

National College of Ireland
BSHCSDE4

Software Development

Academic Year 2020/2021

Lorcan Murray

x16105834

x16105834@student.ncirl.ie

PetRescue

Technical Report

1

Contents
Executive Summary ... 5

1.0 Introduction .. 5

1.1. Background ... 5

1.2. Aims ... 6

1.3. Technology .. 7

2.0 System ... 8

2.1. Requirements .. 8

2.1.1. Functional Requirements .. 8

2.1.1.1. Use Case Diagram ... 9

2.1.1.2. Requirement 1: User Registration .. 10

2.1.1.3. Description & Priority .. 10

2.1.1.4. Use Case .. 10

Requirement 2: User Login ... 12

2.1.1.5. Description & Priority .. 12

2.1.1.6. Use Case .. 12

2.1.1.7. Requirement 3: Report Pet ... 14

2.1.1.8. Description & Priority .. 14

2.1.1.9. Use Case .. 14

2.1.1.10. Requirement 4: Delete Report .. 16

2.1.1.11. Description & Priority .. 16

2.1.1.12. Use Case .. 16

2.1.1.13. Requirement 5: Edit Report .. 18

2.1.1.14. Description & Priority .. 18

2.1.1.15. Use Case .. 18

2.1.1.16. Requirement 6: View Gallery ... 20

2.1.1.17. Description & Priority .. 20

2.1.1.18. Use Case .. 20

2.1.1.19. Requirement 7: View Individual Profile ... 22

2.1.1.20. Description & Priority .. 22

2.1.1.21. Use Case .. 22

2.1.1.22. Requirement 8: Comment ... 24

2.1.1.23. Description & Priority .. 24

2.1.1.24. Use Case .. 24

2

2.1.1.25. Requirement 9: Delete Comment ... 26

2.1.1.26. Description & Priority .. 26

2.1.1.27. Use Case .. 26

2.1.1.28. Requirement 10: Send Direct Message ... 28

2.1.1.29. Description & Priority .. 28

2.1.1.30. Use Case .. 28

2.1.1.31. Requirement 11: View Sent Messages .. 30

2.1.1.32. Description & Priority .. 30

2.1.1.33. Use Case .. 30

2.1.1.34. Requirement 12: Logout .. 32

2.1.1.35. Description & Priority .. 32

2.1.1.36. Use Case .. 32

2.1.2. Data Requirements ... 34

2.1.3. User Requirements ... 36

2.1.4. Environmental Requirements ... 37

2.1.4.1. Client ... 37

2.1.4.2. Server .. 37

2.1.4.3. Development ... 37

2.1.5. Usability Requirements ... 38

2.2. Design & Architecture ... 38

2.3. Implementation .. 41

2.4. Graphical User Interface (GUI) .. 50

2.5. Testing ... 54

2.5.1. Unit Testing ... 54

2.5.2. Functional Testing ... 54

2.6. Evaluation ... 54

3.0 Conclusions ... 56

4.0 Further Development or Research ... 57

5.0 References .. 57

6.0 Appendices .. 58

6.1. Project Proposal .. 58

Objectives.. 60

Background ... 60

Technical Approach ... 61

Special Resources Required .. 61

Project Plan ... 62

3

Gantt Chart.. 63

Technical Details ... 64

Evaluation ... 64

6.2. Reflective Journals .. 65

October ... 65

Week 1 (26/09): .. 65

Week 2 (03/10): .. 65

Week 3 (10/10): .. 65

Week 4 (17/10): .. 65

Week 5 (24/10): .. 65

Reflection .. 66

November ... 66

Week 6 (31/10): .. 66

Week 7 (07/11): .. 66

Week 8 (14/11): .. 66

Week 9 (21/10): .. 66

Reflection .. 67

December .. 67

Week 10 (28/11): .. 67

Week 11 (05/12): .. 67

Week 12 (12/12): .. 67

Week 13 (19/12): .. 67

Week 14 (26/12): .. 67

Reflection .. 67

January .. 68

Week 15 (02/01): .. 68

Week 16 (09/01): .. 68

Week 17 (16/01): .. 68

Week 18 (23/01): .. 68

Reflection .. 68

February .. 69

Week 19 (30/01): .. 69

Week 20 (06/02): .. 69

Week 21 (13/02): .. 69

Week 22 (20/02): .. 69

Reflection .. 69

4

March .. 70

Week 23 (27/02): .. 70

Week 24 (06/03): .. 70

Week 25 (13/03): .. 70

Week 26 (20/03): .. 70

Week 27 (27/03): .. 71

Reflection .. 71

April ... 71

Week 28 (03/04): .. 71

Week 29 (10/04): .. 71

Week 30 (17/04): .. 71

Week 31 (24/04): .. 72

Reflection .. 72

6.3. Other materials used .. 73

6.3.1. Pet Rescue Test Plan ... 73

6.3.2. PetRescue System Evaluation Tasks ... 79

6.3.3. PetRescue System Evaluation Survey ... 80

5

Executive Summary
The following document aims to serve as a technical report to outline in detail the

specifications of ‘PetRescue’; a Rich Internet Application (RIA) which has been developed as
part of the year four software project module in the Software Development specialisation
cohort.

