~

\"'ﬂ
\ National
College

Ireland

Optimized Pre-Copy Live Virtual Machine
Migration for Memory-Intensive Workloads

MSc Research Project
Cloud Computing

Prateek Jain
Student ID: X19189851

School of Computing
National College of Ireland

Supervisor: Prof. Vikas Sahni

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Prateek Jain
Student ID: X19189851
Programme: Cloud Computing
Year: 2021
Module: MSc Research Project
Supervisor: Vikas Sahni
Submission Due Date: 16,/08/2021
Project Title: Optimized Pre-Copy Live Virtual Machine Migration for
Memory-Intensive Workloads
Word Count: 3813
Page Count: [17]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th August 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Optimized Pre-Copy Live Virtual Machine Migration
for Memory-Intensive Workloads

Prateek Jain
X19189851

Abstract

With the expansion of IT infrastructures and rising energy and power costs,
maintaining workload concentration and the high availability of virtual machines
(VMs) in a data center is becoming increasingly difficult. To mention a few issues,
some physical servers may be overloaded, while others may be idle. If a server fails,
all VMs on it are affected; and so on. To guarantee service continuity, these im-
pacted VMs must be moved to other servers. These issues (how to equally allocate
jobs among servers, how to safeguard VMs from equipment failures, and so on)
are being addressed in tandem with the introduction of a crucial technology—VM
migration. Pre-copy migration is a popular method for transferring VMs across
physical servers. Before terminating the VM on the source, pre-copy moves the
VM’s memory state from source to destination in successive iterations. Although
the pre-copy approach reduces downtime and total migration time, it does limit
the number of copying rounds. Because the writable working set is not guaran-
teed to converge across consecutive cycles, especially when the VM is running a
predominantly write-intensive application, an alternative and more precise method
are necessary to manage memory-intensive workloads. The improved migration
method is provided in this work to address the limitations of the pre-copy migra-
tion approach. The technique works in conjunction with KVM’s default migration
mechanism. Memcached, a key-value store application is used to assess the per-
formance of the improved VM migration mechanism. Oracle VirtualBox is used as
a test environment to carry out the migration procedure.

1 Introduction

Cloud computing has set a benchmark in recent years for the on-demand supply of com-
puter power, storage, and software applications. Cloud computing is based on a technique
known as virtualization. By installing a layer (VMM or hypervisor) on top of actual
hardware resources, virtualization creates separate execution environments for virtual
machines (VM) to perform their services or applications. One of the primary benefits
of virtualization is the ability to migrate virtual machines in real-time. The process
of migrating a virtual machine (VM) with its applications and operating system to a
new location without disrupting or restarting the VM is known as live virtual machine
migration Barham et al.| (2003)).

One of the prominent enabling technologies for fault tolerance and load balancing
is live virtual machine migration. With live migration, whole environments, including
Virtual Machines (VMs), operating systems, and performing workloads, are transferred

across separate physical nodes or Virtual Machine Monitors without interruption to any
other underline services.

1.1 Importance of Live Migration

It is critical to comprehend and examine the idea of live migration since it streamlines
many cloud management activities performed by cloud providers. With the growing
use of cloud computing environments for hosting a range of applications such as Web,
Virtual Reality, scientific computing, and big data, the necessity for offering cloud services
with Quality of Service (QoS) assurances is becoming important He et al| (2019)). To
avoid SLA violations and achieve QoS requirements, VM placement must be continually
adjusted in data centers. As a dynamic management tool, live VM migration supports
various resource scheduling objectives such as load balancing, cloud bursting, resource
overbooking, and energy-saving strategy, fault tolerance, scheduled maintenance, and
evacuating VMs to other data centers before incidents such as earthquakes, flooding, etc.

In data centers, VM migration is critical for hardware maintenance. Many virtual
machines must be switched from one physical server to another due to excessive load,
power grid breakdown, or scheduled maintenance activities in a data center. With nu-
merous businesses and customers migrating to cloud data centers, cloud service providers
frequently encounter situations of servers overloading while others are inactive; these
conditions hinder data center operation. Cloud service providers equally distribute load
across physical resources with the aid of VM migration via LAN or through WAN; there-
fore enhancing the life cycle and productivity of resources. VMs may also be moved to
underutilized servers to optimize power usage and save electricity. Microsoft and Amazon
utilize the sun and moon idea to migrate VMs to data centers based on their geograph-
ical location to deliver low latency to consumers or to decrease cooling costs Zhang et al.
(2018)).

