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Toward Automated Penetration Testing Intelligently
with Reinforcement Learning

Kar Chun Goh
20102062

MSc Research Project in Cybersecurity

Abstract

As the world was moving into the generation of Artificial Intelligent (AI), many
sectors utilise AI for various types of tasks. In this research, an intelligent auto-
mated penetration testing system is introduced in this thesis. The research is about
implementing a machine learning technique called reinforcement learning to predict
the use of Metasploit Framework’s module and achieve the best performance and
result while conducting automated penetration testing with the Metasploit frame-
work. In this research, two learning algorithms have been implemented, Q-learning
and Deep Q-learning. In this research, Q-learning has achieved a notable result
and also discovered a flaw of the purposed method in this research.

1 Introduction

Automation is a goal of daily production in every industry, information security or cyber-
security industry has no exception. Although, automated security tools was not some-
thing new in the industry. For instance, the Intrusion Detection System/Intrusion Preven-
tion System (IDS/IPS) is one of the famous instances, it automated filtering or blocking
network packets by a set of rules and machine learning techniques. Although, the industry
of penetration testing does not has many such toolkits. Mostly are semi-automated pen-
etration toolkit will require a high-level interaction. A few famous instances, such as
Metasploit Framework, Nmap, Brupsuite and OWASP ZAP.

Cybersecurity becoming one of the hottest fields in the industry of Information Tech-
nology as the pandemic brings most of the services and products online. The demand
for information security is much higher before the pandemic. However, the information
security expert is still not enough to fulfil the requirement of the information security in-
dustry, especially the expert in the field of penetration testing. According to the Varonic
Statistics and Trends for 2021 by ROB SOBERS (2021), 68 per cent of business feels
their business cybersecurity risk are increasing; 36 billion records exposed in the first half
of 2020; 45 per cent of breach featured by hacking. In addition, the average IBM spent
3.86 million on data breaches; a data breach requires an average of 207 days to identify
a data breach; 280 days from identifying to containment. FBI reported, 300 per cent of
cybercrime increase since pandemic and worldwide cybercrime will hit 6 trillion dollars
annually in 2021.
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As above paragraph pointed out the importance of cybersecurity mean to an organ-
ization. However, not every organization has the resource to spend on security. This
research is investigating the potential use of machine learning in offensive security for
lowering the cost of cybersecurity and increase the security level for organizations. This
research proposes a methodology that utilizes the Metasploit framework to implement an
automated penetration testing system. On top of the automated penetration testing sys-
tem, a sub-branch of machine learning techniques is implemented for making the decision
while the automated penetration testing program is running. The decision made by the
reinforcement learning agent mainly predicts the best approach which is the Metasploit
Framword’s modules to exploit the target system. The reinforcement learning agent will
require a certain level of training, before making predictions. However, the primary ob-
jective of this research is to investigate the potential use of machine learning in offensive
security and evaluate it. The paper is organised by the literature review, methodology
description, implementation of the proposed method and evaluation of the methodology.

2 Related Work

2.1 Offensive Security and Penetration testing

The research did by Wigmore (n.d.) describe the conventional information security can
be considered defensive security. It usually statically discover software vulnerability and
patch new version of the software. In contrast, offensive security typically simulates as
an offender to disable or disrupt the operation of a system in order to discover the vul-
nerability of a system. Penetration testing is one of the offensive information security
techniques used to discover potentially exploitable vulnerabilities of a system in an or-
ganisation. Penetration testing is a proactive method to secure a system. Typically,
penetration testing conduct through simulate the attacker and try to exploit the system.
Along with the penetration testing, the penetration tester will discover the vulnerabilit-
ies of the system and submit a report to other security teams for design and implement
mitigation strategies. A penetration testing life-cycle can be defined into four phases ,
which reconnaissance (information gathering), vulnerabilities discover, exploitation and
post-exploitation, stated by GoCertify (2020) (CEHv9), Abu-Dabaseh and Alshammari
(2018) and Kennedy (2011), Yaroslav Stefinko, Andrian Piskozub (2016). Some literature
defining the penetration testing life-cycle into more specific by adding the phase of pre-
engagement, reporting, access maintaining, fingerprint covering or threading modelling.

