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Abstract 
Internet of things (IoT) devices communicate, collect and exchange data about our online activities 
and preferences via the internet. These smart devices are infiltrated into our lives in houses, 
workplaces, cities and it generates millions of gigabytes data every day. However, any device that 
shares data through the internet is vulnerable to cyberattacks. It is known that most IoT devices are 
built containing poor security which makes them attractive targets to cybercriminals. Malware 
detection has been a research area that is constantly studied due to the evolution of malwares and its 
vectors. Machine learning techniques have been presented as one of the most efficient and effective 
solutions to identify different vectors of attacks in IoT devices. This research aims to present a study 
of the implementation of machine learning techniques in the detection of malware to address 
vulnerabilities in IoT environments. This work explores ways to identify normal and anomalous 
behaviours in IoT systems using machine learning algorithms as classifiers that include Random 
Forest, Artificial Neural Network - Multilayer Perceptron, K-nearest Neighbors, and Support Vector 
Machine. In this work, we could identify that Random Forest presents better results identifying 
malicious behaviour based on tests, previous work, and other sources. 
 

1 Introduction 
 
With the popularization of the Internet of Things (IoT) - technology on the rise that is used in 
several areas such as agriculture, health, smart homes, among other applications - some 
concerns about this theme have been standing out. Allied to innovation, this recent 
technology is followed by many challenges which the main one is without a doubt, security. 
For the success of the IoT concept, it is essential to guarantee the security and privacy of user 
data. Intrusion detection is one of the techniques used to increase security, aiming to detect 
and identify intrusion attempts in computing environments by internal and external invaders. 
Intrusion Detection Systems (IDS) differ in several aspects, such as the type of detection 
performed, the system architecture according to the target of the detections, the location 
where it is arranged, among other characteristics.  
Malware detection is a wide area of automated monitoring mechanisms to identify and 
protect devices and systems from all forms of malicious code. Considering that antivirus and 
other traditional mechanisms have been losing their efficiency in protecting from malwares, 
other security mechanisms must be used for combating these threats. IoT malware detection 
has been an important and urgent subject in researches by the security community as the 
attacks on IoT environments have skyrocketed in recent years. 
Machine Learning (ML) is part of artificial intelligence (AI) and consists of programming a 
computer to learn from example data or past events to create improved criteria resulting in 
better decision-making without human intervention. Machine Learning algorithms search for 
patterns in data and try to make assumptions and once the algorithm starts being accurate, it 
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implements that knowledge to new sets of data improving accuracy and performance in that 
algorithm. There are two main methods of machine learning that are commonly used: 
Supervised and Unsupervised learning. Supervised learning trains algorithms using examples 
that are labelled, in other words, an input that the wanted output is known. The learning 
algorithm receives the correct output and a set of inputs where it learns by comparing them to 
find errors. After comparing, it collects that information and modifies the algorithm 
accordingly. Supervised learning utilises patterns to foresee the value of a label on unlabelled 
data by using methods such as classification, prediction, regression, and gradient boosting. 
Unsupervised learning, on the contrary, is used when there are no historical labels or correct 
outputs. The learning algorithm must identify the data being inputted and find its structure. 
This algorithm is commonly used to segment text topics, recommend items, and identify data 
anomalies by using methods such as nearest-neighbor mapping, k-means clustering, self-
organizing maps, and singular value decomposition. 
The detection of malware in IoT environments is a great challenge due to the massive amount 
of data processed. A relatively recent example is the malware botnet Mirai1 which in 2016 
compromised thousands of IoT devices and performed DDoS attacks whose traffic hit 1Tbps. 
With the increase in the amount of data generated by IoT devices, it became necessary to 
implement other technologies to assist in data processing. The heterogeneous nature of IoT 
systems and the complex threat landscape have been a challenge for organisations to provide 
adequate security. According to the most recent SonicWall threat report 20212, in the 
previous year, the number of IoT malware attacks reached 56.9 million. In addition, 
according to Bitglass in its Remote Workforce Security Report (2020)3, 65% of organizations 
allow access from personal, unmanaged devices’ which is an opened door for malicious 
attackers to exploit. 
To be effective, it is necessary to have a security mechanism that is able to identify which 
characteristics are relevant to distinguish malicious from benign codes where we can use 
techniques such as Static analysis and Dynamic analysis. Machine learning has appeared as 
one of the best security mechanisms for protecting IoT environments from those powerful 
and destructive malware attacks. Having access to activity and behaviour data of the IoT 
devices connected to the network makes it possible to train Machine Learning (ML) 
classifiers that can be used to identify malicious behaviour. Having the ability to identify 
devices connected to a network also provides better control over network traffic and allows 
better management of devices considered to be a security risk to the network structure as a 
whole. Considering the increase in the number of IoT devices and its lack of built-in security 
features, we can notice that there is an urge for a solution that will effectively protect it 
against cybercriminals. Given this context, we can assume that this is an urgent matter for 
cybersecurity which was the motivation for this work. This work aims to present an approach 
for malware detection in IoT devices using machine learning techniques and analysis of 
device fingerprinting for the identification of malicious behaviours. After choosing the most 
relevant characteristics and the database with samples of the network traffic, the training of 