PetRescue is a pet finder web application which offers registered, signed-in users the
ability to report a missing, found, or stolen pet in the simplest possible form, while also
providing a comments section under each missing pet’s profile, allowing users to update
each other instantly on any sightings or other helpful information relating to that pet.
Leaving a comment automatically alerts the owner of the report via automated email, so no
comment goes unseen. The application also provides direct messaging (DM) functionality,
with a personal inbox to send and view private messages to and from other registered site
users.

This report aims to highlight the technical specifications of the project, such as the
architectural specifications which will be illustrated through visual representations of the
system such as use case diagrams and Entity Relationship diagrams. The report also aims to
outline the development process undertaken, as well as discuss what has been achieved in
the final product compared to what was initially envisaged, and what future plans are in
place for PetRescue.

It is intended that by the end of this document the reader will have a thorough grasp of
the PetRescue application in its entirety from both a high and low-level perspective, and an
understanding of what difficulties were encountered during the development process.

1.0 Introduction
1.1. Background

The idea for this project stems from a love of animals and a desire to help reduce the
issue faced by pet-owners of losing a pet. It is a near-daily occurrence for people to
encounter a wayward animal somewhere during the day, however it is not always
possible, or advisable, to approach these animals and try to assist in returning them
home. The PetRescue application aims to eliminate, or at the very least reduce the need
to approach a stray animal in order to offer some assistance, therefore eliminating any
potential risk involved in dealing with a possibly scared and unpredictable animal. To
add to this, Ireland in recent years has seen a worrying spike in the number of reported
animal thefts. These animals are then transported overseas and sold, often for cruel and
illegal acts such as dog fighting. A resource to address these problems and help in some
small way is something that offers real value, both to users of the application and to the
animals it eventually helps rescue.

6

1.2. Aims
Pets going missing is far from a new phenomenon, however as discussed previously, in

recent years pets (dogs in particular) are being stolen from their homes and sold for profit; a
trend which has only increased over the last year. According to an RTE report on dog thefts,
“animal and dog groups believe suspected dog thefts are linked with a bigger demand for
dogs during the covid-19 pandemic” (McCormack, 2021). This is a trend in Ireland which is
rising and can only be reduced by increasing awareness. Having a single resource such as
PetRescue could greatly improve awareness of individual missing pets and eventually
possibly reduce the trend of stolen pets by deterring would-be thieves.

When researching similar applications that already exist, very few could be found, with
the only real competition being ‘lostandfoundpets.ie’. This site offers similar functionality to
PetRescue, however is visually unappealing with harsh colours, and laden with adverts. It
also falls short in terms of user experience. The site does not offer user registration and
therefore contact details must be entered at the time of reporting a lost or found pet, which
is a cumbersome task when reporting a found pet in particular, which the user may not be
all that emotionally invested in. Another area PetRescue improves upon is contacting the
report. While it is possible to contact a user on lostandfoundpets.ie, it must be done either
by emailing the user from the site, or by phoning them. PetRescue does not display contact
information on the site, and instead offers users a private inbox where messages can be
sent between users and personal details exchanged if necessary. PetRescue also offers a
comment section on each report, allowing users to quickly update a post with useful
information such as a sighting of the animal. Once a comment is left, the owner of the
report is instantly notified via automated email. Commenting is not something which is
offered by lostandfoundpets.ie.

The overall aim for this project was to offer a platform which allowed registered users to
log in and report a found or lost pet via the simplest possible process, while being visually
appealing to the user to encourage interaction with the site. The following is a summation
of the functionality offered by PetRescue:

- User Authentication
o Register
o Login
o Logout
o Password Recovery

- Report Missing, Found or Stolen
o Description and image upload
o Edit details of an existing report (user-specific)
o Delete an existing report (user-specific)

- Gallery View (all reported pets)
- Pet Profile View (individual reported pet)
- Commenting

o Post comment
o Delete comment (user-specific)

7

o Generate email notification when comment is posted

- Messaging
o Inbox
o Create and send new message
o View sent messages

1.3. Technology
Frontend: The user interface consists primarily of HTML, CSS, and JavaScript, with
Bootstrap utilised for styling. The intention was for a stylish, simplistic UI to attract the
user to interacting with the application and it is believed that this has been
accomplished.

