

An approach for malware detection on IoT systems
using machine learning

MSc Research Project
Cyber Security

Jonatas Alves Fagundes
Student ID: x20144946

School of Computing
National College of Ireland

Supervisor: Niall Heffernan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Jonatas Alves Fagundes

Student ID:

x20144946

Programme:

MSc Cyber Security

Year:

2020/2021

Module:

Research Project

Supervisor:

Niall Heffernan

Submission Due
Date:

23/08/2021

Project Title:

An approach for malware detection on IoT systems using machine
learning

Word Count:

7075 Page Count 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Jonatas Alves Fagundes

Date:

23/08/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

An approach for malware detection on IoT systems
using machine learning

Jonatas Alves Fagundes
x20144946

Abstract
Internet of things (IoT) devices communicate, collect and exchange data about our online activities
and preferences via the internet. These smart devices are infiltrated into our lives in houses,
workplaces, cities and it generates millions of gigabytes data every day. However, any device that
shares data through the internet is vulnerable to cyberattacks. It is known that most IoT devices are
built containing poor security which makes them attractive targets to cybercriminals. Malware
detection has been a research area that is constantly studied due to the evolution of malwares and its
vectors. Machine learning techniques have been presented as one of the most efficient and effective
solutions to identify different vectors of attacks in IoT devices. This research aims to present a study
of the implementation of machine learning techniques in the detection of malware to address
vulnerabilities in IoT environments. This work explores ways to identify normal and anomalous
behaviours in IoT systems using machine learning algorithms as classifiers that include Random
Forest, Artificial Neural Network - Multilayer Perceptron, K-nearest Neighbors, and Support Vector
Machine. In this work, we could identify that Random Forest presents better results identifying
malicious behaviour based on tests, previous work, and other sources.

1 Introduction

With the popularization of the Internet of Things (IoT) - technology on the rise that is used in
several areas such as agriculture, health, smart homes, among other applications - some
concerns about this theme have been standing out. Allied to innovation, this recent
technology is followed by many challenges which the main one is without a doubt, security.
For the success of the IoT concept, it is essential to guarantee the security and privacy of user
data. Intrusion detection is one of the techniques used to increase security, aiming to detect
and identify intrusion attempts in computing environments by internal and external invaders.
Intrusion Detection Systems (IDS) differ in several aspects, such as the type of detection
performed, the system architecture according to the target of the detections, the location
where it is arranged, among other characteristics.
Malware detection is a wide area of automated monitoring mechanisms to identify and
protect devices and systems from all forms of malicious code. Considering that antivirus and
other traditional mechanisms have been losing their efficiency in protecting from malwares,
other security mechanisms must be used for combating these threats. IoT malware detection
has been an important and urgent subject in researches by the security community as the
attacks on IoT environments have skyrocketed in recent years.
Machine Learning (ML) is part of artificial intelligence (AI) and consists of programming a
computer to learn from example data or past events to create improved criteria resulting in
better decision-making without human intervention. Machine Learning algorithms search for
patterns in data and try to make assumptions and once the algorithm starts being accurate, it

2

implements that knowledge to new sets of data improving accuracy and performance in that
algorithm. There are two main methods of machine learning that are commonly used:
Supervised and Unsupervised learning. Supervised learning trains algorithms using examples
that are labelled, in other words, an input that the wanted output is known. The learning
algorithm receives the correct output and a set of inputs where it learns by comparing them to
find errors. After comparing, it collects that information and modifies the algorithm
accordingly. Supervised learning utilises patterns to foresee the value of a label on unlabelled
data by using methods such as classification, prediction, regression, and gradient boosting.
Unsupervised learning, on the contrary, is used when there are no historical labels or correct
outputs. The learning algorithm must identify the data being inputted and find its structure.
This algorithm is commonly used to segment text topics, recommend items, and identify data
anomalies by using methods such as nearest-neighbor mapping, k-means clustering, self-
organizing maps, and singular value decomposition.
The detection of malware in IoT environments is a great challenge due to the massive amount
of data processed. A relatively recent example is the malware botnet Mirai1 which in 2016
compromised thousands of IoT devices and performed DDoS attacks whose traffic hit 1Tbps.
With the increase in the amount of data generated by IoT devices, it became necessary to
implement other technologies to assist in data processing. The heterogeneous nature of IoT
systems and the complex threat landscape have been a challenge for organisations to provide
adequate security. According to the most recent SonicWall threat report 20212, in the
previous year, the number of IoT malware attacks reached 56.9 million. In addition,
according to Bitglass in its Remote Workforce Security Report (2020)3, 65% of organizations
allow access from personal, unmanaged devices’ which is an opened door for malicious
attackers to exploit.
To be effective, it is necessary to have a security mechanism that is able to identify which
characteristics are relevant to distinguish malicious from benign codes where we can use
techniques such as Static analysis and Dynamic analysis. Machine learning has appeared as
one of the best security mechanisms for protecting IoT environments from those powerful
and destructive malware attacks. Having access to activity and behaviour data of the IoT
devices connected to the network makes it possible to train Machine Learning (ML)
classifiers that can be used to identify malicious behaviour. Having the ability to identify
devices connected to a network also provides better control over network traffic and allows
better management of devices considered to be a security risk to the network structure as a
whole. Considering the increase in the number of IoT devices and its lack of built-in security
features, we can notice that there is an urge for a solution that will effectively protect it
against cybercriminals. Given this context, we can assume that this is an urgent matter for
cybersecurity which was the motivation for this work. This work aims to present an approach
for malware detection in IoT devices using machine learning techniques and analysis of
device fingerprinting for the identification of malicious behaviours. After choosing the most
relevant characteristics and the database with samples of the network traffic, the training of

1 https://www.csoonline.com/article/3258748
2 https://www.sonicwall.com/2021-cyber-threat-report/
3 https://www.bitglass.com/

https://www.csoonline.com/article/3258748
https://www.sonicwall.com/2021-cyber-threat-report/
https://www.bitglass.com/

3

the machine learning (ML) classifiers is carried out for each device using the Random Forest,
Multilayer Perceptron, K-Nearest Neighbors, and Support Vector Machine algorithms. Upon
completion of the tests, the machine learning classifiers are ranked regarding their suitability
in classifying between common data from IoT devices and anomalous data from devices
infected by malicious agents.

