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Abstract

Rising demand in computation power gained significant interest towards server-
less computing. In serverless billing generates only for code execution. In serverless
inefficient tasks, scheduling will result in over-provisioning or under-provisioning
resources which will incur more cost. Therefore it is very important to schedule the
task in serverless as it will impact the cost in serverless. In the proposed paper, the
efficiency of the serverless platform is enhanced by implementing Ant Colony Op-
timization(ACO) with a map-reduce application. ACO is a paradigm of designing
a meta-heuristic algorithm that shares a common approach to construct a solu-
tion provided by both standard construction and previously constructed solutions.
Since map-reduce is best suitable for big data problems but it creates additional
overhead. To overcome the additional map-reduce overhead Ant Colony Optimiza-
tion(ACO) is used along with fast and slow cloud storage. In the proposed paper,
the existing MARLA architecture is addressed and improvisation in MARLA ar-
chitecture is elaborated with the help the of ACO algorithm. Further results were
compared and observed with and without implementation the of ACO algorithm.



1 Introduction

Cloud technology is one of the emerging sectors in Information Technology. Cloud com-
puting provides access to on-demand large computational power which can be easily
scaled up and scale down as and when required . With the rise of cloud technology,
various cloud vendors were also emerging in the market due to which users can enjoy
the quality of service at a low cost. Many organizations are using the cloud due to no
hardware upfront cost and its unique pay-as-you-go billing scheme. The usage of such
technology gives rise to a large amount of daily data. To handle the massive data gen-
erated by cloud users requires a centralized data center that consists of storage devices.
Managing data is one of the critical tasks in the cloud. Hence, efficient task scheduling
techniques can provide better scalability and performance in the cloud.

Nowadays many IT organizations are utilizing cloud infrastructure for daily business
transactions. Due to the increasing demand for cloud infrastructure cloud vendors are also
expanding cloud capabilities and thus create more options for cloud users. Cloud vendors
provide various configuration options to cloud users(small scale to large scale). The
reliability of any cloud vendor is dependent upon the Quality of Service (QoS) and the cost
of service . Cloud vendors’ expenses are determined by the amount of electricity consumed
by their servers. Sinc, cloud handles the number of large processes and if they are not
planned properly then it might create loss to cloud vendor revenue. Improper process
allocation can result in under-provisioning or over-provisioning of resources. Therefore
it is very important to schedule tasks in the cloud to optimally use resources. It will
help cloud vendors to enhance their Quality of Service(QoS) and result in minimizing
the violation of the Service Level Agreement(SLA) optimize their service cost. Since
platform as a service and cloud as a service both provide monitoring of the resources of
every application therefore task scheduling is necessary.
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Figure 1: Classification of task scheduling algorithms Kumar et al.| (2019)




If the number of clients was increased in the cloud then scheduling becomes a chal-
lenging task hence an appropriate scheduling algorithm needs to be implemented. In
serverless, the key challenge of task scheduling is to schedule tasks for each class of ser-
vice to maximize the revenue and meeting the user’s needs. To integrate an efficient
scheduling algorithm first we need to analyze the existing task scheduling algorithms
their advantages and limitations. Task scheduling algorithms are of two types heuristic
and meta-heuristic algorithms. Heuristic algorithms can be further classified into list-
based, clustering-based and duplication-based. The motive of this paper is to identify
and integrate the task scheduling algorithm in function-as-a-service(FAAS). In the pro-
posed research we are focusing on Ant Colony Optimisation(ACO) of the Meta-Heuristic
algorithm family. Ant Colony Optimisation is based on ants’ behavior. Ants are governed
by the goal of finding food. Ants are wandering about their colonies while searching. An
ant hops from one location to another in search of food. It leaves an organic molecule
known as pheromone on the ground as it moves. Pheromone trails are used by ants to
communicate with one another. When an ant discovers some food, it transports as much
as it can. When it returns, it leaves pheromones on the routes based on the amount and
quality of the food. Ants can detect pheromones. As a result, other ants can smell it and
follow it. The higher the pheromone level, the more likely that way will be chosen, and
the more ants that follow the path, the more pheromone will be found on that trail.

1.1 Motivation

To efficiently utilize the resource in the serverless platform using meta-heuristic task
scheduling algorithms such as Ant Colony Optimization(ACO). The main aim is to im-
plement high latency shuffling of MARLA architecture in serverless platforms to achieve
low latency and low cost of execution.

1.2 Research Question

The objective of the research work is to provide efficient task scheduling for map-reduce
applications in the serverless cloud platform. Analyzing the benefits and constraints of
using ACO scheduling algorithm in the serverless platform. Using two types of cloud
storage(fast and slow) provides low-cost utilization for big data problems. As a result,
this study project answers the following question:

Can the makespan of task scheduling in the MapReduce application be improved by
using the Ant Colony Optimization algorithm(ACO) in Serverless platforms e.g. Amazon
Web Services(AWS) or Openstack Qinling?

1.3 Report Structure

Section 2 expands on the related work in the field of task scheduling in cloud computing.
It also covers the constraints and future work in task scheduling by many authors. Section
3 describes the methodology and pre-requisite required for implantation of ACO in Map
Reduce application. Further, section 4 elaborates the MARLA architecture and our
proposed model to improvise the task scheduling in the cloud. Section 5 and 6 shows the
implantation of ACO in serverless platform and evaluation matrices based on different
conditions. Lastly, section 7 describes the future work and conclusion of the proposed
research work.



2 Related Work

This section elaborates various research-related work in serverless platform. This section
is divided into four parts review on task scheduling algorithms in cloud computing,
Review on serverless infrastructure, review on performance analysis in serverless,
review on MapReduce in serverless infrastructure, analysis of related work.