Backend: Initially the intention for this project was for the backend to be written in
Python3. It was felt that having studied primarily java over the past 3 to 4 years,
programming in Python would present new and exciting challenges. However, during
development several significant issues arose which were proving costly in terms of time.
After struggling with these issues for some time and following a helpful conversation
with the project supervisor Rejwanul Haque, a decision was made to start over with the
project in a different language. The chosen language was Ruby. Prior experience of Ruby
was non-existent until the second semester of year four but having briefly used Ruby for
another module and finding it much more workable, the decision was made and within a
week the new Ruby version of the project had surpassed its Python predecessor in terms
of progress.

Framework: As stated previously, the chosen programming language was changed late
into the project, and with the change of programming language came a change to the
framework. The initial framework was Django3, however when the language was
changed to ruby, Rails was naturally chosen as the new framework. It is believed the
issues faced initially with the Python project stemmed from an understanding (or lack
thereof) of the Django framework. Working with Rails has proven to be much more
fruitful, while still new and challenging.

Version Control: GitHub was utilised for version control. A connection was established
from the Ubuntu terminal (for Windows) to the project’s repository on github and each
change that was made to the application during development was pushed and merged
back to the master branch. Using version control proved invaluable on at least two
occasions, where otherwise the changes made could have been detrimental to the
project, however rollbacks were implemented, and the project recovered.

Database: This project utilises a PostgreSQL database. PostgreSQL was chosen due to its
robust performance and reliability, as well as being a very popular object-relational
database choice for Ruby on Rails projects in general.

8

User Authentication: Devise is used to handle all aspects of user authentication for
PetRescue, including registration, log in and out functionality and token-based password
recovery.

Image Upload: The process of reporting a missing or lost pet requires a user to submit a
form with details relating to the missing animal, among those details is an image which
is uploaded to the database. To handle these file uploads the Shrine gem was used,
which allows implementation of validation rules for file uploads to restrict uploads to
specific sizes and file types. For PetRescue, this was limited to jpeg, png and webp image
files of no more than 5mb.

2.0 System
2.1. Requirements
All requirements for the system are detailed below. These requirements are all verifiable
via user actions and should not require any prior experience of system usage.

2.1.1. Functional Requirements
1. Landing page must offer user registration functionality.
2. Landing page must offer user login functionality.
3. Registered user must be able to report a missing pet.
4. Registered user must be able to delete pet report.
5. Registered user must be able to edit details of their pet report.
6. Registered user must be able to view gallery of missing pets.
7. Registered user must be able to view profile of individual missing pet.
8. Registered user must have the ability to comment on a pet report.
9. Registered user must be able to delete comment on a pet report.
10. Registered user must have the ability to browse inbox and view messages within.
11. Registered user must have the ability to send a private direct message to another

registered user.
12. Registered user must have the ability to view sent messages.
13. Currently logged-in user must have the ability to log out.

9

2.1.1.1. Use Case Diagram

10

2.1.1.2. Requirement 1: User Registration
2.1.1.3. Description & Priority
This use case describes the user registration process. This process is vital as no further
system interactions can take place with an unregistered user. Priority one.

2.1.1.4. Use Case
Register an unregistered user’s details.

Scope

The scope of this use case is to register the details of an unregistered user.

Description

This use case describes the process of user registration.

Use Case Diagram

Flow Description

Precondition

User has navigated to the landing page of the application.

Activation

This use case starts when an unregistered user selects ‘Register’.

Main flow

1. The system identifies that registration has been selected.
2. The user inputs username, a valid email address, password, and

confirmation password.
3. The system verifies details entered in step two (See A1, A2, E1)

11

Alternate flow

A1 : Email does not meet validation requirements.
1. The system returns appropriate message to user.
2. The use case continues at step two of main flow.

A2 : Password does not meet minimum requirements.

1. The system returns appropriate message to user.
2. The use case continues at step two of main flow.

Exceptional flow

E1 : User attempts to Register with no Details.
1. System displays appropriate message to user.
2. No registration occurs.
3. The use case continues at step one of main flow.

Termination

The use case is terminated when the user is registered with the system.

Post condition

The user is brought to the homepage and system is in an idle state until further
input from user.

12

Requirement 2: User Login
2.1.1.5. Description & Priority
This use case describes the registered user login process. This process is vital as no
further system interactions can take place for a logged-out user. Priority one.

2.1.1.6. Use Case
User Login.

Scope

The scope of this use case is for a registered user to log in to the site.

Description

This use case describes the process of a registered user successfully logging in to
the site.

Use Case Diagram

Flow Description

Precondition

User is registered.

Activation

This use case starts when a registered, logged out user selects ‘Login’.