The research did by Abu-Dabaseh and Alshammari (2018) summarised the compar-
ison of automated penetration testing and manual penetration testing. The research
stated attributes of automated penetration testing such as lower cost, easily adaptation
to repetitive tasks, faster performance and standard process. Beside, conducting manual
penetration testing is time and money consuming, as well as training an expert of a penet-
ration tester. From the research can conclude the necessity and importance of automated
penetration testing. However, there are still very few fully automated penetration testing
tools in the current market and industry. The research did by Ghanem and Chen (2020)
pointed out the recent automated penetration tools or programs are more automated
vulnerabilities discovery rather than automated exploitation. For instance, several reput-
able software such as an open-source penetration testing software OpenVas or Tenable
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commercial product Nessus. In addition, those products are covering certain purposes
and tasks or single purpose and task in the penetration testing life cycle. Because the
automation process of penetration testing hardly adapts to the various circumstance and
uncertainty of the system environment.

2.2 Machine Learning and Reinforcement Learning

Machine Learning (ML) is one of the branches of Artificial Intelligent (AI), the main
purpose of machine learning allows a computer to make predictions and decisions base on
suitable data and algorithms. Machine learning has three main branches are Supervised
Learning, Unsupervised Learning and Reinforcement Learning. Each of the branches has
its advantage in solving various circumstances. Supervised learning use labelled data
to train and mapping by algorithms to make predictions; unsupervised learning learns
structure or distribution of input data only, mentioned by Dalton (2017).

According to the research of Jeerige et al. (2019), reinforcement learning has been
existing in the industry of machine learning, it is also a subsection of machine learning.
Reinforcement learning is based on the mathematical algorithm called Markov Decision
Process (MDP). Markov Decision Process is defined by a tuple 〈S,A,R, T, γ 〉. Which
a set of state S; a set of action A; a reward function R; a transition function T; and
discount factor γ stated by Hester et al. (2018). Reinforcement learning is based on
a concept about machine study and learning through interaction with the environment
and feedback from the environment. Several differences between machine learning and
reinforcement learning. For instance, the research published by the Abhishek and Biswas
(2012) describe reinforcement learning does not train by data; reinforcement learning
does not interact with the dataset but the environment; reinforcement learning is based
on the environment and the parameter of the environment; the objective of reinforcement
learning is based on goal; reinforcement learning obtains reward from the environment.
Based on the attributes of reinforcement learning, it can tell that reinforcement learning
is suitable to interact with an unknown and complex environment. Moreover, in the case
of predicting without a dataset, Reinforcement learning has its advantage compared with
other types of machine learning techniques.

After concluded several literature, such as Morales and Zaragoza (2011); Jeerige et al.
(2019); Dalton (2017); Lavet (2018); Tan and Karakose (2020), reinforcement learning
has five main components which Agent, Environment, State, Action and Reward. An
agent is an entity that can explore the environment and interact with the environment.
An agent learns from the feedback of the environment without any supervision. An agent
can be considered as the learning program itself as well. An environment is a situation
that an agent could interact with and explore. For instance, if a board game implemented
reinforcement learning. The board game would be the environment of the reinforcement
learning system. Action is the movement of the agent interact with the environment. A
state is a stage or a place that where the agent is present in the current environment.
A reward is a feedback from an environment to evaluate the action of the agent. There
are two primary two types of reward, positive reward and negative reward system. A
positive reward reinforcement learning system is about giving the reward to encourage
the system behaviours to happen again. A negative reward-based reinforcement learning
is the opposite of a positive reward system. The concept of the negative reward is to

3



discourage the system try not to trigger the event anymore by giving a punishment. The
ultimate goal of the agent will try to accumulate rewards as much as possible.

The workflow of the standard reinforcement learning is as simple as a continuous loop
and passing the data between the agent and environment. As the agent start, the en-
vironment passing a state to the agent of the reinforcement learning. At each step loop,
the agent gives an action that interacting with the environment. Then, the environment
returns with the updated state and reward for the action provided by the agent, the prin-
cipal is giving the reward and punishment based on the action for the desired outcome
and result through the algorithm.

In the current research of reinforcement learning, reinforcement learning has three
primary approaches, which include model-based reinforcement learning, policy-based re-
inforcement learning and value-based reinforcement learning, mentioned by an article by
Lavet (2018). As the name implied, the value-based reinforcement learning approach
tries to build the most optimal value function for the system.