The (Gu et al.| (2014]) presentation outlines current trends in serverless computing.
According to the author, serverless has eliminated the need for developers to provision and
manage servers. For developers to achieve desired business logic, they should focus more
on functions than on business logic. The author outlines the drawbacks of using serverless
for consumers and providers. FaaS models have some limitations for consumers including
not providing users with the latest versions of libraries of software. Providing services
involves managing the lifecycle of a user’s function, scalability, and fault tolerance. The
result will be that developers will be able to design applications that are focused on
platform behavior. There are also cost, cold start, resource limits, security, scaling, hybrid
cloud, legacy system challenges that the author discusses for provider and user. Besides
minimizing the cost of resource usage when executing tasks and when it’s idle, Serverless
faces a fundamental challenge cost. To reduce costs, an optimal scaling technique needs
to be addressed for the charge to zero during idle time. To prevent resource limitations,
the platform should be managed during spikes in load and during attacks. As multi-user
platforms run many functions, the provider should adapt strongly to isolate functions.
As and when necessary, the provider should make sure that functions are elastic and
scalable. Serverless presents some challenges for developers in terms of configuration,
deployment, IDEs, concurrency, scalability, monitoring and debugging.

2.1 Review on Task Scheduling Algorithms in Cloud Comput-
ing

Particle Swarm Optimization algorithm(PSO), Genetic Algorithm(GA), Ant Colony Op-
timisation(ACO), and Cuckoo Search(CS) are heuristic algorithms used for resolving task
scheduling problems. According to Al-maamari and Omara/ (2015), they developed a Dy-
namic Adaptive Particle Swarm Optimization algorithm (DAPSO) for fewer makespans
and more resource availability. During an experiment, the author discovered that the
execution speed of DAPSO on 10 VMs was superior to the default PSOCS and PSO
algorithms by 44.29 percent and 23.75 percent, respectively. By using the DAPSO al-
gorithm on five virtual machines, resource utilization was 36.19% and 20.60% better
than the default PSO and PSOCS algorithms. According to the author, changing inertia
weight and trapping on local search improves task scheduling and resource utilization.

An optimization strategy for task scheduling that uses ant colonies (ACO) is presented
by author Wei (2020)). In the paper, cloud-based scheduling models are used for improved
ACO, thus avoiding optimization problems. A task scheduling function is then created
by combining three objectives: minimum waiting time, degree of resource lot balance,
and task completion cost. An experiment was conducted using Cloudsim, an open-source
simulation tool. Tests were conducted on a Windows 10 machine with an Intel Core i5-
7300HQ CPU and 4GB RAM. In experiments, 40,80,120,160,200 tasks with instruction
sets ranging from 5000-5000000 are processed. Based on the simulation, it was found
that the algorithm has the highest utilization rate, balanced load, shortest completion
time, and fastest coverage.



Parallelization has resulted in a significant reduction in resource usage. Various re-
searchers proposed algorithms to solve these problems so that the resource can be fully
utilized. [Wang et al.|(2020)), an optimized solution is presented that considers the deadline
constraint to reduce the cost-make-span. Using task scheduling, resources are dynamically
allocated and utilized to reduce execution time and cost. To solve the current schedul-
ing problem in cloud computing, the researchers developed an enhanced immune-based
particle swarm optimization algorithm (IMPSO). By utilizing immunological memory, af-
finity, antibody concentration, antigen, and many more, an algorithm can be derived. It
is divided into five stages, namely, calculate the affinity, clone antibodies, mutate antibod-
ies, update memory sets, and replace the worst solutions. IMPSO results in significant
savings and more efficient resource utilization when compared with other competitive
solutions. With the proposed algorithm, you can get the best results in a shorter amount
of time.

Ari et al.| (2017)) proposes a multi-objective algorithm (MO-ACO) based on ant colony
optimization (ACO) to optimize task scheduling in cloud computing environments. The
objective is to minimize the task duration and total cost while balancing the system
load. The CloudSim simulator was used to conduct some experiments, and the results
were then compared to those of the ACO and Min-Min algorithms. A comparison of MO-
ACO and ACO and Min-Min algorithms reveals that the cost incurred is comparable.
Additionally, using the MO-ACO algorithm resulted in a makespan of 5% less than the
ACO or Min-Min algorithms. It was found that the MO-ACO algorithm has a smaller
computational complexity when the system load is greater.

Scheduling tasks is another essential aspect to reduce cost by lowering power consump-
tion, which will boost profits by both vendors and users. Overall processing time can be
impacted by optimal resource allocation. The cloud can be considered green computing
if the energy consumption is minimized. |Guo| (2017)) presented a bioinspired version of
ant colony optimization(ACO) algorithm called Cloud ACO(CACO) that optimizes the
load balancing between resources while reducing execution time. With time and resource
constraints, task scheduling plays a vital role in managing serverless loads efficiently. In
this experiment, homogeneous scenarios are used. During the experiment, four identical
Intel Xeon Core servers with 8GB of RAM were used as the experimental data center.
Randomly generated jobs from 20 to 80 were used in 20-piece series with instruction sets
between 500 and 1500 and from 1500 to 2000. CACO outperformed ACO and GA when
the Cache Compression Optimization scenario was run 10 times.

Navimipour| (2015)), proposed a new algorithm for scheduling tasks in a cloud platform
based on a bee colony. According to the proposed algorithm, the number of bees counts as
several solutions. The first step consists of generating a random population. Population
iteration begins after initialization with employees, observers, and scouts. There are four
phases of the algorithm during experimental simulation: (1) the initialization phase, (2)
the employee phase, (3) the observer phase, and (4) the scouting phase. Simulations were
performed with a CPU Core i5 to which 4GB of RAM and 4MB of cache memory were
allocated. When comparing the proposed algorithm with several alternative algorithms,
it was found to improve execution time, missed tasks, as well as waiting times.