 
 
1 https://www.csoonline.com/article/3258748 
2 https://www.sonicwall.com/2021-cyber-threat-report/ 
3 https://www.bitglass.com/ 

https://www.csoonline.com/article/3258748
https://www.sonicwall.com/2021-cyber-threat-report/
https://www.bitglass.com/
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the machine learning (ML) classifiers is carried out for each device using the Random Forest, 
Multilayer Perceptron, K-Nearest Neighbors, and Support Vector Machine algorithms. Upon 
completion of the tests, the machine learning classifiers are ranked regarding their suitability 
in classifying between common data from IoT devices and anomalous data from devices 
infected by malicious agents. 

1.1 Research Question 
 
• How to improve security on IoT systems based on malware detection by using machine 

learning? 
 
Considering that IoT devices have different systems and peculiarities, and that the number of 
malware attacks has been increasing recently, an approach on how to improve the security on 
IoT systems that encompasses the differences between them and curb or possibly stop those 
attacks is very important and needed by the time this work is being presented. By using the 
Random Forest algorithm and analysing the map of network behaviours in IoT systems, this 
work aims to create a malware detection approach to answer the research question proposed.  

1.2 Objective 
 
The objective of this work is to identify IoT devices and differentiate normal and anomalous 
behaviours analysing their operating patterns through network traffic samples. For this 
purpose, it is studied which network traffic characteristics of the devices should be chosen to 
make the identification of behaviours as accurate as possible. The key points we try to 
achieve in this work are: 
• Implement Machine Learning algorithms with a high level of accuracy in the data 
classifications of IoT devices; 
• Discover which algorithms and network traffic characteristics are best suited for classifying 
the behaviour of IoT devices; 
• Propose an approach for malware detection on IoT systems. 

1.3 Structure 
 
The rest of this document is designed in sections as follows. In section 2, we present previous 
work where different approaches based on malware detection and machine learning 
approaches were studied. In section 3, we illustrate our research methods and specification of 
our approach classifying data, training, and testing machine learning classifiers. Followed by 
section 5, where we evaluate the classifiers. In section 6, we implement the identification of 
behaviours. We then present a conclusion and future work in section 7. 
 

2 Related Work 
 
According to Zhou et al., IoT devices are vulnerable to attacks because of their 
interdependence where the authors claim the attacker could exploit other devices` behaviour 
that belongs to the same environment and have an interdependence relationship with the 
target device. It would increase the chances of bypassing the security mechanism applied to 
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the target device. In the same work, the authors mention the diversity of IoT devices as a 
threat due to many different firmware, hardware, protocols, and lack of security which in 
most cases are common web security vulnerabilities used by attackers. It highlights the 
importance of monitoring malicious behaviours and protecting the environment as a whole. 

2.1 IoT Malware Detection 
 
Aslan et al. review different approaches of malware detection including signature-based 
detection and behaviour-based detection. The authors compare different solutions, give an 
evaluation of each technique used in previous work presenting pros and cons, and conclude 
by reinforcing that there is still a need for malware detection research. In contrary to this 
paper, none of the approaches presented by the authors used traffic network parameters in the 
detection of malicious behaviour. 
In the work of Wang et al., the authors presented a study of IoT malware where features of 
malware samples were extracted to identify their relationship with other malware family and 
by using honeypots the authors collected information to design a classifier to categorise IoT 
malwares into families and identify the correlation between them. This work helps the 
research community to have a better understanding of IoT malwares, however, it does not 
provide a solution to protect against them.  
Ni An et al. implemented semi-supervised algorithms for the detection of malwares in home 
routers where the authors affirm to have achieved high rates of detection of malware without 
false alarms. Z. D. Patel, Westyarian et al., and Hadiprakoso et al. applied dynamic-based and 
hybrid-based malware analysis to present a solution of malware detection in Android 
operation system using a machine learning model where a detection accuracy of 99% was 
achieved. However, the authors limited their work to a single type of device. As mentioned 
before, the IoT environment consists of multiple different devices with different 
characteristics such as hardware, firmware, and protocol. 

