Layer for

Web protocol using Kmeans - SVM Machine Learning Algorithm
Word Count: 888
Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

(Y L T 1= X o TSRS
Date: 16t August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, o

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ramesh Jaiswar
x20102691

1. Introduction

The research necessitates the use of a dataset containing both DDoS attack and benign traffic
characteristics. As a part of data pre-processing, it is necessary to perform feature selection,
encoding the class variables, constructing a subset of datasets, and building the model and
conduct the evaluation of the model. The goal of the configuration manual is to help users set
up this research project code on their system so that they can use it to evaluate the study or
modify it to meet their specific needs. The prerequisites and environment set up section offers a
complete guidance for creating a project environment as well as a list of requirements for
replicating the results achieved through the research. Code Execution section contains the
complete developed code as well as the parameters for customizing various portions of the
project.

2. Requirement

2.1 System Requirement

The process of machine learning involves overhead of resources on the host machine.
Hence, it is critical that the hardware configuration on the employed machine be
capable of doing such tasks. The following are the system's minimum requirements:

e CPU: Intel i5 6™ Gen or Intel i7 5™ Gen Processor with 2.4 GHZ
e RAM: 8gb DDR4
e Storage: 15 GB of free space HDD or SSD

2.2 Windows Machine requirement

e Working internet Connection
e Web Browser — MS Edge/ Chrome/ Firefox
e MS Excel — for analyzing the datasets.

2.3 Software Application requirements
e Anaconda - 64 bits
e Python 3 (Recommended)

Dataset Collection

The dataset used to create this model is a CSV file containing web traffic, including both
DDoS attack and normal traffic. It is available for download from an internet repository
that provides a dataset for cybersecurity research. [1]. The source for downloading the
dataset can be found at https://www.unb.ca/cic/datasets/ids-2017.html

The size of the dataset file is around 2.1 GB due to which it requires a strong internet
connection. Below snapshot shows the preview of the dataset in excel sheet.

T u v w

38308 0 0 0
0 479 47.9 3884284
1095 121.6667 298.7461

15206 950.375 3322.418

1092 136.5 313.8507

433 43.3 41.79859

579225 4421.565 17683.93
3 3 0
4 2 1414214
1 1080 135 308.0988
3 5008522 131803.2 498594.9

1
0
1
0
2 1088 136 293.8518
0
3
1

1 4955405 154856.4 544298.4
14 274427 24947.91 30158.78

AL v fr | Destination Port
A B C D E F G H ! J K L M N] P aQ R S

1 Destiﬂali(l Flow Dura Total Fwd Total Bacl Total Leng Total Leng Fwd Packs Fwd Packs Fwd Packs Fwd Packe Bwd Packe Bwd Packi Bwd Pack Bwd Pack Flow Bytes Flow Pack Flow AT Flow IAT ¢ Flow IAT I Flow IAT F Fwd IAT Tc Fwd IAT & Fwd IAT S Ry
2 80 38308 1 1 6 6 6 6 6 [6 6 6 0 313.2505 52.20842 38308 0 38308
3 389 4719 1 5 172 326 79 0 15.63636 31.44924 163 0 65.2 89.27878 1039666 33402.92 31.93333 25.51041 3
4 88 1095 10 6 3150 3150 1575 0 315 632.5616 1575 0 525 8133265 5753425 14611.87 73 204.961 810
5 389 15206 17 12 3452 6660 1313 0 203.0588 425.7785 3069 1] 555 977.4803 665000.7 1907.142 543.0714 2519.931 13391
6 a3 1092 9 6 3150 3152 1575 0 350 £94.5097 1576 0 5253333 813.8429 5771062 13736.26 78 207.0009 794
7 389 433 1 4 172 326 79 0 15.63636 31.44924 163 0 815 94.10809 1150115 34642.03 30.92857 27.74462 74
8 88 1088 9 [3150 3152 1575 0 350 £94.5097 1576 0 525.3333 813.8429 5792279 13786.76 77.71429 210.3771 805
9 80 579225 132 150 160 320799 160 0 1212121 13.92621 4344 0 213866 831.8348 554118 486.8574 2061.299 12214.53 94632
10 49666 3 2 1] 12 0 6 6 6 0 0 1] 1] 0 4000000 666666.7 3 0 3
1 49413 4 3 0 18 0 6 6 6 0 0 0 0 0 4500000 750000 2 1414214 3
12 23 1080 9 6 3130 3124 1565 0 347.7778 690.1001 1562 0 520.6667 806.6133 5790741 13888.80 77.14286 212.1146 811
13 388 5008522 39 26 599 10284 403 0 153.7436 139.3018 173 126 3955385 344.6043 325046 12.97788 78258.16 387630.7 2673701
14 3268 4955405 33 24 4990 5060 403 0 151.2121 120.147 242 72 210.8333 63.43478 2028.089 11.50259 88489.38 415887.6 2716857
15 443 74441 12 14 5763 16108 3425 0 480.25 1016.59 3121 0 1150571 863.0403 79692.9 94.73803 10977.64 19256.03 52399

4. Packages and Imports for Code

The model was developed on a python code using jupyter notebook, the code involves
several packages and imports which are mentioned as follows:

e Matplotlib 3.1.2
e Numpy 1.18.0
e Pyparsing 2.4.6
e scikit-learn 0.22
e scipy14.1

e sklearn

e pandas

e KMeans

e mpl_toolkits
e Seaborn

e train_test_split
e Sklearn.metrics
e SVC

5. Feature Selection and Data Preprocessing

In order to perform the feature selection, the Correlation Coefficient technique is
implemented using the below code on the complete dataset.

https://www.unb.ca/cic/datasets/ids-2017.html

In [144]: # Correlation matrix

def plotCorrelationMatrix(df, graphwidth):