The simplest and most popular value-based algorithm is Q-learning. Q-learning is an
off-policy and off-model reinforcement learning algorithm, it keeps lookup the Q-table for
making the prediction. The approach can be setting up an initial Q-table, then enter a
loop of select action, measure reward and update Q-table. The Q-learning is based on
the Bellman equation (Bellman and Dreyus 1962) as well, mentioned by Lavet (2018).
Besides, according to Pandey and Pandey (2010) a Q-value could be as simple as Q(s, a)
in the Q-table, which s represent a particular state of the environment and a represent
a particular action. In the Q-learning, the agent will experience a sequence of states to
update the Q value. The research did by Watkins and Dayan (1992) clearly describe
the workflow of the Q-learning, the process starts from observing the state s from the
environment; select and perform the action a; observing the next state s′; receiving the
reward r; update the Q-learning factor of the learning factor. Temporal difference learn-
ing is an algorithm that looks at the differentiation of the current estimate state and
action pair and the discounted value of the next state and the reward. A realistic prob-
lem (such as the environment of penetration testing), the agent does not always have the
perfect knowledge about the environment. Hence, the following mathematics equation
is the example of the Q-learning algorithm and the Q-learning with temporal different
learning that many researchers are using such as Pandey and Pandey (2010); Rodrigues
and Vieira (2020). The equation includes the standard Q-learning and component of the
Q-learning function. The equation clearly describes how the Q-value has been calculated
and updated.

NewQ(s, a)︸ ︷︷ ︸
New Q-Value

= Q(s, a) +α∣∣∣
New Q-Value

[R(s, a)︸ ︷︷ ︸
Reward

+γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)] (1)
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In short, Q-learning is relying on a Q-table with the action and state of Q-value. The
agent keeps lookup the Q-table, selects the appropriate action, then update the Q-value.
The standard Tabular Q-learning works great if the environment has small scale action
and state space. However, the limitation of standard Q-learning, became less useful if
facing large state and action space,this drawback was point-out in the research did by Ge
et al. (2019).

Another Q-learning approach is Deep Q-learning, which was first introduced in 2015
by Mnih et al. Deep Q-learning using an artificial neural network instead of the Q-table.
An artificial neural network or neural network was inspired by the neural network of the
animal brain. Deep Q-learning builds a mapping network by the state and estimates the
Q-value for every single action through the neural network. A research Ge et al. (2019)
describe the advantage and disadvantage of deep Q-learning. First, it is able to extract
and processing high dimensional data, which mean it is effective while processing large
state space problem. However, using a neural network to approximate the Q function, the
Q-learning algorithm is not stable. The strategies to resolve such problems are experience
replay and the target network.

In research did by Long and He (2020) describe deep Q-learning as Equation 2. In the
process of deep Q-learning, si represent the current state of the environment, ai represent
the selected action by the agent, θ represents the parameter of neural network. Unlike Q-
learning, Deep Q-learning choosing action through the Neural Network, which calculate
the Q-value for every single action. For instance, if an environment gave the state to a
deep Q-learning agent with four actions (a0, a1, a2, a3), then the deep neural network will
give each action with Q-value and select the most optimal action. As mentioned in the
previous section, to solve the unstable of the neural network, a target network has been
introduced. The research did by Rodrigues and Vieira (2020) describe the Target Net-
work as Equation 3. The Q∗(s, ai) is replaced by the Bellman equation where the Target
network T . T is the sum of the reward r and the maximum discounted Q-value obtain
through the T-network with the parameters θf fixed in a previous time-step. In another
research did by Mnih et al. (2013) stated that Experience replay is another methodology
of solving the unstable of the deep neural network. Experience replay allows the reinforce-
ment learning agent to remember the experience of the agent and store it in the sample
pool. The experience replay is able to reuse those data samples to stabilise the deep neural
network. The research defines the loss function for update the sample pool in Equation 4.

Q∗(s, ai) ≈ Q(s, ai, θ) (2)

T = r + γmax
a′

Q(s′, a′, θf ) (3)

Li(θi) = E[(r + γmax
a′

Q̂(s′, a′; θ −i )−Q(s, a; θi))
2] (4)
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Besides, as reinforcement learning distinct from other machine learning approach (su-
pervised and unsupervised) is because reinforcement learning agent needs to explore the
environment and try new action. Exploration and Exploitation is a concept that balances
between choosing the highest possibility of the action and explores new action, depend on
the scenario the solution may variant state by Leslie Pack Kaelbling, Andrew W. Moore
(1996).