2.2 Device Fingerprinting and Machine Learning 
 
In Miettinen et al., a system called IoT Sentinel which is aimed at small networks such as 
homes and small offices is proposed. The system can identify the type of IoT device 
introduced into the network and impose measures to mitigate possible security flaws in 
devices considered to be vulnerable. IoT Sentinel controls the network traffic accessed by 
devices recognized as vulnerable to prevent problems to other devices connected to the 
network. J. Pan created a novel model using convolutional supervised machine learning 
based on network behavioural fingerprint to identify IoT devices efficiently. In another 
similar work,  Bezawada et al. presented a methodology that uses extracted features from 
network traffic by using device fingerprinting. A machine learning model is trained to 
identify similar types of IoT devices where an accuracy of 99% was achieved in the 
identification. In Aneja et al., the objective was to identify IoT devices based on only one 
attribute, Inter Arrival Time (IAT), which is the time interval between two consecutive 
received packets. For this, it was generated graphic images from the IAT of the registered 
packets which served as input to a Convolutional Neural Network (CNN). In the end, the hit 
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rate achieved was 86.7%. In another work that uses CNN, M. Yeo et al. presented a method 
of malware detection in real-time using a large amount of data. The method applied for 
classification achieved 85% of accuracy and precision. In contrary to this paper, the authors 
utilised different parameters to analyse and classify data and behaviours which impacted on 
their results. 
In the article of Shahid et al., techniques based on Machine Learning for monitoring IoT 
networks are presented where the authors analyse common and malicious IoT network traffic 
and use characteristics such as the size of the first N packets sent, the size of the first N 
packets received, the inter-arrival times of N-1 packets between the first N packets sent, and 
the inter-arrival times of N-1 packets among the first N packets received. Regarding the 
classifiers, the algorithms tested were Decision Tree, Random Forest, Naive Bayes, K-
Nearest Neighbor, Support Vector Machine, and Artificial Neural Network, in which 
Random Forest presented the best results. Even though these papers presented great results, 
they are only focused on the identification of IoT devices to be used for other implemented 
solutions. 
In Shaikh et al. a model for classifying network characteristics from malicious devices is 
presented to identify attacks that originate from compromised IoT devices using packet 
header information from a darknet database. The machine learning classifiers explored were 
Random Forest, Gradient Boost, AdaBoost, and Naive Bayes in which Gradient Boost and 
Random Forest obtained better results. 
D. Gibert et al., P. Priyadarshan et al.; and M. Wazid provides detailed work about 
approaches using machine learning for the detection of malware. The authors compare and 
analyse a great number of previous works in different categories according to multiple 
different characteristics including dynamic and hybrid-based analysis, database, and 
objectives. In addition, the authors evaluate the performance of methods used in those papers 
based on common solutions used by the scientific community. 
In a different approach, S. A. Roseline et al. uses a method of malware analysis by 
visualization converting malware samples into greyscale images. This approach combines 
datasets with benign and malicious samples and trains multi-layered classifiers with labelled 
images to try to predict malware in the data. The algorithm used was Random Forest and 
achieved an accuracy of 98.9% and more effectiveness than other deep learning models. 
M. Mehra et al. proposed a model that combines system files, IoT application files, and Linux 
malware to build a Random Forest classifier. The authors provide an exhaustive analysis of 
machine learning models trained using parameters that were observed to present good results 
in the detection of zero-day attacks.              
The importance of choosing the right attributes that will constitute the device fingerprinting is 
because of the fact that the database used for the training of machine learning classifiers is 
built based on these attributes. 
In table 1.1 below, we present the algorithms used respectively by each author previously 
mentioned. 
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Algorithm Author
Decision Tree Shahid et al.; Bezawada et al.

Random Forest
Shaikh et al., Shahid et al.; Miettinen et al.; M. Yeo et al.;
 S. A. Roseline et al. 

Gradient Boost Shaikh et al.; Bezawada et al.
Ada Boost Shaikh et al.
Naïve Bayes Shaikh et al., Shahid et al.
LSTM-CNN Wang et al.; J. Pan
Convolutional Neural Network Aneja et al.; M. Yeo et al.
Support Vector Machine Shahid et al.; M. Yeo et al.; M. Mehra et al. 
K-Nearest Neighbor Shahid et al.; Bezawada et al.; M. Mehra et al. 
Artificial Neural Network Shahid et al.
Majority Voting Bezawada et al.  

   Table 1.1: Algorithms used in related work 
 
In this paper,  the focus is not only on one aspect of classification but encompasses both the 
identification of data between different types of devices and the differentiation between 
standard and malicious IoT network traffic. 
 
3 Research Methodology 
 
This section presents the methodology used to perform the classification of IoT devices. In 
section 3.1 the treatment of databases used in machine learning algorithms is presented, in 
section 3.2 the creation of training and testing databases is explained, and in section 3.3 the 
adjustment of attributes to be used in the classifiers is presented. 