Grid computing and distributed computing are two components of cloud computing.
The objective of cloud computing is to provide users with IT services on demand. A cloud
service’s reliability and availability are critical for a good user experience. Based on a
Load Balancer mutation and particle swarm optimization (LBMPSO) based scheduling
system, Awad et al. |[Awad et al.|(2015)), presented a mathematical model for allocating re-



sources using the Load Balancer mutation. LBMPSO offers a set of accountability metrics
including reliability, execution time, makespan, workload balancing between tasks and
resources, execution cost, and round trip. In the proposed algorithm, there are five parts:
(1) task submission, (2) task information, (3) LBMPSO, (4) resource information, and (5)
task buffer. Task buffers are primarily used to collect user tasks. This information about
a task defines how it should be executed. Resources in cloud computing are data centers,
hosts, and virtual machines (VM’s) that provide information about available resources.
As each task is submitted, it will receive an allocation of resources. Rescheduling failed
tasks occurs during the process of resource allocation through the LBMPSO. LBMPSO
allows task scheduling errors to be corrected in real-time, which improves reliability. To
determine if LBMPSO can save makespan, execution time, transmission cost, and round
trip time, the author compared PSO, Random Algorithm, and The Longest Cloudlet to
Faster Processor (LCFP) to LBMPSO.

IMPVACO, an efficient and intelligent algorithm developed by Duan and Yong| (2016),
will be improved upon to improve the basic ant colony optimization algorithm. Adaptive
modification strategy for pheromones is altered by IMVPACO so that the solution can be
optimized directly based on pheromone increment. Ants have also adapted their moment
strategies in such a way that they are mobile and able to solve large-scale problems.
When this algorithm is applied to the traveling salesman problem, first it initializes all
parameters, then it gives the classification of cities, then m number of ants are added
to n number of the cities, and finally, that list is added to the tabu list. Table Tabu
should not be null when dynamic movement rules determine the next coming city. A
path length is calculated in the last step after selecting the best choice, followed by a
pheromone update and finally the iteration control. An iteration technique that employs
boundary symmetric mutations for symmetric mutations is used. This technique improves
the mutation efficiency and accuracy of iteration results.

Tawfeek et al.| (2013) discuss cloud computing issues that are related to task schedul-
ing. There have been various meta-heuristic algorithms proposed and implemented to
solve the existing optimization problems. Adaptability is one quality that a good task
scheduler should possess. It should be able to change its scheduling approach as the
environment and task category(s) change. In the experiment, ACO’s performance has
been measured with different Alpha values, different beta values, different tmax values,
and various Ant numbers to determine its relative strengths and weaknesses. For av-
erage makespan with several task sets, the author implements Ant colony optimization
(ACO), First Come First Serve (FCFS) and Round Robin algorithms (RR). ACO al-
gorithm takes less time as the quantity task increases as compared to FCFC and RR
algorithms. Another advantage is that it uses positive feedback mechanisms, allows in-
ternal parallelization, and it can be extended in various ways.

As a result of the strong positive feedback of Ant Colony Optimisation(ACO), the
author [Liu et al| (2014) proposed genetic adaptation of ant colonies for optimum per-
formance. The algorithm uses the global search capability of genetic algorithms to arrive
at an optimal solution as quickly as possible, and later converts the original pheromone of
ACO. A total of 100 ants were used for the experiment in GA, crossover rate 0.6, muta-
tion rate 0.1. When 28 iterations were used in GA, the search rate for optimal tasks was
98%. The GA rate reaches 63% upon reaching 50%, and the ACO rate reaches 95% upon
reaching 50%. When merging the GA and ACO, the author found that task scheduling
in the cloud can be solved more successfully.



2.2 Review on Serverless Infrastructure

The author evaluates performance of concurrently invoked functions on serverless plat-
forms, including Amazon Lambda, Google Cloud Function, Microsoft Azure Function,
and IBM Cloud Function. In this study, |Lee et al|(2018) found that Amazon Lambda
offers better performance in various aspects, including CPU performance, network band-
width, and file I/O throughput. Because serverless computing has zero delays while
booting up a new instance, and it is charged based on function invocation, serverless
computing is considered more efficient than traditional virtual machines. Three trigger
types were introduced: (1) HTTP, (2) Database, and (3) Object Storage. Triggers are
executed whenever users perform operations. There are multiple methods of content de-
livery with HTTP triggers, including JSON, text, and other types DELETE, POST and
PUT. Database triggers are triggered when an entry/deletion/modification is made in
the database. The test is performed on a serverless environment, considering the CPU’s
response time, the run-time overheads, and the performance of temporary directories.
To analyze the performance of an instance, the author performs a concurrent function
throughput. Multiple CPU-intensive workloads can be processed concurrently without
using any other resources. There is consistency for 1 concurrent non-parallel invocation,
but there is an overhead of 28 to 4606% if 100 simultaneous invocations are made. In the
parallelism for disk-intensive workloads function, a temporary directory of up to 500MB
is available that can be accessed by different applications such as tool storage, interme-
diate data storage, and extra libraries. With 100 invocations, a concurrency analysis of
disk-intensive workload revealed Amazon and Google both generated significant execu-
tion overheads of 91%, 145% and 338%, respectively, while Microsoft failed to execute the
function within the time limit (5 minutes). The performance of the network is signific-
antly degraded due to heavy operations of file uploading and downloading in concurrent
network-intensive workloads. As a result, such activities were distributed among several
locations, where network integration was possible. Data transmission from Amazon S3
storage to Google object storage was four times faster with Amazon Lambda than with
Google Functions from 1 to 100 concurrency levels. AWS Lambda triggers for HTTP
have a throughput of 55.7 functions per second. Object storage triggers have a through-
put of 25.16 functions per second, and AWS database triggers have 864.60 functions per
second.