2.3 Related Research

Along with the literature review, Artificial Intelligent (AI) has been deployed and imple-
mented in many industries. For instance, a research Rodrigues and Vieira (2020) utilise
Reinforcement learning for self-driving; and another research Long and He (2020) utilise
reinforcement learning for robot path planning. As well as the cybersecurity industry,
for instance, the researchers of a company BitDefender and Technical University of Cluj-
Napoca Valea and Oprisa (2020) published a paper about the automation of penetration
testing using the Metasploit Framework. The paper is about utilising machine learning
to determine vulnerability and choose the best approach to exploit the system based on
the data of system characteristics. The research used machine data gathering from the
Hack The Box Platform. They used the decision tree as the machine learning model to
train data. As result, the accuracy was 33.3 per cent. Another paper by Pandelea and
Chiroiu (2019) describes using the matrix collect from the wearable device to crack the
password. The guessing is targeting the pin of the pad-based device. However, the result
is not high. The result gets 20 per cent from 310 pins with a 1240 digit set. Besides, the
research only using a classification machine learning model. If the research has a larger
sample with other machine learning models, the result might be better.

There are few papers and resources that investigated the possibility of using reinforce-
ment learning in offensive security. Researchers of Microsoft and Technion Godefroid et al.
(2017) have published a paper about using machine learning to generate a fuzzing list
to test the software. The paper describes using a learn and fuzz algorithm to target
the software. The paper also describes using that algorithm (recurrent neural network
(RNN)) has found a stack-overflow bug in the Edge PDF parser. Two researchers of the
University of Oslo, Norway publish their paper Erdodi and Zennaro (2020) about the
approach of utilising reinforcement learning for Web hacking at the Capture The Flag
(CTF) platform. The paper formalises the CTF as a game, then formalise the game for
reinforcement learning. Besides, the paper defines seven layers of web models that agent
can interact with. The layers include link layer, hidden link layer, dynamic content layer,
web method layer, HTTP header layer, server structure layer, server modification layer.
The agent has a certain purpose and is able to conduct action at each layer. However,
the paper only defines their approach and modelling it without implementation. Hence,
the performance of the approach is still unknown.
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3 Methodology

For understanding the proposed methodology of this research from the big picture, the
phases of penetration testing include information gathering, vulnerabilities discovery, ex-
ploitation and post-exploitation. This research is covering the phase of vulnerabilities
discovery and exploitation phase. However, the phase of information gathering will not
cover in this research. Hence the information gathering is outsourced to the Nmap (in-
formation of Nmap at appendix A.1 ). The strategy can be considered as utilise Nmap
to gathering information about the target system, then send the information to the rein-
forcement learning agent to make the best prediction to exploit the system. The following
step shows the ideal workflow of this methodology.

1. Accepting the parameters of the target system from the user, such as the IP address
of the target system.

2. Nmap gathering target system’s information, and save it in the reinforcement learn-
ing environment.

3. Reinforcement learning environment processes the information, create states for the
target system and load Q-table (or other components).

4. Reinforcement learning environment creates an action set based on the current state
of the reinforcement learning environment, and send it to the reinforcement learning
agent.

5. Depending on the exploration and exploitation of configuration. If the reinforce-
ment learning agent chooses exploration, the reinforcement learning agent will ran-
domly choose an action from the action set. Else, the reinforcement learning agent
chooses the best action base on the state and Q-table.

6. Reinforcement learning environment takes the action chosen by the reinforcement
learning agent and sends it to Metasploit for execution.

7. The Metasploit execute the action given by the reinforcement learning environment
and interact with the target system.

8. Metasploit updates the status of the target machine.

9. Reinforcement learning environment receives the feedback from Metasploit, and
determine the reward based on the feedback from Metasploit.

10. Reinforcement learning environment returns the reward, state and action set to the
reinforcement learning agent.

11. Reinforcement learning agent updates the Q-value (depending on the algorithm)
base on the feedback from the reinforcement environment.

12. Loop steps fourth to step eleventh until the finish of testing or training.
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The research will implement two reinforcement learning algorithms which Q-learning
and Deep Q-learning. The algorithm of the Q-learning is mainly relying on the Q-table.
The Q-table will store Q-value, which each state and action pair. At each time loop,
the result and performance of the action will update the Q-table and Q-value through
the learning algorithm. Therefore the Q-learning algorithm consists of the following
algorithms 1. The Deep Q-learning consist of the following algorithm 2. As mentioned
in the section 2.2, the Deep Q-learning is relying on the Neural network θ with the
experience replay D. Both the learning algorithm require certain training before conduct
the actual testing. The meaning of training in this research is about letting the agent
experiencing each action and state of the environment.