3.1 Data Processing 
 
To get data from IoT devices, the ideal scenario would be to set up an environment with 
several devices and capture the traffic generated on the network. As this is not feasible for 
this work, the option chosen was to use a previously built database. Due to the area of IoT 
studies is something that there is still a lack of related materials, the number of public 
databases available for use is still scarce. The database that is available online4 for research 
purposes was chosen for this work and also used in Miettinen et al.. This database represents 
the traffic emitted during the configuration of 21 IoT devices in a smart home and is divided 
into ‘.pcap’ files according to the type of device. From these files, a total of ten 
characteristics were extracted to be used for the device fingerprinting, which can be seen in 
table 4.1. 
Some of these features were chosen based on the related work in the previous chapter and 
others were chosen because of their relevance in the context of this work, for example, the 
TCP Flags attribute can help to indicate whether a packet is part of a SYN Flood type of 

 
 
4 The database is available on: https://research.unsw.edu.au/projects/bot-iot-dataset 

https://research.unsw.edu.au/projects/bot-iot-dataset
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DDoS attack. In addition, only primitive attributes were chosen as this paper deals with the 
classification of individual packages rather than the flow of packages. 
 

Attributes Description
Src Port Source port
Dst Port Destination port
Time Packet arrival time
Length Size of packet
Protocol Protocol used
Ethernet Type Auth, Arp, 802.1X, ipv4, …
Inter-Arrival Time Time between a packet and the previous one
TTL Time to live
TCP Flags SYN, ACK, FIN, …
IP Protocol UDP, TCP, …  

Table 1.2: Fingerprinting attributes 
 
After choosing the characteristics, the data extraction is performed transforming ‘.pcap’ files 
into ‘.csv’ to be used in machine learning classifiers. 

3.2 Classification Databases 
 
To create the training and testing databases for each classifier, we adopted the following 
procedures. Firstly, ‘.csv’ files containing network traffic data of each device were 
concatenated into a single file. Then, for each type of existing device, a separate database was 
created containing all data from the network packets of this specific device and added X 
random packets data from the other 20 devices where X is the total number of packets of the 
device to be classified. Thus, each database is formed with 50% of data from the device to be 
classified and 50% with data samples from other devices. 

3.3 Attributes Adjustment 
 
After creating the classifiers databases, the next step was to adapt the attributes to be used in 
classifiers. Most of the data had categorical values in the original database, for example, 
"Protocol" = "EAPOL" or "Ethernet Type" = "IPv4", so it was necessary to convert these 
attributes to numerical values which are accepted by machine learning algorithms. In 
addition, the Ordinal Encoding method was also applied, where for each distinct value of a 
characteristic a new column was created, thus, creating several new columns and increasing 
the size of the database according to the variety of features. These columns have numeric 
values whi. An example of Ordinal Encoding can be seen in Figure 1. This method was 
applied only to those attributes that had categorical values, with the numerical attributes 
remaining the same and its use was due to the improvement in the results presented by the 
classifiers with its application. 
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            Figure 1: Ordinal Encoding 
 
In addition, the transformation of the attribute values of "Src Port" and "DstPort" were 
executed. As the variation of the port number and its values is considerably large, the 
transformation presented in Miettinen et al. was performed in order to divide the ports into 
four distinct network classes. The transformation is shown in table 1.3. 
 

Port class Port number Assigned value
No port n/a 0
Known port 0 - 1023 1
Registered port 1024 - 49151 2
Dynamic port 49152 - 65535 3  

   Table 1.3: Port transformation 
 
4 Design Specification 
 
The programming language used for this work is Python with sklearn library. After 
processing the databases, the next step is to train and test the classifiers. For the training and 
testing stage, the Stratified K-Folds cross-validation method was used. The database is 
divided K times among testing and training databases, in K separate parts of the same size 
which in each of the K divisions, K-1 databases are used for training and 1 database for 
testing. Figure 2 illustrates the operation of the base divisions for K = 5. This method has a 
good distribution among the existing data classes in the database and also increases the 
reliability of the results obtained by the classifiers. Test configurations were performed with 
4, 6, and 10 folds where the value K = 10 (Stratified 10-Folds cross-validation) presented the 
best results, thus being the definitive value chosen for database division. After running the 
tests 10 times with each classifier algorithm for each device, the accuracy, precision, and 
recall results obtained per device were averaged.  
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     Figure 2: Stratified K-Folds Cross-Validation   Source: Great Learning5 
 
A total of 4 algorithms were chosen to be classifiers, namely: Random Forest, Multilayer 
Perceptron, K-nearest Neighbor, and Support Vector Machine. The choice was made due to 
their performance in related works. All of the algorithms were implemented and tested using 
Python with sklearn library. Below in table 1.4, the individual settings for each algorithm are 
shown. 
 