Main flow

1. User enters email into the email address field.
2. User enters password into the email address field.
3. User selects ‘log in’ (See E1).
4. System verifies credentials (See A1, A2).

13

Alternate flow

A1 : Email is incorrect.
1. User remains logged out.
2. System displays appropriate message to user.
3. Use case continues from step one of the main flow.

A2 : Password is incorrect.
1. User remains logged out.
2. System displays appropriate message to user.
3. Use case continues from step two of main flow.

Exceptional flow

E1 : User attempts to login with blank email or password.
1. System recognises data is missing.
2. User remains logged out.
3. Appropriate message is displayed to the user.
4. Use case continues at step one of main flow.

Termination

The use case is terminated when the user is logged in successfully and user
session has started.

Post condition

The user is brought to the homepage and system is in an idle state until further
input from user.

14

2.1.1.7. Requirement 3: Report Pet
2.1.1.8. Description & Priority
This use case describes the process of reporting lost, found or stolen pet. This process is
important as it is the main purpose of the application. Priority one.

2.1.1.9. Use Case
Report Pet.

Scope

The scope of this use case is for a registered user to report a lost or found pet.

Description

This use case describes the process of reporting lost or found pet.

Use Case Diagram

Flow Description

Precondition

Registered user is logged in.

Activation

This use case starts when a logged-in user selects ‘Report Missing / Found’ from
the home page.

15

Main flow

1. User selects ‘Report Missing / Found’.
2. User enters mandatory description details: (See E1).

a. Report Type
b. Date
c. Location
d. Animal
e. Breed
f. Colour
g. Image

3. User inputs Additional Information (See A1).
4. User selects Submit.
5. System imports details to DB.

Alternate flow

A1 : No Additional Information entered.
1. User skips Additional Info field.
2. Use case continues at step five of main flow.

Exceptional flow

E1 : User attempts to submit without some or all mandatory description details.
1. System recognises data is missing.
2. Appropriate message is displayed to user.
3. Use case continues at step two of main flow.

Termination

The use case is terminated when the details are imported into the DB.

Post condition

Message displayed to user confirming successful submission of report.

16

2.1.1.10. Requirement 4: Delete Report
2.1.1.11. Description & Priority
This use case describes the process of deleting a pet report. This process is of medium
importance. A user should be allowed to delete any pet report posted by said user at
any time. Priority two.

2.1.1.12. Use Case
Delete Pet Report.

Scope

The scope of this use case is for a registered user to delete a pet report.

Description

This use case describes the process of deleting a pet report.

Use Case Diagram

Flow Description

Precondition

Registered has posted a Pet Report.

Activation

This use case starts when a logged-in user selects a Pet Report posted by that
user.

17

Main flow

1. User selects the Pet Profile / Pet Report.
2. User selects ‘Delete’.
3. User selects ‘Yes’ to delete confirmation (See A1).

Alternate flow

A1 : User rejects delete confirmation.
1. User selects ‘No’ to delete confirmation.
2. Use case resumes at step one of main flow.

Exceptional flow

No Exceptional Flow.

Termination

The use case is terminated when the details are deleted from the database.

Post condition

Message displayed to user confirming successful deletion of report.

18

2.1.1.13. Requirement 5: Edit Report
2.1.1.14. Description & Priority
This use case describes the process of editing a pet report. This process is of medium
importance. A user should be allowed to edit any details of a pet report posted by said
user at any time. Priority two.

2.1.1.15. Use Case
Edit Pet Report.

Scope

The scope of this use case is for a registered user to edit a pet report.

Description

This use case describes the process of editing a pet report.

Use Case Diagram

Flow Description

Precondition

Registered has posted a Pet Report.

Activation

This use case starts when a logged-in user selects a Pet Report posted by that
user.

19

Main flow

1. User selects the Pet Profile / Pet Report.
2. User selects ‘Edit.
3. User edits some or all details (See A1), (See E1).
4. User selects ‘Submit’.

Alternate flow

A1 : User makes no changes.
1. User does not edit any field.
2. Use case resumes at step four of main flow.

Exceptional flow

E1 : User attempts to submit blank data for a mandatory field.
1. User edits a field and leaves field blank.
2. User selects ‘Submit’.
3. Appropriate message is displayed to the user and no changes are

committed to the database.
4. Use case resumes at step three of main flow.

Termination

The use case is terminated when the details are edited, and changes committed
to the database.

Post condition

Message displayed to user confirming successful edit of report details.

20

2.1.1.16. Requirement 6: View Gallery
2.1.1.17. Description & Priority
This use case describes the process of viewing a gallery of all reported pets. This process
is important as it is the main purpose of the application. Priority 1.

2.1.1.18. Use Case
View Gallery

Scope

The scope of this use case is for a registered user to view all pets reported
missing, found, or stolen.