A resource management system is proposed for serverless cloud computing which fo-
cuses on optimizing the resource allocation among containers in the paper titled Efficient
Management and Allocation of Resources in Serverless (EMARS) by [Saha and Jindal
(2018). The EMARS prototype was built on OpenLambda, which is an open-source plat-
form for serverless computing. In comparison to AWS Lambda, OpenLambda functions
have lower latency and memory utilization. It was tested on Ubuntu 16.04 with Python
functions. It was found that if the memory was increased, latency could be reduced. A
6MB file had a latency of 3.3 seconds, whereas a 10MB file had a latency of 1.2 seconds.

To address the problem of under-utilization in serverless, the Gunasekaran et al.
(2020) proposed fifer. FIFER is a framework for adaptive resource management, which
intelligently handles function chains on a serverless platform. FFifer minimizes overall
latency by proactively starting containers, an intelligent request batching system, con-
tainer scaling, and container spawning to avoid cold starts. Fifer is composed of load
balancing, function scheduling, bin packing with proactive scaling policies, and load bal-
ancing. Brigade was built on top of Fifer using 5SKLOC of JavaScript. The Brigade



serverless platform is an open-source tool developed by Microsoft Azure. In the experi-
ment, 80 compute cores were used, which increased the spawn rate to 80% and increased
container use by 4x while improving cluster efficiency by 31%.

Locus is a serverless analytics platform presented by [Pu et al| (2019). This paper
emphasizes performance and cost-effectiveness. The strategy in this paper was to com-
bine (1) low cost but slow data storage (2) high cost but fast data storage to achieve
high performance while being cost-efficient. A small amount of fast storage is used to
process data, thus improving performance and requiring slower storage for storing data.
According to the author, Locus meets Apache Spark running time in CloudSort with
small amounts of fast storage. The Locus system is found to be slower than Amazon
Redshift. Still, Locus is a better option than Redshift. Using fast but expensive storage
combined with slow but cheap computing, Locus was able to achieve performance like
Apache Spark. By using it both performance and cost can be optimized.

2.3 Review on performance analysis in Serverless

An evaluation of serverless infrastructure in a low-latency, the high-availability envir-
onment was conducted by Bardsley et al.| (2018). To determine the causes of latency,
the experiment was conducted using both API Gateway and Lambda to Lambda calls
triggered by Python 2.7 AWS Lambda. Two test runs were run based on the results of the
first test run to ensure the requisite number of warm lambdas. According to the analysis
of JMeter HTTP response time, there was a delay in the spike and a subsequent conten-
tion for its resources during the initial startup. The performance of the internal system
components was evaluated using CloudWatch and X-Ray. The CloudWatch tool provides
a set of metrics, graphs and indicates where in the application time is spent. By using
cloud watch, it was observed that each function spent approximately 3ms processing re-
quests from API Gateway and 55ms executing the Reverse Array Lambda. According to
the author, there are some optimization strategies in serverless: (1) Requests can wait for
a lambda to start before getting a resource; (2) Circuit breakers can eliminate unreliable
system components to eliminate needless resources consumption.

McGrath and Brenner| (2017) proposed a serverless prototype that emphasis on per-
formance and throughput by comparing results from AWS Lambda, Google Cloud Func-
tions, and IBM Apache OpenWhisk. The prototype program was developed in the .NET
framework and deployed on Microsoft Azure. Because of its scalability and low latency,
the author chose Azure Storage as the storage type. It consists of two parts: (1) a web
service and (2) worker services. Worker services manage and execute containers via a
REST API exposed by the platform’s web service. The metadata of a triggered function
is stored in the Azure Storage table, and its code gets stored in the Azure Storage Blob.
Metadata for functions include Function identifiers, Language runtime data, Memory
size, and a Code Blob URI. GUIDs (Global Unified Identifiers) are randomly generated
during function creation. Language run times specify the language used for function
code. At the moment, only Node.js functions are supported. An application’s maximum
memory consumption is determined by its memory size. Proposed prototypes support
manual function invocation. A function is invoked by calling ” /invoke”. The communica-
tion between web services and workers is controlled by the message layer. There are cold
queues and warm queues for each function. Cold queues indicate the amount of space
available on the platform. Initially, the web service dequeues messages from the warm
queue, and if no messages are found, it then dequeues messages from the cold queue.



The server will return an HT'TP 503 service unavailable message if all workers have been
fully allotted to running containers. A worker can be assigned to a specific function and
be responsible for managing container allocation. Compared with other prototypes, the
proposed prototype has better performance until 13 minutes, and beyond that point,
significant latency occurs.

To reduce the operational costs of serverless, the Mahmoudi and Khazaei (2020) pro-
poses an analytical performance model to optimize quality of service and resource utiliz-
ation. Using AWS Lambda as an experimental study environment, the author validates
how well the proposed model applies and is accurate. In this evaluation, the authors
measured the average warm and cold response times, as well as the expiration threshold.
Experimental analysis was performed using Python 3.6 on AWS lambda. Using a wide
range of workloads for the analytical performance model, it shows 30% higher response
times than the average warm-up response time. On CPU-intensive workloads, the warm
default threshold is 2x warm and 2x cold default threshold is 2x cold. AWS’s Fibonacci
calculation shows 4211ms of warm default and 5961ms of cold default.