1.1 Research Question

• How to improve security on IoT systems based on malware detection by using machine

learning?

Considering that IoT devices have different systems and peculiarities, and that the number of
malware attacks has been increasing recently, an approach on how to improve the security on
IoT systems that encompasses the differences between them and curb or possibly stop those
attacks is very important and needed by the time this work is being presented. By using the
Random Forest algorithm and analysing the map of network behaviours in IoT systems, this
work aims to create a malware detection approach to answer the research question proposed.

1.2 Objective

The objective of this work is to identify IoT devices and differentiate normal and anomalous
behaviours analysing their operating patterns through network traffic samples. For this
purpose, it is studied which network traffic characteristics of the devices should be chosen to
make the identification of behaviours as accurate as possible. The key points we try to
achieve in this work are:
• Implement Machine Learning algorithms with a high level of accuracy in the data
classifications of IoT devices;
• Discover which algorithms and network traffic characteristics are best suited for classifying
the behaviour of IoT devices;
• Propose an approach for malware detection on IoT systems.

1.3 Structure

The rest of this document is designed in sections as follows. In section 2, we present previous
work where different approaches based on malware detection and machine learning
approaches were studied. In section 3, we illustrate our research methods and specification of
our approach classifying data, training, and testing machine learning classifiers. Followed by
section 5, where we evaluate the classifiers. In section 6, we implement the identification of
behaviours. We then present a conclusion and future work in section 7.

2 Related Work

According to Zhou et al., IoT devices are vulnerable to attacks because of their
interdependence where the authors claim the attacker could exploit other devices` behaviour
that belongs to the same environment and have an interdependence relationship with the
target device. It would increase the chances of bypassing the security mechanism applied to

4

the target device. In the same work, the authors mention the diversity of IoT devices as a
threat due to many different firmware, hardware, protocols, and lack of security which in
most cases are common web security vulnerabilities used by attackers. It highlights the
importance of monitoring malicious behaviours and protecting the environment as a whole.

2.1 IoT Malware Detection

Aslan et al. review different approaches of malware detection including signature-based
detection and behaviour-based detection. The authors compare different solutions, give an
evaluation of each technique used in previous work presenting pros and cons, and conclude
by reinforcing that there is still a need for malware detection research. In contrary to this
paper, none of the approaches presented by the authors used traffic network parameters in the
detection of malicious behaviour.
In the work of Wang et al., the authors presented a study of IoT malware where features of
malware samples were extracted to identify their relationship with other malware family and
by using honeypots the authors collected information to design a classifier to categorise IoT
malwares into families and identify the correlation between them. This work helps the
research community to have a better understanding of IoT malwares, however, it does not
provide a solution to protect against them.
Ni An et al. implemented semi-supervised algorithms for the detection of malwares in home
routers where the authors affirm to have achieved high rates of detection of malware without
false alarms. Z. D. Patel, Westyarian et al., and Hadiprakoso et al. applied dynamic-based and
hybrid-based malware analysis to present a solution of malware detection in Android
operation system using a machine learning model where a detection accuracy of 99% was
achieved. However, the authors limited their work to a single type of device. As mentioned
before, the IoT environment consists of multiple different devices with different
characteristics such as hardware, firmware, and protocol.

2.2 Device Fingerprinting and Machine Learning

In Miettinen et al., a system called IoT Sentinel which is aimed at small networks such as
homes and small offices is proposed. The system can identify the type of IoT device
introduced into the network and impose measures to mitigate possible security flaws in
devices considered to be vulnerable. IoT Sentinel controls the network traffic accessed by
devices recognized as vulnerable to prevent problems to other devices connected to the
network. J. Pan created a novel model using convolutional supervised machine learning
based on network behavioural fingerprint to identify IoT devices efficiently. In another
similar work, Bezawada et al. presented a methodology that uses extracted features from
network traffic by using device fingerprinting. A machine learning model is trained to
identify similar types of IoT devices where an accuracy of 99% was achieved in the
identification. In Aneja et al., the objective was to identify IoT devices based on only one
attribute, Inter Arrival Time (IAT), which is the time interval between two consecutive
received packets. For this, it was generated graphic images from the IAT of the registered
packets which served as input to a Convolutional Neural Network (CNN). In the end, the hit