Description

This use case describes the process of viewing all pets reported missing, found,
or stolen in the gallery.

Use Case Diagram

Flow Description

Precondition

User is registered and logged in, or user is registered and logged out, or user is
unregistered.

Activation

This use case starts when a user selects ‘View All’.

Main flow

1. User selects ‘View All’.
2. User is brought to the Gallery.

21

Alternate flow

 No Alternate Flow.

Exceptional flow

 No Exceptional Flow.

Termination

The use case is terminated when the gallery of missing pets is displayed to the
user.

Post condition

System awaits further input in an idle state.

22

2.1.1.19. Requirement 7: View Individual Profile
2.1.1.20. Description & Priority
This use case describes the process of viewing an individual missing pet profile. This
process is important as it is the main purpose of the application. Priority one.

2.1.1.21. Use Case
View Profile

Scope

The scope of this use case is for a registered user to view an individual profile of a
pet reported missing, found, or stolen.

Description

This use case describes the process of viewing an individual missing, found or
stolen pet profile.

Use Case Diagram

Flow Description

Precondition

User has navigated to the Gallery.

Activation

This use case starts when a user selects ‘View’.

Main flow

1. User selects ‘View’ on a specific profile / report from the Gallery.
2. User is brought to the reported pet profile.

23

Alternate flow

 No Alternate Flow.

Exceptional flow

 No Exceptional Flow.

Termination

The use case is terminated when the reported pet profile is displayed to the user.

Post condition

System awaits further input in an idle state.

24

2.1.1.22. Requirement 8: Comment
2.1.1.23. Description & Priority
This use case describes the process of commenting on an existing pet report. This
process is of medium importance, it ensures users are updated as quickly as possible.
Priority two.

2.1.1.24. Use Case
Comment

Scope

The scope of this use case is for a registered user to leave a comment on an
existing pet report / profile.

Description

This use case describes the process of leaving a comment on an existing pet
report / profile.

Use Case Diagram

Flow Description

Precondition

Pet reports / profiles exist in the database.

Activation

This use case starts when a user selects ‘View’ on a pet report / profile.

25

Main flow

1. User selects ‘View’ on a specific profile / report from the Gallery.
2. User is brought to the reported pet profile.
3. User enters text in the ‘comment’ section of the profile (See E1).
4. User selects ‘Submit’.

Alternate flow

 No Alternate Flow.

Exceptional flow

 E1: User attempts to submit a blank comment.
1. User does not enter text into the comment section.
2. User selects ‘Submit’.
3. Appropriate message is displayed to the user and the comment is not

posted.
4. Use case resumes at step two of the main flow.

Termination

The use case is terminated when the commented is posted to the database.

Post condition

User’s comment is displayed in comments section.

26

2.1.1.25. Requirement 9: Delete Comment
2.1.1.26. Description & Priority
This use case describes the process of deleting an existing comment on an existing pet
report. This process is of medium importance, knowing users have the option to delete a
comment will encourage users to post comments. Priority two.

2.1.1.27. Use Case
Delete Comment

Scope

The scope of this use case is for a registered user to delete an existing comment
on an existing pet report / profile.

Description

This use case describes the process of deleting an existing comment on an
existing pet report / profile.

Use Case Diagram

Flow Description

Precondition

A comment associated to the user exists for a pet report / profile.

Activation

This use case starts when a user selects ‘View’ on a pet report / profile.

27

Main flow

1. User selects ‘View’ on a specific profile / report from the Gallery.
2. User is brought to the reported pet profile.
3. User scrolls to comments section and selects ‘Delete’ beside said user’s

comment.

Alternate flow

 No Alternate Flow.

Exceptional flow

 No Exceptional Flow.

Termination

The use case is terminated when the user’s comment is deleted from the
database.

Post condition

User’s comment is no longer displayed in the comments section.

28

2.1.1.28. Requirement 10: Send Direct Message
2.1.1.29. Description & Priority
This use case describes the process of sending a direct message to another registered
user. This is of high importance as it is the primary method of users exchanging details
privately to return a found dog to an owner, for example. Priority one.

2.1.1.30. Use Case
Send Message

Scope

The scope of this use case is for a registered user to send a message to another
registered user.

Description

This use case describes the process of sending a direct message to another
registered user.

Use Case Diagram

Flow Description

Precondition

User is registered.

Activation

This use case starts when a user selects ‘Inbox’ from the navigation bar.

29

Main flow

1. User selects ‘Inbox’.
2. User is brought to the inbox.
3. Existing messages to the current user are displayed.
4. User selects ‘New Message’.
5. User enters a subject, message body, and selects a recipient (See E1).
6. User selects ‘Send’.

Alternate flow

 No Alternate Flow.