 
                 Table 1.4: Configuration of classifiers in Python 

 
 
5 https://www.mygreatlearning.com/blog/cross-validation/ 

https://www.mygreatlearning.com/blog/cross-validation/
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These parameters were established after several tests in order to achieve the best results. 
 
5 Classifiers Evaluation  
 
The metrics used to assess the efficiency of the algorithms are Accuracy, Precision, and 
Recall which definitions could be interpreted as follows: 
• Accuracy: is the proportion of correctly labelled classes to the entire set of classes. 
• Precision: out of all the positive class classifications that the model has made, how many 

are correct. 
• Recall: among all positive class situations as expected value, how many are correct. 
 
These metrics were chosen because of their common use in validating the efficiency of 
classifiers in machine learning. Below we present the formulas for each metric. 
 

 
     Figure 3: Formulas of most common metrics in machine learning   
 
To calculate these metrics, the values of the confusion matrix generated after the 
classification of the databases are needed. These values are: True Negative (TN), False 
Negative (FN), True Positive (TP), and False Positive (FP). Taking as an example the 
classifier of one of the devices used in this work, Aria smart scale, TN represents the amount 
of data that is not Aria type and was classified as not being Aria type, FN represents the 
amount of data that is Aria type and have been classified as not being Aria type, TP 
represents the data that is Aria type and have been classified as being Aria type, and FP 
represents the data that is not Aria type and have been classified as being Aria type. The 
confusion matrix model is shown in figure 4. 

 
      Figure 4: Confusion matrix     Source: Great Learning6 

 
 
6 https://www.mygreatlearning.com/blog/confusion-matrix-an-overview-with-python-and-r/ 

https://www.mygreatlearning.com/blog/confusion-matrix-an-overview-with-python-and-r/
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5.1 Device Classification Results 
 
The results obtained in the classification and identification of devices are shown in tables 1.5, 
1.6, and 1.7 which present the accuracy, precision, and recall values specifically achieved by 
each of the classifiers. Figures 5, 6, and 7 are the graphical representations of the results. 
Table 1.5 presents the accuracy values for each classifier. When observing the results we 
verified that the Random Forest algorithm obtained an average accuracy of 87.2% among all 
devices, being the algorithm that obtained the best results in this metric. The algorithms 
MLP, SVM, and KNN obtained a mean accuracy of 67.5%, 53.2%, and 73.9% respectively. 
Table 1.6 presents the precision results and table 1.7 shows the recall results obtained by the 
classifiers. In both metrics the Random Forest classifier showed the best results, as well as in 
accuracy, with averages of 87.1% and 83.9% of precision and recall, respectively. The MLP, 
SVM, and KNN classifiers obtained an average precision of 74.7%, 68.6%, and 73.9% and 
recall averages of 75.3%, 69.8%, and 77.1% respectively. 
 
  Accuracy 

Device Random Forest KNN SVM ML Perceptron 
Aria 1.0000 1.0000 0.3077 0.9231 
D-LinkCam 0.7368 0.7368 0.2632 0.3158 
D-LinkDoorSensor 0.7500 0.5833 0.2222 0.3889 
MAXGateway 1.0000 1.0000 1.0000 1.0000 
D-LinkHomeHub 0.8983 0.8220 0.7542 0.7458 
WeMoLink 0.9114 0.7848 0.5696 0.6582 
D-LinkSiren 0.8119 0.7228 0.5644 0.6733 
WeMoSwitch 0.8302 0.7358 0.1132 0.5094 
D-LinkWaterSensor 0.8554 0.7349 0.4217 0.5904 
EdimaxPlug1101W 0.6952 0.2500 0.1250 0.2500 
EdimaxPlug2101W 0.6857 0.1429 0.0000 0.1429 
EdnetGateway 1.0000 1.0000 1.0000 1.0000 
HomeMaticPlug 1.0000 1.0000 1.0000 1.0000 
HueBridge 0.8412 0.6228 0.4211 0.4649 
HueSwitch 0.8635 0.8189 0.9479 0.8660 
D-LinkSensor 0.8901 0.8022 0.5165 0.7253 
TP-LinkPlugHS110 1.0000 0.8333 0.5479 1.0000 
Withings 1.0000 0.9286 0.9286 1.0000 
WeMoInsightSwitch 0.8842 0.8000 0.6526 0.6842 
D-LinkSwitch 0.8727 0.8000 0.4182 0.6455 
TP-LinkPlugHS100 0.8000 0.4000 0.4000 0.6000 

Average 0.8727 0.7390 0.5321 0.6754 
                 Table 1.5: Accuracy results 
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                   Figure 5: Accuracy chart 
 