5

rate achieved was 86.7%. In another work that uses CNN, M. Yeo et al. presented a method
of malware detection in real-time using a large amount of data. The method applied for
classification achieved 85% of accuracy and precision. In contrary to this paper, the authors
utilised different parameters to analyse and classify data and behaviours which impacted on
their results.
In the article of Shahid et al., techniques based on Machine Learning for monitoring IoT
networks are presented where the authors analyse common and malicious IoT network traffic
and use characteristics such as the size of the first N packets sent, the size of the first N
packets received, the inter-arrival times of N-1 packets between the first N packets sent, and
the inter-arrival times of N-1 packets among the first N packets received. Regarding the
classifiers, the algorithms tested were Decision Tree, Random Forest, Naive Bayes, K-
Nearest Neighbor, Support Vector Machine, and Artificial Neural Network, in which
Random Forest presented the best results. Even though these papers presented great results,
they are only focused on the identification of IoT devices to be used for other implemented
solutions.
In Shaikh et al. a model for classifying network characteristics from malicious devices is
presented to identify attacks that originate from compromised IoT devices using packet
header information from a darknet database. The machine learning classifiers explored were
Random Forest, Gradient Boost, AdaBoost, and Naive Bayes in which Gradient Boost and
Random Forest obtained better results.
D. Gibert et al., P. Priyadarshan et al.; and M. Wazid provides detailed work about
approaches using machine learning for the detection of malware. The authors compare and
analyse a great number of previous works in different categories according to multiple
different characteristics including dynamic and hybrid-based analysis, database, and
objectives. In addition, the authors evaluate the performance of methods used in those papers
based on common solutions used by the scientific community.
In a different approach, S. A. Roseline et al. uses a method of malware analysis by
visualization converting malware samples into greyscale images. This approach combines
datasets with benign and malicious samples and trains multi-layered classifiers with labelled
images to try to predict malware in the data. The algorithm used was Random Forest and
achieved an accuracy of 98.9% and more effectiveness than other deep learning models.
M. Mehra et al. proposed a model that combines system files, IoT application files, and Linux
malware to build a Random Forest classifier. The authors provide an exhaustive analysis of
machine learning models trained using parameters that were observed to present good results
in the detection of zero-day attacks.
The importance of choosing the right attributes that will constitute the device fingerprinting is
because of the fact that the database used for the training of machine learning classifiers is
built based on these attributes.
In table 1.1 below, we present the algorithms used respectively by each author previously
mentioned.

6

Algorithm Author
Decision Tree Shahid et al.; Bezawada et al.

Random Forest
Shaikh et al., Shahid et al.; Miettinen et al.; M. Yeo et al.;
 S. A. Roseline et al.

Gradient Boost Shaikh et al.; Bezawada et al.
Ada Boost Shaikh et al.
Naïve Bayes Shaikh et al., Shahid et al.
LSTM-CNN Wang et al.; J. Pan
Convolutional Neural Network Aneja et al.; M. Yeo et al.
Support Vector Machine Shahid et al.; M. Yeo et al.; M. Mehra et al.
K-Nearest Neighbor Shahid et al.; Bezawada et al.; M. Mehra et al.
Artificial Neural Network Shahid et al.
Majority Voting Bezawada et al.

 Table 1.1: Algorithms used in related work

In this paper, the focus is not only on one aspect of classification but encompasses both the
identification of data between different types of devices and the differentiation between
standard and malicious IoT network traffic.

3 Research Methodology

This section presents the methodology used to perform the classification of IoT devices. In
section 3.1 the treatment of databases used in machine learning algorithms is presented, in
section 3.2 the creation of training and testing databases is explained, and in section 3.3 the
adjustment of attributes to be used in the classifiers is presented.

3.1 Data Processing

To get data from IoT devices, the ideal scenario would be to set up an environment with
several devices and capture the traffic generated on the network. As this is not feasible for
this work, the option chosen was to use a previously built database. Due to the area of IoT
studies is something that there is still a lack of related materials, the number of public
databases available for use is still scarce. The database that is available online4 for research
purposes was chosen for this work and also used in Miettinen et al.. This database represents
the traffic emitted during the configuration of 21 IoT devices in a smart home and is divided
into ‘.pcap’ files according to the type of device. From these files, a total of ten
characteristics were extracted to be used for the device fingerprinting, which can be seen in
table 4.1.
Some of these features were chosen based on the related work in the previous chapter and
others were chosen because of their relevance in the context of this work, for example, the
TCP Flags attribute can help to indicate whether a packet is part of a SYN Flood type of

4 The database is available on: https://research.unsw.edu.au/projects/bot-iot-dataset

https://research.unsw.edu.au/projects/bot-iot-dataset

7

DDoS attack. In addition, only primitive attributes were chosen as this paper deals with the
classification of individual packages rather than the flow of packages.

Attributes Description
Src Port Source port
Dst Port Destination port
Time Packet arrival time
Length Size of packet
Protocol Protocol used
Ethernet Type Auth, Arp, 802.1X, ipv4, …
Inter-Arrival Time Time between a packet and the previous one
TTL Time to live
TCP Flags SYN, ACK, FIN, …
IP Protocol UDP, TCP, …

Table 1.2: Fingerprinting attributes

After choosing the characteristics, the data extraction is performed transforming ‘.pcap’ files
into ‘.csv’ to be used in machine learning classifiers.

3.2 Classification Databases

To create the training and testing databases for each classifier, we adopted the following
procedures. Firstly, ‘.csv’ files containing network traffic data of each device were
concatenated into a single file. Then, for each type of existing device, a separate database was
created containing all data from the network packets of this specific device and added X
random packets data from the other 20 devices where X is the total number of packets of the
device to be classified. Thus, each database is formed with 50% of data from the device to be
classified and 50% with data samples from other devices.

3.3 Attributes Adjustment

After creating the classifiers databases, the next step was to adapt the attributes to be used in
classifiers. Most of the data had categorical values in the original database, for example,
"Protocol" = "EAPOL" or "Ethernet Type" = "IPv4", so it was necessary to convert these
attributes to numerical values which are accepted by machine learning algorithms. In
addition, the Ordinal Encoding method was also applied, where for each distinct value of a
characteristic a new column was created, thus, creating several new columns and increasing
the size of the database according to the variety of features. These columns have numeric
values whi. An example of Ordinal Encoding can be seen in Figure 1. This method was
applied only to those attributes that had categorical values, with the numerical attributes
remaining the same and its use was due to the improvement in the results presented by the
classifiers with its application.