1.2 Motivation

After extensively reviewing the existing work on live VM migration, it is clear that ex-
isting pre-copy migration techniques attempt to impose static stopping limitations such
as a maximum number of iterations or a maximum total number of bytes transferred to
avoid the iterative transfer phase continuing endlessly while migrating a VM with a high
memory write rate. As a result, the research proposal seeks to incorporate adaptive stop-
ping conditions into the pre-copy migration approach, this will bring the iteration phase
to a close and convert the migration process from iteration to stop-and-copy, thereby
decreasing total migration time and total migrated data.

1.3 Research Question

Can adaptive stopping conditions and hashing algorithms reduce total migration time and
total data transferred of VM running memory-intensive workloads?

1.4 Objectives

This project is carried out to enhance the performance of VM migration and increase the
working capacity of data centers by achieving the below objectives:

e Setting up a test environment for VM migration experiments using Oracle Virtual-
Box.

e Configure the necessary infrastructure and security configurations for a successful
VM migration.

e Selecting a memory-intensive workload to achieve significant I/O, CPU, and memory
overhead during VM migration experiments, just like in a real data center.

e The proposed algorithm’s performance evaluation with the KVM’s default VM mi-
gration.

Shared storage

Figure 1: Live VM Migration

2 Related Work

This section describes the high-level overview of the live VM migration and previous
research studies in the same area. This section is divided into subsections as following,
describes the working of the live migration. Further, states the several techniques
of live migration. [2.3] reviews the previous research work and critically analyzed the
methods of live VM migration. In the end, mentions the evaluation metrics used to
analyze the performance of VM migration.

2.1 The Anatomy of Live Migration

Migrating a VM from one physical host to another necessitates transferring the VM’s full
volatile state. A virtual machine’s volatile state comprises its memory contents, execution
context, and device buffers. In most of the cases VM’s memory size ranges from four to
tens of gigabytes or in some cases up to terabytes, primarily memory transfer dominates
the migration overhead Egger et al.| (2015).

Live migration can be divided into three distinct phases: prepare, stop-and-copy,
and resume. During the prepare phase, a portion of the VM’s memory is moved to
the destination host while the VM remains on the source. It is conceivable that the

VM’s performance will suffer as a result of the migration technique’s increased resource
usage. The preparation phase is followed by the stop-and-copy phase, in which the VM is
entirely stopped and control of the execution is passed from the source to the destination
host. Finally, the VM is resumed on the destination during the resume phase, and the
remaining volatile state is retrieved from the source host. In the preparation step, certain
migration algorithms do not copy the whole volatile state. This might result in significant
performance reduction during the restart phase.

: prepare | stop resume

source

1

1

| .

; VM running at
time :
1
1

|
i = [full speed

\\ \ I \ B reduced speed

destination | F
:I downtime (DT) 1/ VM stopped
I

total migration time (TT)

Figure 2: Live VM Migration Phases

2.2 Live Migration Techniques

The moment in time at which a VM’s memory is moved distinguishes live migration
approaches. 'Pre-Copy’ is the most frequently used and default approach for migrating
VMs in the most popular hypervisors, including XEN, KVM, and VMware |(Choudhary
et al.| (2017). Pre-copy transfers the VM’s memory state from source to destination in
several rounds before stopping the VM on the source. It first copies all of the memory
pages to the destination; however, as the VM is still running on the source, some of the
memory pages were written again and became dirty during this process, necessitating
a recopy; pre-copy iteratively copies the recently dirtied memory pages from source to
destination until some predefined condition is not met. The source VM is then terminated,
and all leftover pages, including CPU states, are transferred to the destination. Finally,
the destination VM is restarted, and the source copy is deleted. If the memory write rate
of the VM’s workload exceeds the available network bandwidth for migration and the
iterations fail to converge, this iteration phase can go forever Choudhary et al. (2017)).
As a result, each migration mechanism imposes a distinct set of preset constraints to
converge the iteration process. For example, before terminating the VM on the source
server, XEN replicates the memory pages until the iteration count reaches 30.
Post-copy suspends the VM on the source host first, then just the processor state is
transferred to the destination. Finally, the VM is started on the target host. When the
VM on the destination host attempts to read a page that was not previously copied, a
page fault occurs. As a result, this faulty page is retrieved from the source. On-demand
fetch, pre-fetch, pull fetch, push fetch, and other page fetching techniques are used to
retrieve and transmit the remaining pages to the destination. All of the approaches listed
above have advantages and disadvantages. Fig [3| represents the migration techniques.