Exceptional flow

 E1: User leaves mandatory information blank.
1. User leaves subject, message body, or recipient blank.
2. User selects ‘Send’.
3. Appropriate message is displayed to the user.
4. Use case resumes at step five of the main flow.

Termination

The use case is terminated when the user’s message is posted to the database.

Post condition

The message can be viewed by the recipient from the recipient’s inbox.

30

2.1.1.31. Requirement 11: View Sent Messages
2.1.1.32. Description & Priority
This use case describes the process of viewing messages previously sent by the current
user. Priority two.

2.1.1.33. Use Case
View Sent Messages

Scope

The scope of this use case is for a registered user to view sent messages.

Description

This use case describes the process of viewing all messages sent from the current
user to other users.

Use Case Diagram

Flow Description

Precondition

User has sent message(s).

Activation

This use case starts when a user selects ‘Inbox’ from the navigation bar.

31

Main flow

1. User selects ‘Inbox’.
2. User is brought to the inbox.
3. Existing messages to the current user are displayed.
4. User selects ‘View Sent’.
5. User is brought to the sent box.
6. All Sent items are visible and include the subject, date and time, and user

the message was sent to.

Alternate flow

 No Alternate Flow.

Exceptional flow

 No Exceptional Flow.

Termination

The use case is terminated when the user’s sent messages are displayed.

Post condition

System directs user to sentbox and awaits in an idle state for further input from
user.

32

2.1.1.34. Requirement 12: Logout
2.1.1.35. Description & Priority
This use case describes the process of accessing the inbox. This process is useful as vital
as a logged in user must have the ability to end the session. Priority 1.

2.1.1.36. Use Case
Logout

Scope

The scope of this use case is for a logged in user to log out.

Description

This use case describes the process of logging out.

Use Case Diagram

Flow Description

Precondition

Registered user is logged in.

Activation

This use case starts when a user selects ‘Logout’.

33

Main flow

1. User selects Logout.
2. Session is terminated.
3. Appropriate message is displayed to the user.

Alternate flow

 No Alternative Flow.

Exceptional flow

 No Exceptional Flow.

Termination

The use case is terminated when the session is terminated.

Post condition

User is brought to login screen and system remains idle awaiting further input.

34

2.1.2. Data Requirements
PetRescue is built around an object-relational database, consisting of five models as follows. These
models and their relationships are as follows:

- Users
o has_many :pet_reports
o has_many :comments
o has_many :messages

- Pet_Reports

o belongs_to :user
o has_many :comments

- Comments

o belongs_to :user
o belongs_to :pet_report

- Messages

o belongs_to :user

- Breeds (This is a standalone model, used to populate the breed dropdown for the pet report
form)

One important data requirement for PetRescue is consistency of data. The application was intended
to improve on the offering of its competitor by reducing the amount of input required by a user to
report a missing pet. This reduction of user input means that the data that is captured is absolutely
vital. If one mandatory field is missing it results in the report being too generic, offering little or no
value to users. To handle this validation is performed at the application level. Each mandatory field is
specified in the model as being a requirement, therefore missing data in that field will result in
failure to commit to the database. Similarly, to ensure integrity (and security) of the data, validation
is performed on certain fields, where failure to do so could result in bad data reaching the database.
One such example is the file attachment included in the pet report form. Without proper validation a
user could simply upload text, resulting in a sub-standard pet report being published, or submit
excessively large files clogging up the database, or even worse submit something malicious which is
then consumed by the database and the application. For these reasons validation is handled in the
image_uploader.rb file to ensure only secure, valid data is reaching the database. This validation is
handled as follows:

 Attacher.validate do
 #must be of type jpeg, png or webp
 validate_mime_type %w[image/jpeg image/png image/webp]
 #must be no more than 5mb
 validate_max_size 5*1024*1024
 end

35

The following entity relationship diagram depicts the various models and data types that exist in the
database, and the relationship (where it exists) between them.

36

2.1.3. User Requirements
All user requirements for the PetRescue web application are detailed in the following format:

‘As a … I’ : This represents the stakeholder the requirement is aimed at.

‘Must / Should / Want’ : This represents the priority : Must = High, Should = Medium, Want = Low.

‘So that…’ : This represents the overall aim/outcome of the requirement.

This format breaks each requirement down in to three easily readable and understandable segments
to ensure maximum efficacy of the requirements.