8

 Figure 1: Ordinal Encoding

In addition, the transformation of the attribute values of "Src Port" and "DstPort" were
executed. As the variation of the port number and its values is considerably large, the
transformation presented in Miettinen et al. was performed in order to divide the ports into
four distinct network classes. The transformation is shown in table 1.3.

Port class Port number Assigned value
No port n/a 0
Known port 0 - 1023 1
Registered port 1024 - 49151 2
Dynamic port 49152 - 65535 3

 Table 1.3: Port transformation

4 Design Specification

The programming language used for this work is Python with sklearn library. After
processing the databases, the next step is to train and test the classifiers. For the training and
testing stage, the Stratified K-Folds cross-validation method was used. The database is
divided K times among testing and training databases, in K separate parts of the same size
which in each of the K divisions, K-1 databases are used for training and 1 database for
testing. Figure 2 illustrates the operation of the base divisions for K = 5. This method has a
good distribution among the existing data classes in the database and also increases the
reliability of the results obtained by the classifiers. Test configurations were performed with
4, 6, and 10 folds where the value K = 10 (Stratified 10-Folds cross-validation) presented the
best results, thus being the definitive value chosen for database division. After running the
tests 10 times with each classifier algorithm for each device, the accuracy, precision, and
recall results obtained per device were averaged.

9

 Figure 2: Stratified K-Folds Cross-Validation Source: Great Learning5

A total of 4 algorithms were chosen to be classifiers, namely: Random Forest, Multilayer
Perceptron, K-nearest Neighbor, and Support Vector Machine. The choice was made due to
their performance in related works. All of the algorithms were implemented and tested using
Python with sklearn library. Below in table 1.4, the individual settings for each algorithm are
shown.

 Table 1.4: Configuration of classifiers in Python

5 https://www.mygreatlearning.com/blog/cross-validation/

https://www.mygreatlearning.com/blog/cross-validation/

10

These parameters were established after several tests in order to achieve the best results.

5 Classifiers Evaluation

The metrics used to assess the efficiency of the algorithms are Accuracy, Precision, and
Recall which definitions could be interpreted as follows:
• Accuracy: is the proportion of correctly labelled classes to the entire set of classes.
• Precision: out of all the positive class classifications that the model has made, how many

are correct.
• Recall: among all positive class situations as expected value, how many are correct.

These metrics were chosen because of their common use in validating the efficiency of
classifiers in machine learning. Below we present the formulas for each metric.

 Figure 3: Formulas of most common metrics in machine learning

To calculate these metrics, the values of the confusion matrix generated after the
classification of the databases are needed. These values are: True Negative (TN), False
Negative (FN), True Positive (TP), and False Positive (FP). Taking as an example the
classifier of one of the devices used in this work, Aria smart scale, TN represents the amount
of data that is not Aria type and was classified as not being Aria type, FN represents the
amount of data that is Aria type and have been classified as not being Aria type, TP
represents the data that is Aria type and have been classified as being Aria type, and FP
represents the data that is not Aria type and have been classified as being Aria type. The
confusion matrix model is shown in figure 4.

 Figure 4: Confusion matrix Source: Great Learning6

6 https://www.mygreatlearning.com/blog/confusion-matrix-an-overview-with-python-and-r/

https://www.mygreatlearning.com/blog/confusion-matrix-an-overview-with-python-and-r/

11

5.1 Device Classification Results

The results obtained in the classification and identification of devices are shown in tables 1.5,
1.6, and 1.7 which present the accuracy, precision, and recall values specifically achieved by
each of the classifiers. Figures 5, 6, and 7 are the graphical representations of the results.
Table 1.5 presents the accuracy values for each classifier. When observing the results we
verified that the Random Forest algorithm obtained an average accuracy of 87.2% among all
devices, being the algorithm that obtained the best results in this metric. The algorithms
MLP, SVM, and KNN obtained a mean accuracy of 67.5%, 53.2%, and 73.9% respectively.
Table 1.6 presents the precision results and table 1.7 shows the recall results obtained by the
classifiers. In both metrics the Random Forest classifier showed the best results, as well as in
accuracy, with averages of 87.1% and 83.9% of precision and recall, respectively. The MLP,
SVM, and KNN classifiers obtained an average precision of 74.7%, 68.6%, and 73.9% and
recall averages of 75.3%, 69.8%, and 77.1% respectively.

 Accuracy

Device Random Forest KNN SVM ML Perceptron
Aria 1.0000 1.0000 0.3077 0.9231
D-LinkCam 0.7368 0.7368 0.2632 0.3158
D-LinkDoorSensor 0.7500 0.5833 0.2222 0.3889
MAXGateway 1.0000 1.0000 1.0000 1.0000
D-LinkHomeHub 0.8983 0.8220 0.7542 0.7458
WeMoLink 0.9114 0.7848 0.5696 0.6582
D-LinkSiren 0.8119 0.7228 0.5644 0.6733
WeMoSwitch 0.8302 0.7358 0.1132 0.5094
D-LinkWaterSensor 0.8554 0.7349 0.4217 0.5904
EdimaxPlug1101W 0.6952 0.2500 0.1250 0.2500
EdimaxPlug2101W 0.6857 0.1429 0.0000 0.1429
EdnetGateway 1.0000 1.0000 1.0000 1.0000
HomeMaticPlug 1.0000 1.0000 1.0000 1.0000
HueBridge 0.8412 0.6228 0.4211 0.4649
HueSwitch 0.8635 0.8189 0.9479 0.8660
D-LinkSensor 0.8901 0.8022 0.5165 0.7253
TP-LinkPlugHS110 1.0000 0.8333 0.5479 1.0000
Withings 1.0000 0.9286 0.9286 1.0000
WeMoInsightSwitch 0.8842 0.8000 0.6526 0.6842
D-LinkSwitch 0.8727 0.8000 0.4182 0.6455
TP-LinkPlugHS100 0.8000 0.4000 0.4000 0.6000