Migration
Techniques

Pre-Copy Post-Copy

Figure 3: VM Migration Techniques

2.3 Survey

As discussed in section 2.2] the high dirtying rate of memory pages exceeds the available
network capacity for migration. Due to this, pre-copy iterations fail to converge and in-
crease the migration time and ultimately fail the migration process causing an application
or service downtime. As a result, an adaptive stopping condition for the pre-copy mi-
gration approach that can converge the iteration phase depending on the memory access
pattern of different write-intensive workloads is required.

Many efforts have been presented to improve the iterative transfer phase, which we
shall examine.

Transferring memory pages in many rounds is not a smart idea if the pages are reg-
ularly updated. It not only lengthens the entire transfer time, but it also consumes
network bandwidth. |Clark et al. (2005)) discovers that certain of the memory pages are
regularly affected, i.e., a writable working set (WWS), and can be avoided in the following
iterations, for this Clark suggested a method for identifying dirty pages that have been
changed after being moved in two consecutive cycles and retransfer them. |(Cho-Chin Lin
et al| (2012) would only retransfer the pages if they were confirmed clean for two con-
secutive cycles after being updated to address this issue. Both approaches increase the
chances of reaching a maximum iteration count of 30.

Hu et al.| (2011)) presented a method for storing the page changed rate over several
iterations in a bitmap and only transfer the modified page when the bit corresponding
to the particular page reaches 5. TPO, a three-phase approach for optimizing migration,
was suggested by Sharma and Chawla (2016). In the first iteration, the initial phase
transfers the un-updated memory pages, reducing the transmitted memory pages. The
second step predicts frequently modified memory pages and avoids transferring them
based on prior iterations. The RLE method is used in the third phase to compress and
transmit big memory pages. suggested a strategy for categorizing memory pages into five
groups: anonymous, inode, kernel, cache, and free memory pages, and only transfer the
anonymous, inode, and kernel pages as they are required for kernel execution.

H Ref. ‘ Method ‘ Workload ‘ Reduction Limitation H
Clark Bound the | N/A N/A capped number of
et all | number of pre- iterations (30)
(2005) copying rounds,

based on analysis

of the writable

working set
Hu et al. | Time-series pre- | Kernel compile 70% TMT , 25% | N/A
(2011) diction TDT

| [Cho- Second chance | Synthetic 30% TDT does not provide
Chin Lin| | strategy evaluation on real
et al. workloads
(2012)

| Sharma | | Reduce transfer- | N/A 70% TMT, 71% | 0.05% space
and ring of memory TDT (XEN) overhead and
Chawlal | pages based on CPU processing
(2016) three phases. overhead to pre-

dict frequently
updated pages.
Wang Avoid transfer- | N/A 2% TMT | Time overhead
et al. | ring both free and (KVM) due to introspec-
(2017) cache memory tion of pages and
pages. handling missing
cache pages
THIS Adaptive stop- | Memcached reduction in | small CPU
ONE ping condition TMT and TDT | computation
based on hashing (to be determine) | overhead
algorithm

Table 1: Summary of Literature Review and Research Niche. TMT
Time; TDT: Total Data Transferred; N/A: Not Available.

2.4 Live Migration Metrics

: Total Migration

The following table displays the seven VM live migration metrics that were measured and
forecasted in this research. The downtime DT is a metric of relevance to the end-user,
whereas the total migration time TT, the quantity of transferred data TD, the amount
of retransferred data RD, and the CPU and memory usage caused by the live migration
are metrics of interest to the data center operator (CPU and MEM). Lower is better for

all measures.