Lloyd et al.| (2018]) shows how serverless performance varies 15x based on the heater
temperature, the VM and container temperature. Hosting a website can have a significant
impact on infrastructure elasticity, load balancing, provisioning variety, infrastructure
retention, and memory reservation size. AWS Lambda function was used by the author
to perform random math calculations. There are multiple calculations in each array, each
starting at a random location. It was discovered that low memory and CPU allocation
caused Lambda functions deployed with large array sizes to fail. In an experiment, 9
stress levels from 2 to 9 were introduced with random number generators, and the time
to execute the random function was observed to increase with the stress level. To service
Microsoft Azure functions, a trigger function was written in C to log the App service
instance id and current worker process id. VSTS (Visual Studio Team System) is used
for generating the load and stress on functions. The cold runs load test was conducted
and tested for 2 minutes. The warm runs were tested for 2 minutes, 5 minutes, and 10
minutes. The experiment observed a fourfold improvement in the performance of COLD
when the function memory was increased from 128MB to 1536 MB. COLD service shows
performance degradation by 4.6 times when too many container requests are made to an
individual host. Furthermore, serverless service performance begins to degrade after 10
minutes of execution for the functions which are executed first by 15x after 40 minutes
of inactivity. The performance boost was 1.55x during WARM execution. VMs were
observed to have an average uptime of 2 hours and 8 minutes. When memory size is
small, Lambda is capable of allocating and retaining four times more containers to host
microservices.

2.4 MapReduce in Serverless Infrastructure

With the increasing evolution of big data applications, there is a need to improve the job
scheduling for MapReduce, which will improve MapReduce performance. By using in-
stant message transfer to optimize MapReduce setup and cleanup work, |Gu et al.| (2014])
proposes a reduction in time and cost to sensitive task scheduling and map reduction.
Their implementation is a totally compatible optimized version of Hadoop called SHa-
doop. Through the comparing of SHadoop with standard Hadoop, it was determined that
SHadoop shows significant improvement in performance by 25% than standard Hadoop
for Word Count, Sort, Page Rank and KMean.



In the context of big data or Apache Hadoop, MapReduce is a model commonly
used to analyze large amounts of data. |Giménez-Alventosa et al|(2019) discusses AWS
Lambda’s suitability to support MapReduce jobs, and provides MARLA (MapReduce
on Lambda), an open-source application for executing MapReduce jobs in Python on
AWS Lambda. Secondly, a comprehensive performance analysis is conducted using many
case studies. MapReduce jobs can be executed using MARLA on Lambda through a
lightweight Python application. Lambda function groups are made up of three different
groups: coordinator, mapper, reducer. This application uses two s3 buckets, one to store
incoming data (input data) and the other to store output data that is collected during
the post-processing phase. The MapReduce job’s execution workflow will begin upon
uploading data sets into the input s3. An s3 event is triggered by the event which in
turn invokes the coordinator function. To determine the best size of the data partitions,
the coordinator function splits the overall dataset into smaller chunks as specified (N),
provided the mapper’s function has enough ram to store such a large amount of data.
Based on the performance comparison with AWS’ serverless MapReduce architecture,
it was found that lambda’s performance heterogeneity strongly affects MapReduce jobs
in terms of execution time. According to the study, AWS Lambda provides reliable
computing performance for applications that use its constraints.

MapReduce is increasingly being used in both academic and industrial research fields
to analyze and analyze big data sets. |[Kalavri and Vlassov| (2013) discusses Hadoop frame-
work limitations and compares the various MapReduce frameworks for open issues, future
scopes, and trends. Despite its scalability, MapReduce has a relatively low processing
capacity. MapReduce’s performance depends on a variety of factors. The majority of
MapReduce execution time is consumed by initializing, scheduling, and monitoring tasks.
Due to the need for advanced programming skills, the implementation of MapReduce has
programming model issues. Auto tuning and ease of use is another issue of MapReduce.
The author discovered that various frameworks such as Hadoop++, ERAL, HAIL and
many more were discovered that many open-source frameworks are restricting researchers
from understanding and expanding them.

2.5 Summary of related work

Managing big data is becoming more and more complex as data grows rapidly. MapRe-
duce plays an essential role in resolving the problem of big data. While using MapReduce,
there is also an overhead - for mapping and for reducing. In Giménez-Alventosa et al.
(2019), a MapReduce application is integrated with serverless (MARLA) to increase its
performance. To accommodate the evolution of Serverless, and to allow users to be billed
according to execution time, it is increasingly being adopted by organizations. In Mc-
Grath and Brenner| (2017)),Lloyd et al.| (2018), Bardsley et al. (2018)) and Mahmoudi and
Khazaei (2020) the study evaluated how serverless platforms such as Amazon Lambda,
Google Function, Azure Function, and OpenWhisk performed. AWS Lambda’s perform-
ance is much better than other platforms in every research study. Considering the cost of
running serverless, there has been researching done to optimize the serverless execution
time so that the execution time is lowered, thus making serverless cheaper to run. In Wang
et al.| (2020), Awad et al.|(2015), Al-maamari and Omara| (2015)), Navimipour| (2015), Ari
et al.| (2017), Liu et al.| (2014) and |Guo| (2017)) emphasis on use of various task schedul-
ing algorithms to optimise execution time and costs in cloud computing environments.
From a research survey conducted by |Liu et al.| (2014), Ant Colony Optimisation(ACO)
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shows that it has greater performance than other scheduling algorithms. As a result, in
this proposed research, I am using Ant Colony Optimization (ACO) algorithm with Map
Reducer in AWS Lambda.

3 Methodology

Firstly this paper tries to implement the Map Reducer in OpenStack but due to com-
puting node limitation, it introduces large latency before executing the task. Therefore,
extending MARLA architecture on Amazon Web Service(AWS) was performed. Though
AWS has a service dedicated to AWS Elastic MapReduce (AWS EMR) it doesn’t have
any console management. In the paper, various other AWS cloud services such as AWS
S3, AWS Lambda, Redis cache storage are used to provide flexible service. Amazon
S3 acts as an event trigger for the map and reducer function whenever there is input
data. Additionally, AWS CloudWatch provides the logs such as execution time, CPU
utilization, memory allocation and many more.