Average 0.8727 0.7390 0.5321 0.6754
 Table 1.5: Accuracy results

12

 Figure 5: Accuracy chart

 Precision

Device Random Forest KNN SVM ML Perceptron
Aria 1.0000 0.8125 0.6667 0.7500
WeMoInsightSwitch 0.8750 0.7835 0.5586 0.6633
D-LinkHomeHub 0.9217 0.7578 0.6692 0.6929
D-LinkSensor 0.8438 0.7374 0.7966 0.6286
D-LinkSiren 0.8542 0.8111 0.6129 0.6182
D-LinkSwitch 0.8889 0.8073 0.8537 0.7245
D-LinkWaterSensor 0.7978 0.7176 0.8537 0.6533
EdimaxPlug1101W 0.7874 0.3333 1.0000 0.6667
EdimaxPlug2101W 0.6687 0.2000 0.0000 0.5000
EdnetGateway 1.0000 1.0000 1.0000 1.0000
TP-LinkPlugHS110 0.7800 0.4545 0.5520 0.6000
Withings 1.0000 1.0000 0.8667 1.0000
HueSwitch 0.8447 0.7746 0.5736 0.6925
MAXGateway 1.0000 1.0000 0.7778 1.0000
TP-LinkPlugHS100 1.0000 0.8000 0.4000 1.0000
D-LinkDoorSensor 0.8182 0.6563 0.8000 0.7778
HueBridge 0.7788 0.7030 0.5963 0.7260
WeMoLink 0.8675 0.8052 0.4286 0.6190
D-LinkCam 0.7364 0.5600 0.5556 0.8571
WeMoSwitch 0.8462 0.8125 0.8571 0.5294
HomeMaticPlug 1.0000 1.0000 1.0000 1.0000

Average 0.8719 0.7394 0.6866 0.7476
 Table 1.6: Precision results

13

 Figure 6: Precision chart

 Table 1.7: Recall results

 Recall
Device Random Forest KNN SupportVM ML Perceptron

Aria 1.0000 1.0000 0.6077 0.9231
D-LinkCam 0.7368 0.7368 0.5632 0.6158
D-LinkDoorSensor 0.7500 0.5833 0.6222 0.6989
TP-LinkPlugHS110 1.0000 0.8333 0.6781 1.0000
D-LinkSensor 0.8901 0.8022 0.5165 0.7253
WeMoLink 0.9114 0.7848 0.5696 0.6582
D-LinkSwitch 0.8727 0.8000 0.5182 0.6455
Withings 1.0000 0.9286 0.9286 1.0000
EdimaxPlug1101W 0.5000 0.5250 0.6250 0.5500
EdimaxPlug2101W 0.2857 0.5429 0.6687 0.5643
EdnetGateway 1.0000 1.0000 1.0000 1.0000
HomeMaticPlug 1.0000 1.0000 1.0000 1.0000
HueBridge 0.7412 0.6228 0.6211 0.7649
HueSwitch 0.8635 0.8189 0.9479 0.8660
MAXGateway 1.0000 1.0000 1.0000 1.0000
D-LinkHomeHub 0.8983 0.8220 0.7542 0.7458
TP-LinkPlugHS100 0.8000 0.4000 0.5940 0.6000
D-LinkSiren 0.8119 0.7228 0.5644 0.6733
WeMoInsightSwitch 0.8842 0.8000 0.6526 0.6842
D-LinkWaterSensor 0.8554 0.7349 0.6217 0.5904
WeMoSwitch 0.8302 0.7358 0.6132 0.5094

Average 0.8396 0.7712 0.6984 0.7531

14

 Figure 7: Recall chart

According to the results, we can observe that Random Forest had the classifiers with the best
metrics for the vast majority of devices. The results obtained may have been greatly
influenced by the size of the database, perhaps with larger databases and more training data
the Multilayer Perceptron algorithm could have a better performance but for this specific case
Random Forest stands out from the other algorithms.

5.2 Statistical Tests

To determine whether there is a statistically significant difference between the averages of
the results, the Friedman and Nemenyi test was performed on the accuracy results of the
classifiers. The accuracy metric was chosen in this case because it represents the total value
of correct answers for all data in the database, thus, being the most important metric in this
study. Firstly, the ranking of the accuracy results of the classifiers was carried out as shown
in table 1.8. The ranking was performed by device getting a ranking by line. In the
EdnetGateway, HomeMaticPlug, MAXGateway, TP-LinkPlugHS100, and Withings device
lines the classifiers were tied so the results are not an integer.

15

Device Random Forest Support VM KNN ML Perceptron
WeMoLink 1 4 2 3
D-LinkCam 1 4 3 2
D-LinkDoorSensor 1 2 4 3
Withings 1.5 2 1.5 1.5
D-LinkSensor 1 2 3 4
D-LinkSiren 1 4 2 3
D-LinkSwitch 1 2 3 4
D-LinkWaterSensor 2 1 3 4
EdimaxPlug1101W 1 4 3 2
EdimaxPlug2101W 1 4 3 2
EdnetGateway 1.5 1.5 1.5 1.5
HomeMaticPlug 1.5 1.5 1.5 1.5
HueBridge 1 4 3 2
HueSwitch 1 4 2 3
MAXGateway 1.5 2 1.5 1.5
TP-LinkPlugHS100 1.5 3 2 1.5
TP-LinkPlugHS110 1 3 1 2
Aria 1 4 2 3
WeMoInsightSwitch 1 4 2 3
D-LinkHomeHub 1 4 3 2
WeMoSwitch 2 1 3 4

 Table 1.8: Ranking accuracy

The values in table 1.8 were used as input to a function that performs the Friedman and
Nemenyi test. The test was executed in R programming language with the nemenyi function
from the tsutils library. Then, we executed the function tsutils with parameters (M, conf.
level=0.95, plottype= "vline") where M is the matrix formed with the data from table 1.8. The
result is presented in figure 8.