Algorithm 1 Q-learning: Learning function Q : S ×A → R
Require:

Sates S = {1, . . . , nx}
Actions A = {1, . . . , na}, A : S ⇒ A
Reward function R : S ×A → R
Black-box (probabilistic) transition function T : S ×A → S
Learning rate α ∈ [0, 1], typically α = 0.1
Discounting factor γ ∈ [0, 1]
procedure Q-Learning(S, A, R, T , α, γ)

Initialize Q− table : S ×A
while Q is not converged do

Start in state s ∈ S
while s is not terminal do

Calculate π according to Q and exploration strategy (e.g. π(x)←a Q(x, a))
a← π(s) . Receive the state
r ← R(s, a) . Receive the reward
s′ ← T (s, a) . Receive the new state
Q(s, a)← ·Q(s, a) . Learning algorithms with no next state

end while
end whilereturn Q

end procedure
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Algorithm 2 Deep Q-learning with experience replay

Initialise replay memory D to capacity N
Initialise action-value function Q with random weights θ
Initialise target action-value function Q with weights θ − = θ
procedure Deep Q-Learning(S, A, R, θ)

Initialise sequence s1 = {x1} and prepossessed sequence φ1 = φ(s1)
while True do

With probability ε select a random action at
Otherwise select at = argmaxaQ(φ(st), a; θ)
Execute action ai in emulator and observe reward rt and image xt + 1
Set st+1 = sa, at, xt + 1 and preprocess φt+1 = φ(st + 1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj, aj, rj, φj+1) from D
Update random weights θ by the random sample minibatch (φj, aj, rj

end while
end procedure

4 Design Specification

4.1 Architecture

Figure 1 is a high level abstract of the architecture of the proposed method in this re-
search. As the figure can tell, the left part of the figure is the components of reinforcement
learning. As explained in the section 3 the program will utilise Nmap to gathering the
information about the target system and save the information in the reinforcement learn-
ing environment which is the ”Metasploit Environment” in the figure. Once the Nmap
gathered enough information from the target machine, the Metasploit Environment will
send the target machine’s information as states (which the services on the target ma-
chine), action set (which Metasploit’s module) and reward. The reinforcement learning
agent process those state and action set through the chosen learning algorithms. Then
return an action to the reinforcement learning environment. After that, the reinforcement
learning passes the action to the Metasploit console for execution.

As mentioned in the section of 2.2, a reinforcement learning environment is an envir-
onment that the agent can interact with. Hence the Target Machine is the reinforcement
learning environment, and the Metasploit Console and Metasploit Environment can be
considered as a bridge between the agent and the target machine. Based on the nature
of the architecture of this system, the definition of reinforcement learning environment
includes the components of the Metasploit Environment, Metasploit Console, and the
Target Machine.
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Figure 1: Conceptual of reinforcement learning implementation

4.2 Environment

This research does not have any open-source reinforcement learning environment on the
internet, because of its uniqueness. Hence, this research will require to develops a re-
inforcement learning environment that is suitable for this project. However, the rein-
forcement learning environment is more like an adaptor for connecting to the Metasploit
Framework and the Nmap. Through the Metasploit Framework and Nmap, the rein-
forcement learning agent become able to interact with the real environment, which is the
target machine in this research.

The research develops two reinforcement learning environments. One for the purpose
of training the reinforcement learning agent, and another for the purpose of conduct
actual penetration testing. Since the workflow of the training environment and testing
environment has different. The training and actual testing environment workflow show
below:

Workflow of Training Environment:

1. Gathering necessary information from the target system.

2. Transform information into state set.

3. Entry Loop:

(a) Randomly choose a state from state set.

(b) Create action set base on current state.

(c) Reduce action set to maximum twenty-five of action

(d) Execute action chosen action

i. Fill requirement.

ii. Load action payload

iii. Brute force payload

(e) Remove action from action set

(f) Check is the action success to exploit target
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(g) If success, enter new state, and new load action set

(h) Return action set, state, reward

4. Loop desire round from third step for the purpose of training

Workflow of Testing Environment:

1. Gathering necessary information from the target system.

2. Transform information into state set.

3. Entry Loop:

(a) Randomly choose a state from state set.

(b) Create action set for current state.

(c) Reduce action set to maximum twenty-five of action

(d) Execute action chosen action

i. Fill requirement.

ii. Load action payload

iii. Brute force payload

(e) Record number of time that action perform, set maximum of testing (five in
this research)

(f) Check is action success to exploit target

(g) If success, enter new state, and new load action set

(h) Return action set, state, reward

4. Show all the modules that able to exploit the target machine.

The main reason for designing two workflows is because the purpose of training is
to let the agent experiencing every possible action for a particular state; the purpose
of testing is to choose the action that has the best experience in the particular state.
However, during the testing, if the particular state has no corresponding exploit module
to exploit the service, the agent might enter an infinite loop caused by the natural design
of this system.