All user requirements are details below:

As a…I Must/Should/Want… So that…

User Must have the ability to
register

I can use my account
credentials to log in

User Must have the ability to log in I can access the application

User Must be able to recover my
password

I can access the site again in
the event that I have forgotten
my password

User Must have the ability to log
out I can end my session

User Must have the ability to report
a lost, found, or stolen pet

I can post the report and get
information back from other
users

User
Should have the ability to
upload an image when
reporting

My report contains an image
which improves the chances of
someone recognising the pet
from the post

User
Want to only enter necessary
and relevant details when
reporting

My report is completed with
ease in a short amount of time

User Must be able to delete a pet
report I have posted

I can remove the post once
the animal has been found or
returned

User Must be able to edit a pet
report I have posted

I can change the details if
accidentally posted incorrectly

User Should be able to comment on
an existing pet report

I can update the reporter of
the pet report on any
information (such as a recent
sighting) I have quickly and
easily

User
Must be able to delete my
comment on an existing pet
report

My comment no longer is
displayed in the comments
section

37

User
Want to receive an email
when someone comments on
my pet report

I am notified instantly on the
comment and can react
quickly and accordingly

User Want an attractive front end The application is enjoyable to
use

User Want a user-friendly UI that is
easily navigable

I can easily accomplish what I
set out to do when using the
application

User Must have the ability to send
messages to other users

I can make a private enquiry
to a user about a pet report

User Must have an inbox I can view messages sent to
me by other users

User Should have the ability to view
messages sent by me

I am able to keep track of
who/what I sent messages
to/about

User
Should have the ability to
reply to a message I have
received

I can communicate with other
users to resolve enquiries

2.1.4. Environmental Requirements
2.1.4.1. Client

As PetRescue is a web-based application the only environmental requirement at the client side is an
active internet connection. PetRescue has been tested across multiple browsers and is built with
responsiveness in mind, so desktop, laptop and mobile devices should all be compatible.

2.1.4.2. Server
At the time of writing PetRescue has not yet been deployed. PetRescue is a Ruby application built on
the Rails framework and utilises a PostgreSQL database. That being the case, a PaaS provider who
support this object-relational database should be chosen to host the site, such as Heroku. PetRescue
relies on a number of gems for different aspects of the site, these gems are dependencies which
should be present in the gemfile and the gems installed once deployed. PetRescue captures most of
its data from user input, however in order to populate the breeds lists which are used by the pet
report form to select a breed, a seed must be run in order to seed the breed data from the seed.rb
file into the database.

2.1.4.3. Development
During development of PetRescue there were a number of environmental requirements. As
development was done solely on a Windows laptop it was necessary to run all commands through
an Ubuntu terminal for Windows and the application would run on localhost on port 3000. The
mailer responsible for the sending of automated emails was configured specific to the development
environment using smtp as the delivery method on port 587 and connecting to a Gmail account that
was specifically set up for the project. The Gmail account initially would not send the mails due to
the source sender being less secure, so ‘Less Secure App Access’ had to be enabled in the account in
order for the mailer to work.

38

2.1.5. Usability Requirements
The main usability requirement for PetRescue was that the application should be designed so that an
inexperienced user with no prior knowledge of the application can easily use all features of the site
end to end. Since the development of PetRescue, this requirement has been verified by multiple test
users of varying demographics who were given tasks to complete on the site. In all cases the users
completed their assigned task on the first attempt and within a reasonable timeframe. This
requirement was achieved through pre-planning and designing a clean and minimalist user interface
with logical process flows for the key functionalities of the site. These process flows will be discussed
further on in this document, under the Design and Architecture section.

2.2. Design & Architecture
PetRescue is a Ruby on Rails web application, and as a result it has been developed using
the Model View Controller (MVC) architectural design pattern. “The Model-View-
Controller is an architectural pattern that separates an application into three main
logical components: the model, the view and the controller; each built to handle specific
development aspects of an application” (MVC Framework – Introduction –
Tutorialspoint, 2021). The front-end is developed in the Views, meaning it is responsible
for all aspects of the application which are presented to or interacted with by the user.
These user interactions are taken by the View and passed to the Controller, which then
asserts what to do with this input and informs the model, and/or view. The Model is
where data and the logic associated with that data are maintained. This architectural
model is popular with many frameworks as it provides separation of concerns which
makes code easier to maintain by reducing complexity. The below diagram has been
created to visually represent PetRescue’s architectural implementation of the MVC
design pattern:

39

To aid the above visual representation, a structural breakdown of PetRescue can be seen
below. This details the specific models, views and controllers that make up the
PetRescue web application.

40

The following class diagram shows PetRescue’s structure in terms of its classes, and the
attributes, methods, and relations of those classes:

41

2.3. Implementation
There are several pieces of functionality throughout PetRescue which will be discussed
throughout this document. However, there are three key features which the application is
heavily dependent upon, as combined they make up the sole purpose of the application.

