\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Cyber Security

Jonatas Alves Fagundes
Student ID: x20144946

School of Computing
National College of Ireland

Supervisor: Niall Heffernan

‘-
National College of Ireland \ National

MSc Project Submission Sheet CollegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Jonatas Alves Fagundes
Student ID: X20144946
Programme: Cyber Security Year: 2020/2021
Module: MSc Research Project
Lecturer: Niall Heffernan
Submission Due
Date: 23/08/2021
Project Title: An approach for malware detection on IoT systems using Machine
Learning
Word Count: 426 Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Jonatas Alves Fagundes
Date: 23/08/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Jonatas Alves Fagundes
Student ID: x20144946

1 Introduction

This document contains details about the environment/requirements used in the project which
includes system specification and installation of software. In addition, this configuration
manual presents the procedure of implementation of the algorithms used in the project.

2 Hardware/Software

When working with machine learning it is important to consider the environment it is running
in to have a good performance and to generate great amounts of data. The specification of the
machine used for this project is presented below.

Processor: Intel(R) Core(TM) 17-10750H CPU @ 2.60GHz
RAM: 16.0 GB

Storage: 1 TB SSD

0.S.: Windows 10 Pro 64-bit

3 Tools

In this section the tools used in the project is presented containing the links for the
installation.

3.1 Anaconda Navigator

Anaconda is a free package manager that contains great number of tools for data science. It
can be downloaded through the link: https://www.anaconda.com/products/individual

3.2 Jupyter Notebook

It is an open-source web application for programming that allows users to create and share
documents with their live code. It can be installed and executed using Anaconda or through
the link: https://jupyter.org/install

3.3 RStudio

It is a data science solution that offers a large variety of useful tools for coding and handling
data. It can be installed and executed using Anaconda or through the link:
https://www.rstudio.com/products/rstudio/download/

4 Implementation

For this project we developed the model using the programming language Python. The first
step is to import all necessary libraries.

https://www.anaconda.com/products/individual
https://jupyter.org/install
https://www.rstudio.com/products/rstudio/download/

import numpy as np
import pandas as pd
from pandas_profiling import ProfileReport

import seaborn as sns
from matplotlib import pyplot as plt

from sklearn.preprocessing import (
LabelBinarizer,
MinMaxScaler,
Standardscaler, # standarisation
PolynomialFeatures,
OneHotEncoder,
LabelEncoder,
ordinalEncoder #transform categorical variables in numeric

)

from statistics import mean
import re
from sklearn.model selection import (train_test split, cross val score)

from sklearn.metrics import (
accuracy_score,
confusion matrix,
multilabel confusion matrix,
classification_report

instatt|pip install pandas-profilling
from pandas_profiling import ProfileReport

libraries
from sklearn.model selection import train_test split

from sklearn.ensemble import RandomForestClassifier
from sklearn.neural network import MLPClassifier
from sklearn.neighbors import KNeighborsclassifier
from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

Then we import the database used for training and testing the model to a dataframe.

#df = pd.read csv('dataset iot.csv')
df = pd.read_csv('dataset iot and malicious dataset.csv')

After that, we need to adjust the data to have a good fit into the model. We remove
unnecessary data, replace missing values, and categorise attributes that have a large range of
data.

#remove unnecessary data
#data.drop(['Device’], axis=1, inplace=True)
#print(data. head())

#replace missing string values

df .ethernet_type.fillna('missing', inplace= True)
df .IP_protocol.fillna('missing", inplace= True)
df.TCP_flags.fillna('missing’, inplace= True)

#replace missing values with @

df.src _port.fillna(e, inplace= True)

df.dest _port.fillna(e, inplace= True)
df.time_to live.fillna(®, inplace= True)
df.inter_arrival time.fillna(@, inplace= True)

df['TcP_flags'] = df.TCP_flags.dropna(e,inplace=True)

#print(data.head())

df["time_to_live"] = [float(str(i).replace(",", "")) for i in df["time_to_live"]]
def registra porta(porta):

if not porta:
return 0

elif @ <= porta <= 1023:
return 1

elif 1024 <= porta <= 49151:
return 2

elif 49152 <= porta <= 65535:
return 3

else:
return 0

Once the algorithm does not accept categorical data, we need to transform attributes that are
strings into numerical. For that, we use Ordinal Encoder function.

carct_oe = ordinalEncoder()
caracteristicas categorizadas = carct oe.fit transform(caracteristicas dispositivo)

carct_tcp oe = OrdinalEncoder()
caracteristicas tcp categorizadas = carct_tcp oe.fit transform(caracteristicas_tcp)

The next step is to split the data into training and testing, and standardise it.