Trust i i Tags (1) Access Advisor Revoke sessions

~ Permissions policies (8 policies applied)

Attach policies © Add inline policy

Policy name v Policy type ~
AmazonElastiCacheFullAccess AWS managed policy
AmazonS3FullAccess AWS managed policy
CloudWatchFullAccess AWS managed policy

AmazonVPCFullAccess AWS managed policy

AWSLambdaRole AWS managed policy

AWSLambdaENIManagementAccess AWS managed policy

X X X X X X X X

»
3
3
3
» AWSLambdaVPCAccessExecutionRole AWS managed policy
»
»
»

CloudWatchEventsFullAccess AWS managed policy

Figure 2: Policy attached in IAM

3.1 Material and Equipment’s

Using Amazon Web Service(AWS), this paper provides fine-grained elasticity to existing
MARLA architecture. As shown in figure [2, depicts different policies and roles required
before creating lambda function. The AWS Lambda is used to execute the Map and
Reducer function. Amazon S3 bucket access is provided to store and retrieve the stored
data. AWS CloudWatch access is provided to monitor the performance of Lambda func-
tion in case of event failure it will trigger the alarm. Lastly, Amazon VPC is used to
provide isolated infrastructure to map reducer applications which can be accessed through
internet gateway.

3.2 Sample Data

The sample CSV data file has a size of 5SMB and contains 12010 rows and 310 columns
and is used to test the performance of the proposed architecture.
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4 Design Specification

This section describes the design specification of the proposed research work. Sub-section
4.1], elaborates the existing system problem. In sub-section [£.2] the proposed system
architecture flow is explained.

4.1 Existing system

As shown in figure |3 the existing MARLA architecture utilizes two AWS S3 buckets
one for the incoming data stream and the other for processed data. Since map-reduce
applications require high computational power and are time-consuming. In the existing
system, there is no high-performance storage due to which it has latency issues.

Mappers Reducers

Input

bucket Output

bucket

- W
S

Coordinator

v @60 O O

data arrive to coordinator Mapper  Store mapped Reduce mapped
s3 input buket phase phase data chunks data chunks

Figure 3: MARLA System Architecture Giménez-Alventosa et al.| (2019)
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4.2 Proposed System
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Figure 4: Proposed Research Architecture

Figure ?? depicts the proposed system architecture. The proposed system consists
of two AWS S3 buckets. One bucket is for input object (CSV file) and another bucket
is final output storage. We have used Redis as a temporary memory for handling data
during the transition between the mapper and reducer function. The proposed system
consists of Coordinator, Mapper and Reducer function. The coordinator function divides
the data into equal chunks. The mapper function maps the data by assigning key-value
pairs. Lastly, the reducer function performs complex computation on mapped data.
With the help of the coordinator function, big complex problems were divided into small
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chunks to boost the process of complex computation. The composite architecture is kept
inside AWS VPC using AWS Direct Connect Link which enables MapReduce access in
the proposed architecture. In the proposed architecture the AWS VPC is made up of
different components such as NAT Gateway, Internet Gateway, Routing table and subnet.
The architecture is mainly divided into three phases read, write and compute. The phases
are as follows:

e Compute: For performing mapper and reducer functions, a lambda function is
used which will reduce the assigned task. The provided lambda function is connec-
ted to S3 for input and final data and Redis for intermediate data which will be
required during the shuffling phase.

e Read: The data is stored in AWS S3 which is further used to store the output
data. AWS S3 provides easy restoring of every data version. The intermediate data
generated by the mapper function is stored in Redis. Further, the intermediate
data is pushed to the reducer function.

As shown in figure |4 the proposed architecture has 6 phases as:

e Input Storage: On uploading input data files such as CSV or text file into AWS
S3 which will automatically trigger the coordinator function.

e Coordinator Function: The coordinator function divides the data into equal
chunks to ensure all data is utilized in the map phase. On successful completion of
the coordinator function, the mapper function is triggered.

e Mapper Function: The mapper function will map and assign the key-value pair
to data chunks in 2D tuples such as Map|n|[m].

e Shuflling: The mapped data is sorted and stored in Redis for further use in the
reducer function.

e Reducer Function: In the reducer phase, the mapped key-value pairs were re-
duced with the help of 2D tuples.

e Output Storage: This phase stores the data processed by the reducer function.
Each key is accompanied by the number of occurrences for each value.

5 Implementation

This section elaborates on the implementation of the proposed research work. The pro-
posed design is implemented on AWS cloud and uses AWS S3, AWS Lambda and AWS
Redis. We have implemented the MapReduce application on serverless for which we
have created lambda function for mapper, coordinator and reducer. To implement Ant
Colony Optimization(ACO) Algorithm with MapReduce application following configur-
ation should be performed:

e Create an TAM role by assigning multiple policies to enable access to multiple
services such as Cloud Watch, Lambda and S3 as shown in

e Create an IPv4 CIDR block of 192.168.0.0/16, 192.168.10.0/24, and 192.168.20.0/24
in a VPC to enable access to the internet using public subnet.
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B Execution results X

fimport json
import boto3
import math
import redis

redis = redis.Redis(host="'thesis.8sn31f.0001.usel.cache.amazonaws.com', port=6379, charset="utf-8", decode_responses=True,)
s3 = boto3.client('s3")