16

 Figure 8: Friedman and Nemenyi test result

The critical distance (CD - Critical Distance) shown in figure 8 is 1.331, which means the
distances between the results of the algorithms are statistically significant. The blue bar in
figure 8 indicates that there is significant difference from KNN to SVM, thus, there is
difference between using these two algorithms in this case. But the difference between
Random Forest and Multilayer Perceptron (3.40 - 1.40 = 2.00) is greater than CD (1.33 <
2.00), in other words, statistically in this case it is better to use Random Forest rather than
Multilayer Perceptron or any of the two other algorithms. Because it has the best results, the
Random Forest algorithm was chosen as the classifier in the anomalous data verification part
that is presented in the next section.

6 IoT Behaviour

Identifying the device type is just the beginning when you are focused on ensuring the
operation and security of an IoT network. To ensure that devices do not pose a risk to the
integrity of the network it is necessary to know when they are presenting anomalous
behaviour. After achieving the best results in device identification using the Random Forest
classifier in the previous chapter, this algorithm was chosen to identify anomalous network
data.

17

6.1 Anomalous Database

To create a database with anomalous data, we used data from the Bot-IoT database in
Koroniotis et al. which is available online7. The database incorporates legitimate and
simulated botnet traffic and contains data from various types of known attacks to an IoT
environment. For this work, we chose databases with DDoS attacks such as ‘HTTP flood’,
‘TCP flood’, and ‘UDP flood’. The choice was made due to the fingerprinting attributes used
in which it is possible to distinguish between common and malicious data packets. The
anomalous database is composed of packets of each type of DDoS attack where each type of
attack represents 1/3 of the database, having in total the same number of packets as the IoT
device database used by Miettinen et al. for device identification.

6.2 Anomaly Identification by Device

We classified the network packets into normal or anomalous data using the Random Forest
classifier with the same settings presented in section 3.2.
The databases for each classifier are composed of 50% of packets from the device to be tested
and 50% of DDoS attack packets from the anomalous database. For the division between
training and testing database, cross-validation method and accuracy, precision, and recall
evaluation metrics were used again. The results are presented in table 1.9 and their graphical
representation in figure 9. The results were very satisfactory with accuracy, precision, and
recall with some values reaching 100%.

Device Accuracy Precision Recall
Aria 1.0000 1.0000 1.0000
D-LinkCam 0.6840 0.8615 0.4457
D-LinkDoorSensor 0.7619 0.7273 0.7619
D-LinkHomeHub 0.8961 0.8734 0.8961
D-LinkSensor 0.8955 0.9091 0.8955
D-LinkSiren 0.8500 0.8500 0.8500
D-LinkSwitch 0.8493 0.9254 0.8493
D-LinkWaterSensor 0.9054 0.8272 0.9054
HueBridge 0.7692 0.7627 0.7692
EdimaxPlug1101W 0.6502 0.6500 0.7950
EdimaxPlug2101W 0.6890 1.0000 0.6650
EdnetGateway 1.0000 1.0000 1.0000
HomeMaticPlug 1.0000 1.0000 1.0000
Withings 1.0000 1.0000 1.0000
HueSwitch 0.8438 0.8438 0.8438
MAXGateway 1.0000 1.0000 1.0000
TP-LinkPlugHS100 0.8333 0.8333 0.8333
TP-LinkPlugHS110 0.7880 0.7500 0.6950
WeMoInsightSwitch 0.9342 0.9861 0.9342
WeMoLink 0.9825 0.9180 0.9825
WeMoSwitch 0.9070 0.9286 0.9070
Average 0.8685 0.8879 0.8585

 Table 1.9: Identification by device

7 Bot-IoT database is available on https://research.unsw.edu.au/projects/bot-iot-dataset

https://research.unsw.edu.au/projects/bot-iot-dataset

18

 Figure 9: Results by device

6.3 Anomaly Identification by Category

After getting good results in differentiating between common and anomalous IoT data
presented by single device classifiers, the final stage is to group the devices that belong to the
same category and verify if the Random Forest classifier maintains good performance and
results. The 21 devices are grouped into 7 different categories that are presented in table 2.0.
With the categories determined, eight new databases were set up in which 50% consisting of
data packets from their respective devices and 50% consisting of anomalous database
packets. The training and testing methods and metrics used were the same as for single device
rating. The results obtained by the classifiers in the tests are presented in table 2.1 and its
graphical representation in figure 10.