  Precision 

Device Random Forest KNN SVM ML Perceptron 
Aria 1.0000 0.8125 0.6667 0.7500 
WeMoInsightSwitch 0.8750 0.7835 0.5586 0.6633 
D-LinkHomeHub 0.9217 0.7578 0.6692 0.6929 
D-LinkSensor 0.8438 0.7374 0.7966 0.6286 
D-LinkSiren 0.8542 0.8111 0.6129 0.6182 
D-LinkSwitch 0.8889 0.8073 0.8537 0.7245 
D-LinkWaterSensor 0.7978 0.7176 0.8537 0.6533 
EdimaxPlug1101W 0.7874 0.3333 1.0000 0.6667 
EdimaxPlug2101W 0.6687 0.2000 0.0000 0.5000 
EdnetGateway 1.0000 1.0000 1.0000 1.0000 
TP-LinkPlugHS110 0.7800 0.4545 0.5520 0.6000 
Withings 1.0000 1.0000 0.8667 1.0000 
HueSwitch 0.8447 0.7746 0.5736 0.6925 
MAXGateway 1.0000 1.0000 0.7778 1.0000 
TP-LinkPlugHS100 1.0000 0.8000 0.4000 1.0000 
D-LinkDoorSensor 0.8182 0.6563 0.8000 0.7778 
HueBridge 0.7788 0.7030 0.5963 0.7260 
WeMoLink 0.8675 0.8052 0.4286 0.6190 
D-LinkCam 0.7364 0.5600 0.5556 0.8571 
WeMoSwitch 0.8462 0.8125 0.8571 0.5294 
HomeMaticPlug 1.0000 1.0000 1.0000 1.0000 

Average 0.8719 0.7394 0.6866 0.7476 
                                         Table 1.6: Precision results 
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            Figure 6: Precision chart 
 

 
                                               Table 1.7: Recall results 
 

  Recall 
Device Random Forest KNN SupportVM ML Perceptron 

Aria 1.0000 1.0000 0.6077 0.9231 
D-LinkCam 0.7368 0.7368 0.5632 0.6158 
D-LinkDoorSensor 0.7500 0.5833 0.6222 0.6989 
TP-LinkPlugHS110 1.0000 0.8333 0.6781 1.0000 
D-LinkSensor 0.8901 0.8022 0.5165 0.7253 
WeMoLink 0.9114 0.7848 0.5696 0.6582 
D-LinkSwitch 0.8727 0.8000 0.5182 0.6455 
Withings 1.0000 0.9286 0.9286 1.0000 
EdimaxPlug1101W 0.5000 0.5250 0.6250 0.5500 
EdimaxPlug2101W 0.2857 0.5429 0.6687 0.5643 
EdnetGateway 1.0000 1.0000 1.0000 1.0000 
HomeMaticPlug 1.0000 1.0000 1.0000 1.0000 
HueBridge 0.7412 0.6228 0.6211 0.7649 
HueSwitch 0.8635 0.8189 0.9479 0.8660 
MAXGateway 1.0000 1.0000 1.0000 1.0000 
D-LinkHomeHub 0.8983 0.8220 0.7542 0.7458 
TP-LinkPlugHS100 0.8000 0.4000 0.5940 0.6000 
D-LinkSiren 0.8119 0.7228 0.5644 0.6733 
WeMoInsightSwitch 0.8842 0.8000 0.6526 0.6842 
D-LinkWaterSensor 0.8554 0.7349 0.6217 0.5904 
WeMoSwitch 0.8302 0.7358 0.6132 0.5094 

Average 0.8396 0.7712 0.6984 0.7531 
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                                                                           Figure 7: Recall chart 
 
According to the results, we can observe that Random Forest had the classifiers with the best 
metrics for the vast majority of devices. The results obtained may have been greatly 
influenced by the size of the database, perhaps with larger databases and more training data 
the Multilayer Perceptron algorithm could have a better performance but for this specific case 
Random Forest stands out from the other algorithms. 
 

5.2 Statistical Tests 
 
To determine whether there is a statistically significant difference between the averages of 
the results, the Friedman and Nemenyi test was performed on the accuracy results of the 
classifiers. The accuracy metric was chosen in this case because it represents the total value 
of correct answers for all data in the database, thus, being the most important metric in this 
study. Firstly, the ranking of the accuracy results of the classifiers was carried out as shown 
in table 1.8. The ranking was performed by device getting a ranking by line. In the 
EdnetGateway, HomeMaticPlug, MAXGateway, TP-LinkPlugHS100, and Withings device 
lines the classifiers were tied so the results are not an integer. 
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Device Random Forest Support VM KNN ML Perceptron 
WeMoLink 1 4 2 3 
D-LinkCam 1 4 3 2 
D-LinkDoorSensor 1 2 4 3 
Withings 1.5 2 1.5 1.5 
D-LinkSensor 1 2 3 4 
D-LinkSiren 1 4 2 3 
D-LinkSwitch 1 2 3 4 
D-LinkWaterSensor 2 1 3 4 
EdimaxPlug1101W 1 4 3 2 
EdimaxPlug2101W 1 4 3 2 
EdnetGateway 1.5 1.5 1.5 1.5 
HomeMaticPlug 1.5 1.5 1.5 1.5 
HueBridge 1 4 3 2 
HueSwitch 1 4 2 3 
MAXGateway 1.5 2 1.5 1.5 
TP-LinkPlugHS100 1.5 3 2 1.5 
TP-LinkPlugHS110 1 3 1 2 
Aria 1 4 2 3 
WeMoInsightSwitch 1 4 2 3 
D-LinkHomeHub 1 4 3 2 
WeMoSwitch 2 1 3 4 