4.3 Q-learning

Q-table could be one of the core components that make Q-learning workable in reinforce-
ment learning. In this research, the state and action are used to form the Q-table, as
Table 1 shows. All the Matesploit’s modules will be defined as the action and store in the
Q-table row. The attributes of the target machine service are defined as the state in this
research. The state includes the target machine services attribute of the port number,
services name, product, and product version. Each of the states are store as a string
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since the Q-table not able to store high dimensional values in a single column. However,
Q-learning does not good at handling large action sets and state sets.

The action set has modules total of 3875 (2142 exploit modules, 1140 auxiliaries and
592 payloads). But the number of the state remains unknown. So, for each step loop, the
reinforcement learning agent will require to check the existence of a state in the Q-table.
If the state does not exist in the Q-table, the reinforcement learning agent will need to
put it in the Q-table.

Action/State A(0) A(1) A(...) A(n)
S(0) Q(A0, S0) Q(A0, S1) Q(A0, S..) Q(A0, Sn)
S(1) Q(A1, S0) Q(A1, S1) Q(A1, S..) Q(A1, Sn)
S(...) Q(..., S0) Q(..., S1) Q(..., ...) Q(A.., Sn)
S(n) Q(An, S0) Q(An, S1) Q(An, S..) Q(An, Sn)

Table 1: Q table

4.4 UML Diagram

Figure 2 is the conceptual UML diagram of this research. As Figure 2 show, the Agent
and the Metasploit Environment is the main class of this system in this research. The
Agent and the Metasploit Environment component also represent the Agent and Metas-
ploit Environment in the Figure 1. In this research, the Agent class has two learning
function which the Q-learning and the Deep Q-learning. Both learning function will have
the function such as store and load, in the case of Q-learning the store and load will
be the Q-table; Deep Q-learning will be the model of neural network. In addition, the
learning function will have the function of choosing the action, storing the experience,
training the experience.

As mentioned in the previous section, the role of Metasploit Environment represents
a bridge to connect the Metasploit Console. Therefore, the class require a client function
to establish the connection to the Metasploit Console. The client function also extends
to others function, such as loading the Metasploit module, execute the module and man-
agement of the session. In addition, the Metasploit Environment will require to handle
the communication with the agent as well. In Figure 2, the function of ”Loop Step”
is used to handling and manage the communication with the Agent, such as updating
the State, Action, target machine information and reward function. Besides, this class
is responsible for handling the information gathering as well. So the function used to
connect with Nmap is necessary as well.
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Figure 2: System UML
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5 Implementation

The technology involves in this research include Anaconda, Python, TensorFlow, Pandas,
Metaasplotable2, Pymetasploit3, Nmap and Python-Nmap3, Docker, Metasploit Frame-
work. The detail and functions of the technologies at the appendix A.1. From the tech-
nology can tell that the research is conduct in the Anaconda environment with Python.
As mentioned in the section of 4.2, the Internet does not have an environment suitable
for this research. Therefore, the first step is the development of the Reinforcement learn-
ing Environment. Reinforcement learning relies on multiple libraries. First, the Nmap3
is a library for python3 interacting with the Nmap application, it is used to gathering
information from the target machine. Then, create the function that communicates with
the Metasploit console, this function would require the library of PyMetasploit3. Then, a
function that used to manage the communication with the agent. The sub-function refer
to section 4.4. As mentioned in the previous section, this research will not cover the phase
of information gathering. Hence, the Nmap became the role of gathering information in
this research. The primary objective of Nmap is to scan the service detail of the target
machine system such as the port number, service type, service name and service version.

5.1 Q-learning and Deep Q-learning

The next step would develop the reinforcement learning agent, which the Q-learning and
Deep Q-learning. Since the core component of the Q-learning is the Q-table and the Q-
learning algorithm. The Q-learning algorithm can refer to the Algorithm 1. The Q-table
is using the Padas supported table for storing the Q-value Q(S,A). Besides, the Q-table
is storing in a PKI format. In addition, the table will check the existence of a state, when
encountering a new state s. However, there is one difference between the ideal algorithms
and implementation, which is the reinforcement learning environment and learning al-
gorithm have no transitioning function and next state s′ in the implementation.

The implementation of Deep Q-learning is similar to Q-learning, it replaces the Q-
table with the neural network. In this research, the implementation of the neural network
is referring to aamrani-dev Github repository with the modification to suit this research,
such as remove the state transitioning.