Category Accuracy Precision Recall

Smart sensor 0.8543 0.8212 0.8543

Smart plug 0.7921 0.8467 0.7977

Smart hub 0.9151 0.9329 0.9151

Smart scale 1.0000 1.0000 1.0000

Smart switch 0.9168 0.9191 0.9168
 Table 2.1: Identification by category

19

 Figure 10: Identification by category

6.4 Discussion

Starting with the results of the first step in classifying the type of device in which the package
being analysed belongs (chapter 5), Random Forest classifiers presented the best metrics
almost unanimously. When we take the accuracy metric, in table 1.5 it is possible to observe
that apart from two devices Random Forest was in the first place, being in second place for
D-LinkWaterSensor and WemoSwitch devices where SVM classifier had better results for
both devices. For some devices, Random Forest were giving equal results to other classifiers.
For the rest of the devices, Random Forest was in first place with the best accuracy among all
classifiers being therefore used in the classification between common and anomalous IoT
data. Comparing to the work of Miettinen et al., the authors used the same database and
Random Forest classifier to identify devices connected to the network through device
fingerprinting, however, with another set of attributes. The minimum accuracy results in this
work were higher using the classifier for the EdimaxPlug1101W device that presented
accuracy of 69.5% being the worst result for the Random Forest while for Miettinen the
worse accuracy results for his results showed below 40%. For some of the other devices,
Miettinen achieved 100% accuracy but for these same devices, our work also obtained good
results of accuracy.
In the second part of the work, the results of the metrics both in the classification of data by
individual device and by device category were very similar for all metrics (accuracy,
precision, and recall). Random Forest turned out to be a great classifier for differentiating
between common and anomalous IoT data with far superior results compared to the device
type classification presented in chapter 5. This shows that there is a big difference between
common and anomalous data packets and that it is easier for Random Forest classifiers to
differentiate between these packets than between different device packets. Many factors
contributed to these results, from the size of the database available for each classifier to the
treatment of attributes. Perhaps what most impacted the results were the database attributes
chosen for the device fingerprinting. That is the reason we believe that the characteristics
chosen for device fingerprinting were the great differential for the results obtained.

20

7 Conclusion and Future Work

This work aimed to use machine learning techniques to correctly classify and identify IoT
network traffic data. We explored both the classification of traffic between different devices
and between common and anomalous traffic packets. For this, the Device Fingerprint (DFP)
technique was used to identify IoT devices through network packet samples. To classify
traffic, we performed analyses on which network characteristics and machine learning
algorithms are most commonly used in the area of classification of IoT devices and
identification of malicious traffic.
In the device classification section, Multilayer Perceptron, K-nearest Neighbors, Support
Vector Machine, and Random Forest algorithms were tested and ranked according to
Accuracy, Precision, and Recall metrics in addition to the Friedman and Nemenyi statistical
test. After the tests, the Random Forest classifier presented the best results and was chosen to
perform the classification between common and anomalous traffic. For the classification
between common and malicious traffic data, we performed separate tests with classifiers by
device and by device category where both presented a high rate of success in differentiating
between common and anomalous traffic packets of IoT devices.
One of the ideas for future work is to use derived attributes by developing an analysis of the
packet flow in a temporal order instead of sorting only single packets in random order.
Furthermore, it would be interesting to implement Deep Learning algorithms, such as
Convolutional Neural Network and Recurrent Neural Network, which showed good results in
correlated works to classify and identify anomalous data differentiating the type of attack
detected.

References

Aljawarneh, S., Aldwairi, M. and Bani Yassein, M. (2017) ‘Anomaly-based intrusion
detection system through feature selection analysis and building hybrid efficient model’,
Journal of Computational Science. doi: 10.1016/j.jocs.2017.04.009.

An Evolutionary Study of IoT Malware (no date). Available at:
https://ieeexplore.ieee.org/document/9369383 (Accessed: 16 August 2021).

An, N. et al. (2017) ‘Behavioral anomaly detection of malware on home routers’, in 2017
12th International Conference on Malicious and Unwanted Software (MALWARE). 2017
12th International Conference on Malicious and Unwanted Software (MALWARE), pp. 47–
54. doi: 10.1109/MALWARE.2017.8323956.

Aneja, S., Aneja, N. and Islam, M. S. (2018) ‘IoT Device Fingerprint using Deep Learning’,
in 2018 IEEE International Conference on Internet of Things and Intelligence System
(IOTAIS). 2018 IEEE International Conference on Internet of Things and Intelligence System
(IOTAIS), pp. 174–179. doi: 10.1109/IOTAIS.2018.8600824.

Aslan, Ö. A. and Samet, R. (2020) ‘A Comprehensive Review on Malware Detection
Approaches’, IEEE Access, 8, pp. 6249–6271. doi: 10.1109/ACCESS.2019.2963724.

Bai, L. et al. (2018) ‘Automatic Device Classification from Network Traffic Streams of
Internet of Things’, arXiv:1812.09882 [cs]. Available at: http://arxiv.org/abs/1812.09882
(Accessed: 5 August 2021).

21

Bezawada, B. et al. (2018a) ‘Behavioral Fingerprinting of IoT Devices’, in Proceedings of
the 2018 Workshop on Attacks and Solutions in Hardware Security. New York, NY, USA:
Association for Computing Machinery (ASHES ’18), pp. 41–50. doi:
10.1145/3266444.3266452.

Bezawada, B. et al. (2018b) ‘IoTSense: Behavioral Fingerprinting of IoT Devices’,
arXiv:1804.03852 [cs]. Available at: http://arxiv.org/abs/1804.03852 (Accessed: 23 August
2021).

Garrett, T. et al. (2018) ‘Traffic Differentiation on Internet of Things’, in 2018 IEEE
Symposium on Service-Oriented System Engineering (SOSE). 2018 IEEE Symposium on
Service-Oriented System Engineering (SOSE), pp. 142–151. doi: 10.1109/SOSE.2018.00026.

Gibert, D., Mateu, C. and Planes, J. (2020) ‘The rise of machine learning for detection and
classification of malware: Research developments, trends and challenges’, Journal of
Network and Computer Applications, 153, p. 102526. doi: 10.1016/j.jnca.2019.102526.