Total migration | The total amount of time it takes to complete a migration

time (TT) from start to finish.

Downtime (DT) | The length of the stop-and-copy phase, i.e. the time the VM
is suspended.

Transferred Total amount transferred from source to destination host

data (TD)

Retransferred Total amount of retransferred from the source to the destina-

Data (RD) tion host during multiple pre-copy iterations

CPU utilization | Additional CPU burden on the source host as a result of mi-

(CPU) gration

Memory utiliza- | The amount of RAM used by the improved live migration

tion (MEM) algorithm

3 Methodology

This section discusses the methodology, dataset, and tools utilized to carry out the VM
migration project.

3.1 Oracle Virtual Box

Oracle VM VirtualBox E], originally known as Sun VirtualBox or Sun xVM VirtualBox,
is an x86-based hypervisor developed by Oracle Corporation. It is cross-platform vir-
tualization software that allows users to simultaneously run multiple operating systems
on Windows, Mac OS, or on Linux operation system. VirtualBox is an example of the
type-2 hypervisor and one of the best applications to run multiple VMs on the local
system. It is one of the highly recommended software in the computing industry which
allows professionals to study new and developing technologies by testing, deploying their
applications or datasets on their local system or laptop [Kuhn et al.| (2015)).

In this experiment, VirtualBox is installed on a personal laptop running Windows, and
it is used to build Linux-based virtual machines (VMs). The setup details are provided
in the table below.

Machine Operating Sys- | vCPU Memory
tem

Personal Windows 10 8 8 GB

Laptop

VirtualBox VM | Ubuntu LTS Ver- | 8 4.8 GB
sion v20.04

Table 2: Setup Details

3.2 Dataset: Memcached

The Standard Performance Evaluation Corporation (SPEC) Dixit| (1991) is the primary
benchmarking system assessment standard. SPEC provides a variety of testing com-

https://www.virtualbox.org/

https://www.virtualbox.org/

ponents that may be used to benchmark a system. In this experiment, Bdenuﬂchedﬂﬂ
workload is used which is a key-value distributed memory object caching system. The
workload is based on SPEC CPU2006, to deliver system performance to genuine scientific
and engineering activity.

Memecached is installed on the host VM running inside the virtual machine created
on the VirtualBox.

:~$ sudo apt-get install memcached
eading package lists... Done
Building dependency tree
Reading state information... Done
emcached is already the newest version (1.5.22-2ubuntuf.1).
he following packages were automatically installed and are no longer required:
chromium-codecs-ffmpeg-extra gstreamer1.0-vaapi
libgstreamer-plugins-bad1.0-8 libva-wayland2
se 'sudo apt autoremove' to remove them.
P upgraded, @ newly installed, © to remove and 204 not upgraded.
:~§ systemctl status memcached
memcached.service - memcached daemon
Loaded: loaded (/lib/systemd/system/memcached.service; enabled; vendor pre!
Active: since Fri 2021-08-06 22:19:16 IST; 4min 41s ago
Docs: man:memcached(1)
Main PID: 3175 (memcached)
Tasks: 10 (limit: 5862)
Memory: 1.5M
CGroup: /system.slice/memcached.service
L3175 Jusr/bin/memcached -m 64 -p 11211 -u memcache -1 127.6.0.1 H

Figure 4: Installation Step

i~ telnet localhost 11211
Trying 127.0.0.1...
Connected to localhost.
Escape character is 'A]'.
set hello 0 6 7
goodbye

STORED
get hello
VALUE hello 8 7

Figure 5: Working with Memcached

3.3 Migration Model

Following the start of the VM migration, all memory pages are transferred to the destin-
ation, as in the first iteration of the default pre-copy procedure. This transferred data is
tracked by the algorithm and saved in a variable (TD). Then, before the second iteration,
to track page retransmission, before transmitting each page, the method turns it into a
safe hash using the SHA-256 algorithm [] and save the resulting hash value in a bitmap