5.2 States and Actions

States and actions are the core data transfer between the Reinforcement learning agent
and environment. Each learning algorithm and handling states and actions differently.
Since the Q-learning is not great at handling high dimensional state, hence the state is
concatenated as a single string. For some reason, the neural network can only process
numeric data, hence the state has been converted into numeric hash data for Deep Q-
learning.

5.3 Experiment Environment

After necessary components (Reinforcement learning environment and reinforcement learn-
ing agent) have been developed. The research entering into the experience phase. The
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experience environment is fully deployed and conduct in the container under Docker con-
tainerisation. The purpose of deploying the research in containerisation is to achieve a
lightweight and platform free system. The experiment environment consists of three con-
tainers, which a container for reinforcement learning; a container for Metasploit Frame-
work; a container for the target system (it could be a vulnerable machine for training or
the machine for actual testing).

To deploy the Metasploit Framework, two options can be considered. First, deploy
the Metasploit framework by the container image provided by the Rapid 7; second, de-
ploy Kali Linux images and install the Metasploit Framework. This research is using the
second approach. Metasploit provides two options for remote access and interaction with
Metasploit, which are Msfrpcd a daemon server for Metasploit framework and Msgrpc a
plugin for Msfconsole. This research deploys the Kali Linux container images and runs
the Msfrpcd. Since Msgrpc only allows the loopback IP address to connect the Msgrpc.

The second container is the container for deploy anaconda and reinforcement learning
components. This research chooses to deploy the Mini-conda a light version of anaconda.
In addition, the necessary toolkits that need to built reinforcement learning such as Py-
thon3, Numpy, Tensorflow will be installed in the anaconda environment. Besides, the
Nmap will install in this anaconda environment as well, for reinforcement learning to
access and interact with it.

To easier manage all the containers in this research, a sub-net has been created. All
the containers will be deployed under this sub-net and assign a specific IP address and
name for identity and management as well̊åa.

5.4 Training and testing

As mentioned multiple times throughout the thesis, training is a requirement for reinforce-
ment learning. Every agent and learning algorithm requires a certain level of training.
This research will utilise the Metasploitable2 for training both the Q-learning agent and
the Deep Q-learning agent. The Metasploitable2 is deployed as the third container for
the purpose of training and testing the performance of reinforcement learning.

In this research, two training strategies have been used to train Q-learning and Deep
Q-learning. The first strategy is about brute-forcing every action and state for the agent
to experience. Which mean every single state will require experience every single action.
This method is implemented for Deep Q-learning. The second method is about filtering
the action based on the particular state. For instance, if the state is related to SQL, it
only loads the module related to SQL as an action set for the agent to experience instead
of experience every single action even irrelevant modules. This method is implemented
for the Q-learning agent. Both methodologies have their advantages and disadvantages.

6 Evaluation

The evaluation consists of four case studies, one without and learning algorithm, one q-
learning for training, one q-learning for testing, and one Deep Q-learning for testing and
training. Each case study consisted of two cases sample from the experiment. Each of the
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plots has x as the number of steps or episodes; and y as the accumulated reward. In this
research, every agent has starting reward of 50, when successful to exploit a service, the
agent gains 100 rewards; fail to exploit minus 1 reward, and other results obtain reward
0.

6.1 Without Learning Algorithm

Figure 3: No Algorithms Assist

Figure 3 are experiment about automated penetration testing without any algorithm
assists. The system has been set to fully random choosing the module from all the
exploit modules at each step loop. In the figure can tell, average hundred steps to exploit
a service. The result is seen relatively high. After investigated the case, it found out an
exploit module was compromised the target machine two out of four in the left case.

6.2 Q-learning Training

Figure 4: Q-learning Training

As mentioned in the section 5.4, the state and action pairs for the agent to experience
have been filtered by the search algorithm of the Metasploit Framework. Each upslope in
the figure can be considered a session been established, and updated in the Q-table. Both
left and right cases can show that has 4 services have been exploited during training. As
the figure can tell, most the state has experience around 25 of action until success exploits
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the service. However, since the action set for each state has limited to a maximum thirty
of actions. Some of the states require few more rounds to discover all the actions.

6.3 Q-learning Testing

Figure 5: Q-learning Testing

As the figure 5 can tell both the case has estimate total of 70 steps to complete the
testing against the Metasploitable2, and six exploits have been detected. It was not a
surprising result, and consider it better than the testing without any algorithms assist.
In addition, redundancies of the exploit module exist in the result. Cause by the training
of Q-learning in this research.