X_train, X test, y train, y test = train_test split(
caracteristicas categorizadas,
dispositivo,
test size=0.1,
random_state=80

)
print(X_train.shape, X test.shape)

std = Standardscaler ()|
X_train_std = std.fit(x train)

X_train = X _train_std.transform(X_train)
X_test = X_train_std.transform(X_test)

Then, we initiate the classifiers that will be used specifying the parameters according to the
objective.

forest = RandomForestClassifier(
max_depth=10, # sem melhoras
random_state=54,
criterion="entropy’,
max_teatures="log2’,
n_estimators = 5@,
min_samples split=2,
min_samples leaf=1,
min_weight fraction leaf=6.6
)

mlp

= MLPClassifier(
random_state=54,
max_iter=300,
solver="adam",
hidden layer sizes
activation = "relu”
batch size = 200,
learning_rate init
tol = ©.000010

)

(100),

0.001,

knn = KNeighborsClassifier(
n_neighbors=3,

metric = "minkowski",
p=2

)

svm = SVC(
random_state=54,
kernel = "rbf",

C 2.0

)

The next step is to execute the classifiers testing the accuracy for each of them and generating
a report. Here we apply cross-validation using confusion matrix.

models= [
forest,
mlp,
knn,
svm

]

for model in models:

scores = cross_val score(
model,
X_train, y train.ravel(),
cv=10

)

accuracy_cross

round(mean(scores),5)

daccuracy_cross <]

model.fit(X train, y train) # fit the model
y_pred= model.predict(X test) # then predict on the test set

matriz = multilabel confusion matrix(y_test, y pred)

cm = confusion matrix(y test, y pred)
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cm_p = cm.diagonal()/cm.sum(axis=1)

accuracy= accuracy_score(y_test, y pred) # it shows| how often the algorithm predicted correctly
clf report= classification report(y test, y pred, output dict=True)

df out = pd.DataFrame(clf report).transpose()

print(f"Acuracia treino/teste {type(model). name_ } is {accuracy:.2f}")
complemento = [accuracy cross,e,0]

accuracy_insert = cm_p.tolist() + complemento

df out["accuracy"] = accuracy_insert
df out.insert(e, "device", df out.index, True)

df out.to csv(
f'resultados {type(model). name_} .csv',
index = False,
header=True

)
print("\n")

model = MLPClassifier(
random_state=54,
max_iter=500,
solver="adam",
hidden Llayer sizes = (168@),
activation = "relu”,
batch size = 200,
Llearning rate init
tol = 6.000010

)

accuracy_cross = @

9.001,

matriz = multilabel confusion matrix(y test, y pred)

cm = confusion matrix(y test, y pred)
cm = cm.astype(’'float') / cm.sum(axis=1)[:, np.newaxis]
cm p = cm.diagonal()/cm.sum(axis=1)

Finally, we fit the model and perform the prediction on the other database.

model.fit(X train, y train) # fit the model

y_pred= model.predict(X test) # then predict on the test set

accuracy= accuracy_score(y_test, y pred) # how pften the algorithm predicted correctly
clf report= classification _report(y test, y pred, output dict=True)

df out = pd.DataFrame(clf report).transpose()

print(f“Acuracia treino/teste {type(model). name } is {accuracy:.2f}")

complemento = [accuracy cross,8,0]

accuracy_insert = cm_p.tolist() + complemento

df out["accuracy"] = accuracy_insert
df out.insert(@, “"device", df out.index, True)

print(df_out)

References

Getting started — pandas 1.3.2 documentation (no date). Available at:
https://pandas.pydata.org/docs/getting_started/index.html#getting-started (Accessed: 23
August 2021).

Getting Started — scikit-learn 0.24.2 documentation (no date). Available at: https://scikit-
learn.org/stable/getting_started.html (Accessed: 23 August 2021).

Yadav, D. (2019) Categorical encoding using Label-Encoding and One-Hot-Encoder,
Medium. Available at: https://towardsdatascience.com/categorical-encoding-using-label-
encoding-and-one-hot-encoder-911ef77fb5bd (Accessed: 23 August 2021).

	1 Introduction
	2 Hardware/Software
	3 Tools
	3.1 Anaconda Navigator
	3.2 Jupyter Notebook
	3.3 RStudio

	4 Implementation
	References