Zhttps://memcached.org/
3https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/
documents/fips180-2withchangenotice.pdf

https://memcached.org/
https://csrc.nist.gov/csrc/media/publications/fips/180/2 /archive/2002-08-01/documents/fips180-2withchangenotice.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2 /archive/2002-08-01/documents/fips180-2withchangenotice.pdf

array. The bitmap is kept by the algorithm during the migration operation. In the follow-
ing iteration, the secure hash is converted first, and then the converted hash is matched
to the hashes from prior iterations; If a comparable page is identified, the related page
is rejected; else, the page is retransmitted. For subsequent rounds, the secure hash is
appended to the bitmap. Following each retransmission, the algorithm keeps track of the
retransmitted data and saves the retransferred bytes in another variable (RD) during the
iteration phase. The migration process reaches a tipping point when the retransferred
data (RD) equals or exceeds 75% of the migrated data (TD).

Start Migration

First Pre-copy iteration
[TM = Calculate (Migrated|
data)

Analyze dirty
memory page

stop & copy phase

Convert hash

Compare hash with
previous iterations

Unique

refect retransfer

Another pre-copy
iteration
and store unique hash in
bitmap
RT = calculate
(retransfer data)

Mo

stop & copy phase

Stop Migration

Figure 6: Workflow of Algorithm

4 Design Specification

The code for the enhanced VM migration algorithm is shown in this section. The tech-
nique is intended to decrease the overall VM migration time as well as the total transferred
data across the network. The algorithm steps are as follows:

In the first iteration, the algorithm collects the starttime after beginning the mi-
gration process and migrates all of the memory pages accessible on the RAM.

The migrated data is computed and saved in a variable T'D for subsequent usage
and thread for tracking dirty page is initiated.

Before the next iteration, the algorithm examines the state of the tracking thread
to see if the pages were dirty after the first iteration.

If dirty pages are discovered, the algorithm resets the dirty tracking thread and
transforms the dirty pages into the secure hash. These secure hashes are preserved
for future iterations. If no dirty pages are detected, the algorithm simply enters the
stop-and-copy phase.

The secure hash is preserved in a bitmap array, and the algorithm compares the
hashes among themselves before transferring pages throughout the iterations. The
algorithm rejects the retransfer of the page if the hash corresponding to that page
is already present in the bitmap and only transfers the unique hash.

The retransferred data is calculated and saved in a variable RD.

Algorithm compares the two variables after every iteration and goes into stop-and-
copy phase as soon as, retransfer 75% of transferred data and captures the time in
endtime variable.

Total Migration Time is computed by subtracting the endtime from starttime and
Total Migration Data is computed by adding the T'D and RD.

10

Algorithm 1 Pseudo Code of Enhanced Migration algorithm
1: procedure MicraTioN(T M, RT)
2 starttime + gettime()
3. for all block in ram do
4 for all page in block do

5: migrate page to destination i First pre-copy iteration
6: TM +bytes_sent (migrate page)

T set dirty_tracking ()

& end for

9; end for

10: if dirty_tracking () is true do

11 reset dirty_tracking ()

12: @ +convert dirty page into hash value (SHA-256)
13: bitmap[] + all converted hash

14 if a is present in bitmap|] do > Compare with all previous iterations
15: do not transfer (page)

16: else retransfer page > Another iteration
17: RT + bytes_sent (retransfer page)

18; bitmap[] + a

19 end if

20: else switch to stop and copy phase

21: end if

22: if RT/TM = 75% do > Stopping condition, 75% may vary based on testing
23: switch to stop and copy phase

24: endtime + gettime()

25: Total MigrationTime + endtime — starttime

26: Total MigratedData <+ TM + RT

27: else goto line 11

28: end if

29: end procedure

Figure 7: Algorithm for Enhanced VM Migration

5 Implementation

In this section, the implementation scenario of the experiment is discussed. The experi-
ment is executed on the Oracle VirtualBox, a virtual machine running Linux operating
system is deployed on the VirtualBox.

The experiment is carried out with KVM, an open-source virtualization tool, version
5.4. In the experiment, the virtual machine is configured with 2GB memory and 5 pro-
cessors. The system used to install VirtualBox is running a windows 10 operating system

with 8 CPUs and 8 GB memory.