#filename = df.dataframeName

df = df.dropna('columns’) # drop columns with Nan

df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more than 1 unique values

if df.shape[1] < 2:
print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less than 2')
return

corr = df.corr()

plt.figure(num=None, figsize=(graphWidth, graphwidth), dpi=8@, facecolor='w', edgecolor='k")

corrMat = plt.matshow(corr, fignum = 1)

plt.xticks(range(len(corr.columns)), corr.columns, rotation=9@)

plt.yticks(range(len(corr.columns)), corr.columns)

plt.gca().xaxis.tick_bottom()

plt.colorbar(corrMat)

plt.title(f'Correlation Matrix for ', fontsize=15)

plt.show()

Correlation function is created using the above code, and is called by passing the data frame
in it, along with the graph width:

|: plotCorrelationMatrix(ddos test df1, 19)

The output of the function returns is list of features which has strong relationship with the
target variable:

In [151]:

In [152]:

out[152]:

In [153]:

out[153]:

with the following function we can select highly correlated features
it will remove the first feature that is correlated with anything other feature

def correlation(dataset, threshold):

col_corr = set() # Set of all the names of correlated columns

corr_matrix = dataset.corr()

for i in range(len(corr_matrix.columns)):

for j in range(i):
if abs(corr_matrix.ilec[i, j]) » threshold: # we are interested in absolute coeff value

colname = corr_matrix.columns[i] # getting the name of column
col_corr.add(colname)

return col_corr

corr_features = correlation(ddos_test_df1, ©.99)
len(set(corr_features))

21

corr_features

G

Average Packet Size’,
Avg Bwd Segment Size',

' Avg Fwd Segment Size',
' Bwd Header Length',
' ECE Flag count’,

Fwd Header Length’,
Fwd Header Length.1',
Fwd TIAT Max',

Idle Max',

Idle Min',

' SYN Flag Count’,
' subflow Bwd Bytes',

6. Coding

The su

bset of dataset is created using the derived features and the target variable ‘Label’ is

deleted from the dataset. Which is then suppled to below set of code, which is used to find the
value of K using the EIbow method

In [2]:

In [3]:

#Clean Dataset

df = pd.read csv('Dataset DDoS1 Benign DDosHulk 18Features Unlabelled.csv')
df.dataframeName = 'Dataset DDoSl1 Benign DDosHulk 18Features Unlabelled.csv’

nRow, ncol = df.shape
print(f'There are {nRow} rows and {nCol} columns’)

There are 150001 rows and 18 columns

#finding number of clusters

wess = []
for 1 in range(1,11):
model = KMeans(n_clusters = i, init = "k-means++")

model. fit(df)
wcss.append(model.inertia_)
plt.figure(figsize=(10,12))
plt.plot(range(1,11), wcss)
plt.xlabel('Number of clusters')
plt.ylabel('wcss")
plt.show()

The value of K found using elbow method is passed to Kmeans algorithm which creates the

cluster
In [4

The ou
the unl

In [5]:

Out[5]

of the data based on its characteristics

]: | # K means model

centers = np.array(model.cluster centers)

model = KMeans(n_clusters = 2, init = "k-means++")
label = model.fit_predict(df)
plt.figure(figsize=(10,18))

uniq = np.unique(label)

df = np.array(df) #for converting df to array
for i in unig:
plt.scatter(df[label == i, @], df[label == i, 1], label = i)
plt.scatter(centers[:,8], centers[:,1], marker="x", color="k')
#This is done to find the centroid for each clusters.
plt.legend()

plt.show()

tput generated from the above code is in the form of array which is then appended to
abeled dataset using below piece of code:

label # printing Label to check if the values 1is feeded into it

: array([6, @, @, ..., 1, 1, 11)

: labeldf = pd.DataFrame(label) # creating Label.csv file to check the @ and 1 values
labeldf.to_csv('Label.csv')

: | ColPosition = 18
Kmeansdata=pd.DataFrame(df)
#Kmeansdataf 'Decision'] = Label

Kmeansdata.insert(ColPosition, "Decision", label) # adding label field to datafile

This gives the dataset, that was labeled using k-means clustering. The newly created dataset
is then supplied to SVM model to train and test the model. The snapshot below illustrates the
piece of code:

12]: frem sklearn.model selection impert train test split

X =svmdf.drop('Decision’, axis=l) # droping Decision data, df is now without Label for training and testing
y =svmdf['Decision']

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0@.4,random_state=8, stratifyzy)

X.head()

The data is spilt into X — independent variables and y — target Variables which is then used by
SVM classifier for training and testing the model

In [15]:

Out[15]:

In [16]:

Out[16]:

In [17]:

Out[17]:

Run this block of code if you want to skip the scaler part - before running comment the standard scalar part from above code
#from sklearn.preprocessing import StandardScaler

#X_train = StandardScaler().fit_transform(X) #optional - if you need the data to be scaled in standard manner
#X_test = StandardScaler().fit_transform(X_test)

from sklearn.svm import SVC

kername = 'rbf’
svclassifier = SVC(kernel= kername, C = @.01)
svclassifier.fit(X_train, y_train)

#y_train_pred = svclassifier.predict(X_train)
o st o) & el PR A El st
y_test_pred

array([@, @, @, ..., 0, @, @], dtype=int64)

from sklearn.metrics impert accuracy_score,confusion_matrix

confusion_matrix(y_test,y _test_pred)
array([[46197, 8],

[5@, 13754]], dtype=int64)
accuracy_score(y_test,y_test_pred)

©.9%91666885553241

The output of the model is measured in terms of accuracy score which is calculated using the
confusion matrix.