                            Table 1.8: Ranking accuracy 
 
 
The values in table 1.8 were used as input to a function that performs the Friedman and 
Nemenyi test. The test was executed in R programming language with the nemenyi function 
from the tsutils library. Then, we executed the function tsutils with parameters (M, conf. 
level=0.95, plottype= "vline") where M is the matrix formed with the data from table 1.8. The 
result is presented in figure 8. 
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     Figure 8: Friedman and Nemenyi test result 
 
The critical distance (CD - Critical Distance) shown in figure 8 is 1.331, which means the 
distances between the results of the algorithms are statistically significant. The blue bar in 
figure 8 indicates that there is significant difference from KNN to SVM, thus, there is  
difference between using these two algorithms in this case. But the difference between 
Random Forest and Multilayer Perceptron (3.40 - 1.40 = 2.00) is greater than CD (1.33 < 
2.00), in other words, statistically in this case it is better to use Random Forest rather than 
Multilayer Perceptron or any of the two other algorithms. Because it has the best results, the 
Random Forest algorithm was chosen as the classifier in the anomalous data verification part 
that is presented in the next section. 
 

6 IoT Behaviour 
 
Identifying the device type is just the beginning when you are focused on ensuring the 
operation and security of an IoT network. To ensure that devices do not pose a risk to the 
integrity of the network it is necessary to know when they are presenting anomalous 
behaviour. After achieving the best results in device identification using the Random Forest 
classifier in the previous chapter, this algorithm was chosen to identify anomalous network 
data. 
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6.1 Anomalous Database 
 
To create a database with anomalous data, we used data from the Bot-IoT database in 
Koroniotis et al. which is available online7. The database incorporates legitimate and 
simulated botnet traffic and contains data from various types of known attacks to an IoT 
environment. For this work, we chose databases with DDoS attacks such as ‘HTTP flood’, 
‘TCP flood’, and ‘UDP flood’. The choice was made due to the fingerprinting attributes used 
in which it is possible to distinguish between common and malicious data packets. The 
anomalous database is composed of packets of each type of DDoS attack where each type of 
attack represents 1/3 of the database, having in total the same number of packets as the IoT 
device database used by Miettinen et al. for device identification. 

6.2 Anomaly Identification by Device 
 
We classified the network packets into normal or anomalous data using the Random Forest 
classifier with the same settings presented in section 3.2. 
The databases for each classifier are composed of 50% of packets from the device to be tested 
and 50% of DDoS attack packets from the anomalous database. For the division between 
training and testing database, cross-validation method and accuracy, precision, and recall 
evaluation metrics were used again. The results are presented in table 1.9 and their graphical 
representation in figure 9. The results were very satisfactory with accuracy, precision, and 
recall with some values reaching 100%. 
 

Device Accuracy Precision Recall 
Aria 1.0000 1.0000 1.0000 
D-LinkCam 0.6840 0.8615 0.4457 
D-LinkDoorSensor 0.7619 0.7273 0.7619 
D-LinkHomeHub 0.8961 0.8734 0.8961 
D-LinkSensor 0.8955 0.9091 0.8955 
D-LinkSiren 0.8500 0.8500 0.8500 
D-LinkSwitch 0.8493 0.9254 0.8493 
D-LinkWaterSensor 0.9054 0.8272 0.9054 
HueBridge 0.7692 0.7627 0.7692 
EdimaxPlug1101W 0.6502 0.6500 0.7950 
EdimaxPlug2101W 0.6890 1.0000 0.6650 
EdnetGateway 1.0000 1.0000 1.0000 
HomeMaticPlug 1.0000 1.0000 1.0000 
Withings 1.0000 1.0000 1.0000 
HueSwitch 0.8438 0.8438 0.8438 
MAXGateway 1.0000 1.0000 1.0000 
TP-LinkPlugHS100 0.8333 0.8333 0.8333 
TP-LinkPlugHS110 0.7880 0.7500 0.6950 
WeMoInsightSwitch 0.9342 0.9861 0.9342 
WeMoLink 0.9825 0.9180 0.9825 
WeMoSwitch 0.9070 0.9286 0.9070 
Average 0.8685 0.8879 0.8585 