©ooNOU A WN PR

d
// if dynamic allocation
/ if dynamic searching
bucket = "th
key = "grades.csv"

response = s3.head_object(Bucket=bucket, Key=key)
fileSiz response[ ' ContentLength']

fileSize = fileSize / 1048576

print("FileSize = " + str(fileSize) + " MB")

obj = s3.get_object(Bucket= bucket, Key=key)
file_content = obj["Body"].read().decode("utf-8")

#Calculate the chunk size

chunkSize = "'

MAPPERNUMBER=2

MINBLOCKSIZE= 512

chunkSize = int(fileSize/MAPPERNUMBER)
numberMappers = MAPPERNUMBER

if chunkSize < MINBLOCKSIZE:

print("chunk size to small (" + str(chunkSize) + " bytes), changing to " + str(MINBLOCKSIZE) + " bytes")
chunkSize = MINBLOCKSIZE
numberMappers = int(fileSize/chunkSize)+1

residualData = fileSize - (MAPPERNUMBER - 1)*chunkSize

Figure 5: MapReduce with ACO algorithm code snippet

e Create the security group which will allow incoming traffic and outgoing traffic.
The inbound rule of this security group will be to allow traffic from anywhere to
Redis, allow traffic from HTTP, HTTPS, SSH and custom TCP.

e Create an S3 bucket with allows public access and VPC endpoint to establish a
private connection between VPC and S3 without any internet connectivity.

e Lastly, create the elastic cache for Redis so the data can be stored in Redis on a
public and private network.

The input data and final output data in this paper are stored in Amazon S3 buckets.
As shown in figure [3, the code snippet for MapReduce with ACO algorithm in AWS
Lambda function is used for computing and Redis acts as a middleware temporary storage.
The algorithm was written in python 3.8 and utilizes Boto3 to access AWS S3 bucket,
Redis service, CSV library to import the CSV file, JSON to convert the input data
structure into JSON format and math function for performing various mathematical
Equations. Whenever there is data input inside the AWS S3 bucket(CSV file) it will
trigger the lambda function. The lambda function will split the file into small chunks
and convert it into a utf-8 format.
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6 Evaluation

In the proposed research, the map-reduce application with Ant Colony Optimization(ACO)
scheduling algorithm shows the nearby same performance as AWS EMR. Using fast(Redis)
and slow(AWS S3) storage strategy the performance and execution time reduced as
compare to existing MARLA architecture. The graph 7?7 depicts the execution time
of MapReduce application for different file sizes such as 1MB, 2MB, 3MB, 4MB and
5MB respectively.
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Figure 6: File size vs execution time

6.1 Case Study 1: Without ACO algorithm

As shown in figure [§] the successful execution for IMB CSV file. The CSV file of 1IMB
is used to validate the memory usage and cost associated with the lambda function. For
executing the lambda function we had created a JSON test file. After execution, it will
display the result in JSON format. Since the test case for the 1MB file was successful
hence its output is displayed in green colour. The execution result includes details such
as billed duration, memory utilization and time taken for function execution. It can be
seen that execution time was 12484.70ms and we billed for 12500ms, maximum memory
utilization was 96MB and 704MB of resource were configured.

Code SHA-256 Request ID
MIPnn+RJKdUC2xROGkym7Trufo1CDNY4TCd15Ru+ydU= 86a45766-cd0a-4dbe-8edb-2c76b32541d0
Duration Billed duration

12484.70 ms 12500 ms

Resources configured Max memory used

704 MB 96 MB

Log output

The section below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda
function. Click here to view the CloudWatch log group.

START RequestId: 86a45766-cd@a-4dbe-8edb-2c76b32541d@ Version: $LATEST

FileSize = ©.9673042297363281 MB

chunk size to small (@ bytes), changing to 1024 bytes

numberMappers-- -1023.0326957702637

chunk size to large (1024 bytes), changing to 460 bytes

END RequestId: 86a45766-cd@a-4dbe-8edb-2c76b32541d0

REPORT RequestId: 86a45766-cd@a-4dbe-8edb-2c76b32541de Duration: 12484.76 ms  Billed Duration: 12500 ms Memory Size: 704
MB Max Memory Used: 96 M8

Figure 7: The Output for executing 1IMB CSV file without ACO algorithm
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6.2 Case Study 2: With ACO algorithm

As shown in figure [§] the successful execution for MapReduce application with ACO
algorithm. The CSV file of 1IMB is used to MapReduce application to check memory
utilization and cost associated with a lambda function. Since the test case for the 1MB
file was successful hence its output is displayed in green colour. The execution result
includes details such as billed duration, memory utilization and time taken for function
execution. It can be seen that execution time was 812.68ms and we billed for 900ms,
maximum memory utilization was 95MB and 832MB of resources were configured.

Summary

Code SHA-256 Request ID

XGT6920ij+5ik0SxBED+DpeKrRWhhy6U2ZOKEQBNVY= b37212fa-6298-5198-9d73-87g4ej0y812

Duration Billed duration

81268 ms 900 ms

Resources configured Max memory used

832MB 95 MB Init Duration: 411.08 ms.

Log output

The section below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function. Click here to view the CloudWatch
log group.

START RequestId: b37212fa-e298-5198-9d73-g87g4ejOy812 Version: SLATEST

FileSize = 1.065908432006836 MB

chunk size to small (o bytes), changing to 1024 bytes

chunk size to large (1024 bytes), changing to 460 bytes

Generation @ CPU best fit: 3

Generation 5 CPU best fit: o

generation: 5 , fitness of Population: 0.32212254720000005

END RequestId: b37212fa-e298-5{98-9d73-g87g4ej0y812

REPORT RequestId: b37212fa-e298-508-0d73-g87g4ej0y812  Duration: 812.68 ms Billed Duration: 900 ms Memory Size: 832 MB  Max Memory Used: 95 M8 Init
Duration: 411.08 ms

Figure 8: The Output for executing IMB CSV file with ACO algorithm

6.3 Case Study 3 (Unsuccessful)

As shown in figure [ the execution of lambda function fails. This happens due to the
large chunk size specified in code i.e. 2048 bytes. Here the code will divide the CSV file
into 2048 bytes chunks and for processing the chunks we have allocated only 2 reducers
hence it took some time which resulted in task timeout for the Lambda function.