6.4 Deep Q-learning Testing and Training

Figure 6: Deep Q-learning Training and Testing

The left case is about the result of training; the right case is about the result of testing.
As both cases can tell that the Deep Q-learning’s result was not great. As the figure
shows, the training has three hundred steps and one exploits detected. The figure of
testing has a hundred and fifty steps with no exploit detected. This mean non of the
predictions are correct.
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6.5 Discussion

In general, the above figures has shown that the potentiality of utilising reinforcement
learning for penetration testing. The comparison of with and without the reinforcement
learning algorithm can show that a huge improvement regards the time consume and
performance.

However, a flaw been discovered during the experience phase. During the training of
the Q-learning agent, the exploit module may map to incorrect vulnerability. Case one,
the search algorithm giving the ”wrong experience” to the agent. For instance, a service
Linux Telnet has the keyword ”Linux”, the search algorithm bring all the modules re-
lated to ”Linux” and Telnet modules. There is a coincidence that irrelevant modules are
still able to exploit the particular service, such as Linux SQL. In another case, training
of Deep Q-learning, the agent was experiencing every state for every states̊aç (service),
which mean it is a high potential that the mixed up with the state and particular exploit
module.

Besides, Deep Q-learning is considered as the failure of implementation, as the eval-
uation section can tell, both the experiment result are not great. After investigation,
several reasons have been summarised. First, the improper of defining state. Second,
insufficient training time, since a hundred steps could take two hours of training. Third,
crashed by the insufficient capacity of handling and establishing new HTTP request at
the Msfrpc daemon, and lead to failure of training in a long period of time.

7 Conclusion and Future Work

After months of research, implementation of methodology and experiment, this research
has achieved the objective which investigates the potentiality of using reinforcement learn-
ing for penetration testing. This research concludes that reinforcement learning has the
potential to increase the performance of automated penetration testing and decrease the
resource of testing. As the section of evaluation described, a notable difference between
using the reinforcement learning algorithm and without using the reinforcement learn-
ing algorithm. The algorithm reduces the resource of time and increases the chance of
exploitation during automated penetration testing. However, the result of this methodo-
logy proposed in this research was not fantastic and a flaw was discovered, but a simple
algorithm such as Q-learning still achieve a notable result. Besides, I can assume that
utilise other machine learning techniques or reinforce the framework of the methodology
can achieve a better result.

The future work has few directions. First, investigate and resolve Deep Q-learning
and Q-learning to this research, such as investigate and resolve the problem described
above section and redefine the state for Deep Q-learning. Second, further development
of reinforcement learning algorithms, such as adding the feature of auto-filling the user
name and password or the feature of state transitions. Third, further investigate other
machine learning and reinforcement learning algorithms option, such as implement other
reinforcement learning algorithms or merging supervised learning. Fouth, define and
design a training suitable for this research. Link to the code in here.
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A Appendix

A.1 Tool Description

Anaconda: Anaconda is a Python and R distribution software for scientific computing,
such as machine learning application and data processing and predictive analysis.
The function of anaconda is the research and development environment for this
research.

Python: Python is interpreted high-level programming language, which used among
data scientist. Because of the rich library related to data science, such as the
pandas, Tensorflow, Scikit-learn, BeutifulSoap, etc. Hence, Python will be the
primary language used to implement the research.

TensorFlow: TensorFlow is an open-source library built for Artificial Intelligent (AI)
machine learning (ML). Besides, it also pre-built the component of building a deep
neural network for the user.

Pandas: A library that is used to solve various machine learning tasks. It supports
multi dimensional array.

Metesploit Framework: Metasploit framework is a computer security project for
provide the information of security vulnerability and assist penetration testing for
the penetration testers. Metasploit framework has pre-built plenty of exploit mod-
ule and auxiliary module to assist penetration tester. Besides, Metasploit has an
API that allows the penetration tester to interact with Msfconlose remotely. The
Metasploit framework is one of the primary components in this research. It sits
between the agent of the reinforcement learning and the target machine.

PyMetasploit3: Car Phone Holder is a function of Metasploit framework that allow
user connect to the API of Metasploit framework and interact with the Msfcon-
sole remotely. Python-msfrpc is a python library that used to interact with the
Msfconsole for any python program.

Nmap and Nmap3: Nmap is a network scanning toolkit that used among the penet-
ration industry. Since the research will not cover the phase of information gathering
of penetration testing. Hence Nmap would be used to gathering necessary inform-
ation of the target machine, Such as the service name, version and open port.
Besides, Nmap does provide a library for any python program use Nmap.

Metasploitable2:

Docker: Docker is an open-source platform that allows users to separate infrastructures
and applications. In this research, all the software components and applications will
be deployed under docker.
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