Host machine running ubuntu v20.04.02 operating system is configured with 8 pro-
cessors, 4.8GM of memory, and has 545 GB of disk capacity. On the other hand, the
client machine has 8 processors, 8GB of memory, 512 GB of disk capacity, and is running
ubuntu v20.04.02. The VM is transferred from the host system to the client system to

11

fulfill the live migration. The VM is transferred from host to client using the NFS (Net-
work File System) protocol. It is a software application that allows users to view, store
and access files on the remote server. NFS protocol is the Network Attached Storage
standard which provides data access to different clients connected in a network.

As a workload, in-memory key-value store Memcached, is used to evaluate the per-
formance of the migration algorithm.

5.1 Integration with KVM

The enhanced migration code is integrated with the 'migration.c’ file in the migration
module of the QEMU-KVM hypervisor. Once the hypervisor triggers the migration
process, code captures the start time of the process and during the first iteration calculates
and saves the migrated data in variable T'D. Over the next iterations, as the dirty pages
get migrated over to the client, code converts each migrated page into a secure hash using
SHA-256 and saves in an array. Code compares hashes and rejects the migration of the
corresponding page if the hash is already present in the array. Only the unique pages
are transferred again. Code calculates and stores the retransferred data in RD variable.
These variables are used to calculate the total data being migrated. After the successful
migration code checks and remembers the end time to calculate the total migration time.

5.2 Migration requirements

This section provides the basic requirements before starting the VM migration:

e On shared networked storage install guest using one of the following protocols:
- Fibre Channel
- 1SCSI
- NFS
- GFS2

e Two systems with the same Linux version, updates, and with appropriate ports
open are required.

e Network configuration and all bridging configuration of both the system should be
identical.

e On both the source and destination computers shared storage must be mounted in

the same place. The names of the mounted directories must be similar.

5.3 Migration Steps
The below steps provide details about the execution of VM migration in QEMU-KVM:

e A secure SSH link between both host and client-server is established.

e Start the VM on the host machine and configure the QEMU-KVM hypervisor to
migrate VM to the client machine.

e Start the Memcached service on the VM.

12

e Migrate all the memory pages from host to client in the first iteration, convert hash
of the migrated pages, and store in a bitmap array.

e Calculate and store the amount of data migrated from host to client in the first
iteration.

e Retransfer the dirty pages in the subsequent iteration, calculate and store the re-
transfer data.

e Hypervisor triggers and switch the process from iteration phase to stop-and-copy
phase once retransfer data is equal or greater than 75% of the data transferred in
the first iteration.

e Next the VM is terminated on the host machine.

e Finally, all the activities of VM resume on the client machine, and migration is
completed.

6 Evaluation and Discussion

The goal of this part is to offer a detailed analysis of the experiment’s outcomes and
major findings. This section is divided into subsections as following, section describe
the tool used for critically analyze the performance of memcached application during
VM migration. Further, section states the steps involved during the installation
of memaslap client application. Section provides the insights of memcached server
performance during migration with KVM’s default migration method. In the end, section
[6.4] discussed about the obtained results

6.1 Testing Tool: Memaslap

An open-source program called memaslapﬁ is used to test the performance of memcached
during the VM migration. It is a component of the libmemcached toolkitE] that may
produce customizable loads such as threads, concurrencies, connections, run duration,
overwrite, miss rate, key size, value size, get/set percentage, and so on to benchmark the
memcached server.

“http://docs.libmemcached.org/bin/memaslap.html
Shttp://libmemcached.org/lib/Memcached.html.

13

http://docs.libmemcached.org/bin/memaslap.html
http://libmemcached.org/lib/Memcached.html.