Code source info Upload from v
File Edit Find View Go Tools Window est | v Changes deployed bl -a

Q B code.py X Execution result: <

& § v Execution results Status: Failed | Max memory used: 84 MB | Time: 10010.61 ms
& v [] thesis_execute L

£ Test Event Name

S 4 redis

<

2 code.py

w

"errorMessage": "2021-08-14T19:09:59.637Z d9101d39-e3eb-4636-a068-ab795c7d2c47 Task timed out after 10.01 seconds"

Function Logs

START RequestId: d9101d39-e3eb-4636-a068-ab795c7d2c47 Version: SLATEST

FileSize = 0.9946870803833008 MB

chunk size to small (@ bytes), changing to 512 bytes

chunk size to large (512 bytes), changing to 460 bytes

END RequestId: d9101d39-e3eb-4636-a068-ab795c7d2c47

REPORT RequestId: d9101d39-e3eb-4636-a068-ab795c7d2c47 Duration: 10010.61 ms Billed Duration: 10000 ms Memory Size: 256 MB Max Memory Used:
2021-08-14T19:09:59.637Z d9101d39-e3eb-4636-a068-ab795c7d2c47 Task timed out after 10.01 seconds

Request ID

Figure 9: The output for 2048 bytes chunk size execution over 2 reducer
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Redis is placed inside a virtual private cloud, hence the 10.67 second latency seen
here. Since lambda utilizes resources from VPC hence it will result in an initial cold
start. As shown below, the Amazon CloudWatch service provides graphs of error counts,
invocation times, and duration. The graph illustrates the error percentage for failed
and successful executions. The green dot is 100 percent succeeded and the red dot is
failed execution.

s0

15:00 16:00 17:00

15:00 16:00 17:00

o Success time

Figure 10: Error count for 1MB file size Figure 11: Invocation time for 1MB file size

The graph , depicts the function invocation count (number of time a function is
called). Here lambda function is invoked two times first by AWS S3 event trigger and
second while responding to the mapper function. The graph [I2] shows the duration of
the coordinator function from its invocation to stop invoking another function.

CPU Utilization: Average 5Minutes¥ | Average ¥ th 3h 12h 1d 3d 1w cCustom B | C

eeeeeee

dsonmmmun 8 dursion ez

Figure 12: Function execution time Figure 13: CPU utilization of Redis
for 5MB file size

The graph depicts the CPU utilization by the Redis database. Here default
threshold value has been set to 80% and it can be seen that the Redis threshold is
under 45%. Figure |14 When extending Redis with Redis storage, this shows the replic-
ation factor. The graph below replication shows bytes as the amount of memory sent
across all replicas by the master. In the proposed work we have used three Redis Elastic
Cache replicas.

The graph (15| depicts the Redis network bytes inbound outbound during in-memory
computation. It can be seen that network packet inbound is equal to network packet
outbound (100% utilization).

The figure depicts the cost incurred during the execution of the MapReduce ap-
plication on AWS Lambda. The cost incurred by Elastic Cache was $26.37, Elastic Cloud
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Figure 14: Replication graph of Redis
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Figure 15: Redis network packets in and out

computing was $15.35 and the total cost incurred was $49.23.

Spend Summary Cost Explorer Month-to-Date Spend by Service Bill Details
Welcome to the AWS Billing & Cost Management console. Your last month, month-to-date,  The chart below shows the proportion of costs spent for each service you use.

and month-end forecasted costs appear below.

Current month-to-date balance for August 2021, the exchange rate for the Payment
Currency is estimated.
49.23 USD which converts to

3,691.76 INR $49.23

at today's exchange rate of 74.99

$67.45 Il Essticache $26.37
0 I Etastic Compute Cloud $15.35
$49.23
. I cloudwatch $0.00
I Data Transfer $0.00
s20
so.52 Il Other services $0.00
© | T o
ast Month Month-to-Date Forecast
Quly 2021) (August 2021) (August 2021)
Total $49.23

» Important Information about these Costs

Figure 16: AWS Lambda billing for MapReduce application

7 Conclusion and Future Work

The paper aims at facilitating MapReduce on Amazon Web Services’ serverless infra-
structure via Ant Colony Optimisation(ACO) scheduling algorithm. The paper believes
that proper task scheduling can facilitate the current lack of big data application support
on serverless infrastructure. In the proposed research data transmission rate between
resources is improved using Amazon S3 and Amazon Elastic Cache. On comparing the
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results from other platforms, AWS Lambda demonstrates uniform latency behavior that
does not influence the processing time of MapReduce processes. The results gained a
significant deep analysis of CPU utilization of AWS Elastic Cache and duration, error,
throttle and invocation of AWS Lambda. To this aim, the research focuses on:

e As a result of introducing AWS Elastic Cache, execution speeds were 4.5 times
faster than with existing MARLA architecture.

e Due to the usage of cache memory the cost has also increased 2.5x times that of
MARLA architecture.

Due to resource restrictions provided by AWS SLA, this proposed researchable to
analyze small analytic performance. The future work comprises of expanding the task
scheduling more efficiently using other task scheduling algorithms. Various hot and cold
storage devices such as Redis, in-memory data store and many more storage combinations
can be used to speed up the execution of big data applications in serverless.
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