                                         Table 1.9: Identification by device  
 

 
 
7 Bot-IoT database is available on https://research.unsw.edu.au/projects/bot-iot-dataset 

https://research.unsw.edu.au/projects/bot-iot-dataset
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                                                                  Figure 9: Results by device 
 

6.3 Anomaly Identification by Category 
 
After getting good results in differentiating between common and anomalous IoT data 
presented by single device classifiers, the final stage is to group the devices that belong to the 
same category and verify if the Random Forest classifier maintains good performance and 
results. The 21 devices are grouped into 7 different categories that are presented in table 2.0. 
With the categories determined, eight new databases were set up in which 50% consisting of 
data packets from their respective devices and 50% consisting of anomalous database 
packets. The training and testing methods and metrics used were the same as for single device 
rating. The results obtained by the classifiers in the tests are presented in table 2.1 and its 
graphical representation in figure 10. 
 
 

Category Accuracy Precision Recall 

Smart sensor 0.8543 0.8212 0.8543 

Smart plug 0.7921 0.8467 0.7977 

Smart hub 0.9151 0.9329 0.9151 

Smart scale 1.0000 1.0000 1.0000 

Smart switch 0.9168 0.9191 0.9168 
                                Table 2.1: Identification by category 
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           Figure 10: Identification by category  
 

6.4 Discussion 
 
Starting with the results of the first step in classifying the type of device in which the package 
being analysed belongs (chapter 5), Random Forest classifiers presented the best metrics 
almost unanimously. When we take the accuracy metric, in table 1.5 it is possible to observe 
that apart from two devices Random Forest was in the first place, being in second place for 
D-LinkWaterSensor and WemoSwitch devices where SVM classifier had better results for 
both devices. For some devices, Random Forest were giving equal results to other classifiers. 
For the rest of the devices, Random Forest was in first place with the best accuracy among all 
classifiers being therefore used in the classification between common and anomalous IoT 
data. Comparing to the work of Miettinen et al., the authors used the same database and 
Random Forest classifier to identify devices connected to the network through device 
fingerprinting, however, with another set of attributes. The minimum accuracy results in this 
work were higher using the classifier for the EdimaxPlug1101W device that presented 
accuracy of 69.5% being the worst result for the Random Forest while for Miettinen the 
worse accuracy results for his results showed below 40%. For some of the other devices, 
Miettinen achieved 100% accuracy but for these same devices, our work also obtained good 
results of accuracy. 
In the second part of the work, the results of the metrics both in the classification of data by 
individual device and by device category were very similar for all metrics (accuracy, 
precision, and recall). Random Forest turned out to be a great classifier for differentiating 
between common and anomalous IoT data with far superior results compared to the device 
type classification presented in chapter 5. This shows that there is a big difference between 
common and anomalous data packets and that it is easier for Random Forest classifiers to 
differentiate between these packets than between different device packets. Many factors 
contributed to these results, from the size of the database available for each classifier to the 
treatment of attributes. Perhaps what most impacted the results were the database attributes 
chosen for the device fingerprinting. That is the reason we believe that the characteristics 
chosen for device fingerprinting were the great differential for the results obtained. 
 
 



20 
 

 

7 Conclusion and Future Work 
 
This work aimed to use machine learning techniques to correctly classify and identify IoT 
network traffic data. We explored both the classification of traffic between different devices 
and between common and anomalous traffic packets. For this, the Device Fingerprint (DFP) 
technique was used to identify IoT devices through network packet samples. To classify 
traffic, we performed analyses on which network characteristics and machine learning 
algorithms are most commonly used in the area of classification of IoT devices and 
identification of malicious traffic. 
In the device classification section, Multilayer Perceptron, K-nearest Neighbors, Support 
Vector Machine, and Random Forest algorithms were tested and ranked according to 
Accuracy, Precision, and Recall metrics in addition to the Friedman and Nemenyi statistical 
test. After the tests, the Random Forest classifier presented the best results and was chosen to 
perform the classification between common and anomalous traffic. For the classification 
between common and malicious traffic data, we performed separate tests with classifiers by 
device and by device category where both presented a high rate of success in differentiating 
between common and anomalous traffic packets of IoT devices. 
One of the ideas for future work is to use derived attributes by developing an analysis of the 
packet flow in a temporal order instead of sorting only single packets in random order. 
Furthermore, it would be interesting to implement Deep Learning algorithms, such as 
Convolutional Neural Network and Recurrent Neural Network, which showed good results in 
correlated works to classify and identify anomalous data differentiating the type of attack 
detected. 
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