6.2 Installation: Memaslap

Makefile.am
Makefile.in THANKS
TODO
mem_config.in
S version.m4

README.FIRST
README.win32

cd clients

3 S 1s

memcat.cc memrm.cc ms_setting. ms_thread.

memcp.cc memslap.cc ms_setting. ms_thread.

memdump . cc memstat.cc ms_sigsegv. utilities.

memerror.cc memtouch.cc ms_sigsegv. utilities.
memexist.cc ms_atomic.h ms_stats.c
memflush.cc ms_conn.c ms_stats.h
memparse.cc ms_conn.h ms_task.c
memping.cc ms_memslap.h ms_task.h

27.0.0.1:11211 -t 16s

servers : 127.0.0.1:11211
threads count: 1

concurrency: 16

run time: 10s

windows size: 10k

set proportion: set_prop=0.16
get proportion: get prop=0.90
cmd_get: 925970

cmd_set: 102894

get_misses: 567855
written_bytes: 178511545

read bytes: 401155623
object_bytes: 111948672

Run time: 10.0s Ops: 1028864 TPS: 102839 Net rate: 55.3M/s

Figure 9: Operations on Memcached

6.3 Performance Analysis: KVM’s Default Migration

To evaluate and represent the performance of memcached server during the VM migration
average latency and throughput is measured by the memaslap application.

The graphs fig[T0] and fig{I1] show the throughput and average latency of the mem-
cached server during the VM migration using KVM’s default migration. The graphs show
that the evaluation lasts 180 seconds and that there is no degradation in performance
observed during or after the VM transfer. The blue box represents the time span during
which the VM is migrating from host to client.

14

16 1

12 1

Operations per second (K)
(0]

0 — -——r
0 30 60 90 1
Time (s)

N 4
o

150 180

Figure 10: Throughput

1 1
— 5 ! :
)
@ 10 : !
~— |
- I .
8 1 1
o 10° : I
©) i
o ! !
[0 3 ' !
5 10 : '
> M’MWW
< ; |
2 ! !
10]] :_ hd L Il] L}
0 30 60 a0 120 150 180

Figure 11: Average Latency

6.4 Performance Analysis: Enhanced Migration

This research work is carried out to improve the functioning of the pre-copy Virtual
Machine migration mechanism. The algorithm is defined to achieve an impactful per-
formance during migration by reducing the overall migration time and data transmission
between hosts and clients. The work leverage open-source software like Oracle VirtualBox
to create a test environment to successfully execute the migration process, Memcached
along with memaslap applications is utilized to evaluate the impact of migration on an up
and running application. The suggested approach is combined with the default migration
mechanism of KVM. However, due to limitations imposed by the Linux operating system

15

and the QEMU-KVM hypervisor, the suggested method was unable to integrate. When
the SHA-256 method was used with migration files to transform memory pages into safe
hashes, the process became stopped, resulting in migration failures and the virtual ma-
chine failing in the majority of the experiments. To avoid retransfer of pages in subsequent
rounds, the suggested method can construct an array and retain the transferred memory
pages required for comparison. The proposed solution falls short in terms of dealing with
the non-compatible hashing method problem, and the project’s implementation on Vir-
tualBox was inconclusive since the VM guest was created on VirtualBox on top of the
Windows operating system did not operate properly. Experiments using virtual machine
migration simulators like HTC-Sim Forshaw et al.| (2016 with some changes to let the
hashing method access the memory pages during migration are required to enhance the
suggested technique and obtain satisfying results.

7 Conclusion and Future Work

The research is motivated to find out the performance improvement of VM migration in
terms of migration time and data transmission in the pre-copy technique. The successful
implementation of this research work would aid cloud data center efficient management.
The work is in line with 3 out 4 objectives mentioned in section [I.4, Nonetheless, fails
to evaluate the performance of the proposed algorithm with KVM’s default migration
algorithm. The proposed algorithm design and use of hashing algorithm did not prove
to be as effective as intended. To prevent retransferring pages in subsequent rounds,
the proposed approach can build an array and save the transferred memory pages for
comparison, however, algorithm design and architecture need modification. Also, the use
of VirtualBox to execute experiments imposed many hurdles. In the future, simulators
such as HTC-Sim, as well as some adjustments to the recommended methodology to allow
the hashing method to access memory pages during migration, will be necessary to get
satisfactory results.