Hadiprakoso, R. B., Kabetta, H. and Buana, I. K. S. (2020) ‘Hybrid-Based Malware Analysis
for Effective and Efficiency Android Malware Detection’, in 2020 International Conference
on Informatics, Multimedia, Cyber and Information System (ICIMCIS). 2020 International
Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), pp. 8–12.
doi: 10.1109/ICIMCIS51567.2020.9354315.

Hussain, F. et al. (2020) ‘Machine Learning in IoT Security: Current Solutions and Future
Challenges’, IEEE Communications Surveys Tutorials, 22(3), pp. 1686–1721. doi:
10.1109/COMST.2020.2986444.

Koroniotis, N. et al. (2018) ‘Towards the Development of Realistic Botnet Dataset in the
Internet of Things for Network Forensic Analytics: Bot-IoT Dataset’, arXiv:1811.00701 [cs].
Available at: http://arxiv.org/abs/1811.00701 (Accessed: 19 August 2021).

Mehra, M., Paranjape, J. N. and Ribeiro, V. J. (2021) ‘Improving ML Detection of IoT
Botnets using Comprehensive Data and Feature Sets’, in 2021 International Conference on
COMmunication Systems NETworkS (COMSNETS). 2021 International Conference on
COMmunication Systems NETworkS (COMSNETS), pp. 438–446. doi:
10.1109/COMSNETS51098.2021.9352943.

Miettinen, M. et al. (2017) ‘IoT SENTINEL: Automated Device-Type Identification for
Security Enforcement in IoT’, in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pp. 2177–2184. doi: 10.1109/ICDCS.2017.283.

PAN, J. (2021) ‘Iot Network Behavioral Fingerprint Inference With Limited Network Traces
For Cyber Investigation’, in 2021 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC). 2021 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), pp. 263–268. doi:
10.1109/ICAIIC51459.2021.9415273.

Patel, Z. D. (2018) ‘Malware Detection in Android Operating System’, in 2018 International
Conference on Advances in Computing, Communication Control and Networking
(ICACCCN). 2018 International Conference on Advances in Computing, Communication

22

Control and Networking (ICACCCN), pp. 366–370. doi: 10.1109/ICACCCN.2018.8748512.

Priyadarshan, P. et al. (2021) ‘Machine Learning Based Improved Malware Detection
Schemes’, in 2021 11th International Conference on Cloud Computing, Data Science
Engineering (Confluence). 2021 11th International Conference on Cloud Computing, Data
Science Engineering (Confluence), pp. 925–931. doi:
10.1109/Confluence51648.2021.9377123.

Ray, S. (2019) ‘A Quick Review of Machine Learning Algorithms’, in 2019 International
Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon).
2019 International Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon), pp. 35–39. doi: 10.1109/COMITCon.2019.8862451.

Roseline, S. A. et al. (2019) ‘Towards Efficient Malware Detection and Classification using
Multilayered Random Forest Ensemble Technique’, in 2019 International Carnahan
Conference on Security Technology (ICCST). 2019 International Carnahan Conference on
Security Technology (ICCST), pp. 1–6. doi: 10.1109/CCST.2019.8888406.

Shahid, M. R. et al. (no date) ‘Machine Learning for IoT Network Monitoring’, p. 3.

Shaikh, F. et al. (2018) ‘A Machine Learning Model for Classifying Unsolicited IoT Devices
by Observing Network Telescopes’, in 2018 14th International Wireless Communications
Mobile Computing Conference (IWCMC). 2018 14th International Wireless Communications
Mobile Computing Conference (IWCMC), pp. 938–943. doi:
10.1109/IWCMC.2018.8450404.

Sharma, K. and Nandal, R. (2019) ‘A Literature Study On Machine Learning Fusion With
IOT’, in 2019 3rd International Conference on Trends in Electronics and Informatics
(ICOEI). 2019 3rd International Conference on Trends in Electronics and Informatics
(ICOEI), pp. 1440–1445. doi: 10.1109/ICOEI.2019.8862656.

Wazid, M. et al. (2019) ‘IoMT Malware Detection Approaches: Analysis and Research
Challenges’, IEEE Access, 7, pp. 182459–182476. doi: 10.1109/ACCESS.2019.2960412.

Westyarian, Rosmansyah, Y. and Dabarsyah, B. (2015) ‘Malware detection on Android
smartphones using API class and machine learning’, in 2015 International Conference on
Electrical Engineering and Informatics (ICEEI). 2015 International Conference on Electrical
Engineering and Informatics (ICEEI), pp. 294–297. doi: 10.1109/ICEEI.2015.7352513.

Yeo, M. et al. (2018) ‘Flow-based malware detection using convolutional neural network’, in
2018 International Conference on Information Networking (ICOIN). 2018 International
Conference on Information Networking (ICOIN), pp. 910–913. doi:
10.1109/ICOIN.2018.8343255.

Zhou, W. et al. (2019) ‘The Effect of IoT New Features on Security and Privacy: New
Threats, Existing Solutions, and Challenges Yet to Be Solved’, IEEE Internet of Things
Journal, 6(2), pp. 1606–1616. doi: 10.1109/JIOT.2018.2847733.

	1 Introduction
	1.1 Research Question
	1.2 Objective
	1.3 Structure

	2 Related Work
	2.1 IoT Malware Detection
	2.2 Device Fingerprinting and Machine Learning

	3 Research Methodology
	3.1 Data Processing
	3.2 Classification Databases
	3.3 Attributes Adjustment

	4 Design Specification
	5 Classifiers Evaluation
	5.1 Device Classification Results
	5.2 Statistical Tests

	6 IoT Behaviour
	6.1 Anomalous Database
	6.2 Anomaly Identification by Device
	6.3 Anomaly Identification by Category
	6.4 Discussion

	7 Conclusion and Future Work
	References