References

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I. and Warfield, A. (2003). Xen and the art of virtualization, Vol. 37, Association for
Computing Machinery, New York, NY, USA, p. 164-177. CORE2020 Ranking: A*.
URL: https://doi.org/10.1145/1165389.945462

Cho-Chin Lin, Yu-Chi Huang and Zong-De Jian (2012). A two-phase iterative pre-copy
strategy for live migration of virtual machines, 2012 Sth International Conference on
Computing Technology and Information Management (NCM and ICNIT), Vol. 1, Seoul,
Korea (South), pp. 29-34. CORE2020 Ranking: A.

Choudhary, A., Govil, M. C.; Singh, G., Awasthi, L. K., Pilli, E. S. and Kapil, D.
(2017). A critical survey of live virtual machine migration techniques, Journal of
Cloud Computing 6(1): 23. JCR Impact Factor: 2.788.

URL: https://doi.org/10.1186/s13677-017-0092-1

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, [. and Warfield,
A. (2005). Live migration of virtual machines, Proceedings of the 2nd Conference on

16

Symposium on Networked Systems Design and Implementation - Volume 2, NSDI'05,
USENIX Association, Anaheim, CA, USA, p. 273-286. CORE2020 Ranking: B.

Dixit, K. M. (1991). The spec benchmarks, Parallel Computing 17(10): 1195-1209.
Benchmarking of high performance supercomputers.
URL: https://www.sciencedirect.com/science/article/pii/S016781910580033X

Egger, B., Gustafsson, E., Jo, C. and Son, J. (2015). Efficiently restoring virtual machines,
International Journal of Parallel Programming 43(3): 421-439.
URL: https://doi.org/10.1007/s10766-013-0295-0

Forshaw, M., McGough, A. and Thomas, N. (2016). Htc-sim: a trace-driven simulation
framework for energy consumption in high-throughput computing systems, Concur-

rency and Computation: Practice and Ezperience 28(12): 3260-3290.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe. 3804

He, T., N. Toosi, A. and Buyya, R. (2019). Performance evaluation of live virtual ma-
chine migration in sdn-enabled cloud data centers, Journal of Parallel and Distributed
Computing 131: 55-68.

URL: https://www.sciencedirect.com/science/article/pii/S0743731518304 74X

Hu, B., Lei, Z., Lei, Y., Xu, D. and Li, J. (2011). A time-series based precopy approach
for live migration of virtual machines, 2011 IEEE 17th International Conference on
Parallel and Distributed Systems, Tainan, Taiwan, pp. 947-952. CORE2020 Ranking:
B.

Kuhn, D., Kim, C. and Lopuz, B. (2015). Chapter 12: VirtualBox for Oracle, Apress,
Berkeley, CA, pp. 325-344.
URL: https://doi.org/10.1007/978-1-4842-1254-112

Sharma, S. and Chawla, M. (2016). A three phase optimization method for precopy based
vm live migration, SpringerPlus 5(1): 1022. JCR Impact Factor:2.015.
URL: https://doi.org/10.1186/540064-016-2642-2

Wang, C., Hao, Z., Cui, L., Zhang, X. and Yun, X. (2017). Introspection-based
memory pruning for live vm migration, International Journal of Parallel Program-
ming 45(6): 1298-1309. JCR Impact Factor:1.125.

URL: https://doi.org/10.1007/s10766-016-0471-0

Zhang, F., Liu, G., Zhao, B., Kasprzak, P., Fu, X. and Yahyapour, R. (2018). Cbase:
Fast virtual machine storage data migration with a new data center structure, Journal
of Parallel and Distributed Computing 124. JCR Impact Factor:2.296.

17

	Introduction
	Importance of Live Migration
	Motivation
	Research Question
	Objectives

	Related Work
	The Anatomy of Live Migration
	Live Migration Techniques
	Survey
	Live Migration Metrics

	Methodology
	Oracle Virtual Box
	Dataset: Memcached
	Migration Model

	Design Specification
	Implementation
	Integration with KVM
	Migration requirements
	Migration Steps

	Evaluation and Discussion
	Testing Tool: Memaslap
	Installation: Memaslap
	Performance Analysis: KVM's Default Migration
	Performance Analysis: Enhanced Migration

	Conclusion and Future Work