Pet Report Process

First and foremost is the process of reporting a pet missing, found, or stolen. To do this a
user must complete a form which is then submitted to the database. Although unregistered
users can view currently missing, found, or stolen pets, in order to access the form to post a
pet report themselves, a user must be registered. To achieve this a check is carried out in
the controller for pet reports, to ensure that the current user has been authenticated:

before_action :authenticate_user!, except: :index
As can be seen from this snippet, the controller checks that the user is authenticated before
any method is accessed, with the exception of the index method, meaning unauthenticated
users can access index only, and can view currently missing, found, or lost pets. The form
itself is a partial, with the code written in the view and shared by both ‘new.html.erb’ and
‘edit.html.erb’. As part of this form, the user is required to submit an image of the pet they
are reporting. This was the most difficult part of the pet reporting process to implement. In
order to attach the image as a file attachment, the shrine plugin was installed, and the
shrine gem added to the gemfile. Shrine.rb was added to the initializers directory and this
specifies what plugins are required, such as active record, and where to store uploaded files,
for both permanent and cached storage. An image uploader class was created to implement
validation around the file type and size that could be uploaded, it was then specified to
include this class in the pet_report model, along with the attribute ‘:image’ and this
attribute was included in the list of permissible parameters in the pet report controller. The
following code snippets walk through the image uploader as part of the overall form
submission.

App/config/initializers/shrine.rb:

require "shrine"
require "shrine/storage/file_system"
require "shrine/storage/memory"

if Rails.env.test?
 Shrine.storages = {
 cache: Shrine::Storage::Memory.new, # temporary
 store: Shrine::Storage::Memory.new, # permanent
}
else
 Shrine.storages = {
 cache: Shrine::Storage::FileSystem.new("public", prefix: "uploads/cach
e"), # temporary
 store: Shrine::Storage::FileSystem.new("public", prefix: "uploads"),
 # permanent
}

42

end

Shrine.plugin :activerecord #or sequel
Shrine.plugin :cached_attachment_data # for retaining the cached file across f
orm redisplays
Shrine.plugin :restore_cached_data # re-
extract metadata when attaching a cached file
Shrine.plugin :validation
Shrine.plugin :validation_helpers
Shrine.plugin :derivatives

App/uploaders/image_uploader.rb

require "image_processing/mini_magick"

class ImageUploader < Shrine

 #resize images : code from https://shrinerb.com/docs/processing
 Attacher.derivatives do |image|
 magick = ImageProcessing::MiniMagick.source(image)

 {
 large: magick.resize_to_limit!(800, 800),
 medium: magick.resize_to_limit!(500, 500),
 small: magick.resize_to_limit!(200, 200),
 }
 end

 #add validation for file uploads
 Attacher.validate do
 #must be of type jpeg, png or webp
 validate_mime_type %w[image/jpeg image/png image/webp]
 #must be no more than 5mb
 validate_max_size 5*1024*1024
 end

end

App/models/pet_report.rb:

include ImageUploader::Attachment(:image)

App/controllers/pet_reports_controller:

 def pet_report_params
 params.require(:pet_report).permit(:reporting, :date, :location, :animal
, :breed, :colour, :image, :additionalInfo, :user_id)

43

 end
App/views/pet_report/_form.html.erb:

<%= image_tag f.object.image_url if f.object.cached_image_data %> <!--
if image is cached, display it so user is aware-->
<%= f.hidden_field :image, value: @pet_report.cached_image_data %> <!--
cache image data: prevents image being lost if form fails to upload (validatio
n failure etc.)-->
<%= f.file_field :image %>

The overall process of reporting a pet can be seen in the following process flow:

44

Commenting

Another key feature of PetRescue is the ability for users to comment on a pet report,
with that comment automatically generating and sending an email to the owner of the
report. This is a hugely important piece of functionality, as retrieving a missing pet can
be a time-sensitive issue, and the quickest possible way for users to update each other
on sightings of a pet is through this method. To tackle this functionality, a comment
scaffold was generated, with a relationship established between comment, pet_report
and user:

Comment model:

class Comment < ApplicationRecord
 belongs_to :user
 belongs_to :pet_report
end

User model:

 has_many :comments

Pet_report model:

 has_many :comments

The create and destroy methods to allow creation and deletion of a comment were
established in the comments controller. Both methods call the pet report model to get
the current pet reports ID and assign it to the comment’s ‘pet_report_id’ attribute. It
also assigns the comments user_id attribute based on the current_user method
provided by devise, so the reporter of the comment is established. If the comment is
created and saved to the database, then the mailer (new_comment_mailer.rb) and its
method (new_comment) are called, using the ‘.deliver_now’ method provided by
Application Mailer to send the automated email (designed in
views/new_comment_mailer/new_comment.html.erb).

App/mailers/new_comment_mailer.rb:

class NewCommentMailer < ApplicationMailer

 def new_comment(comment)
 @comment = comment
 @pet_report = @comment.pet_report

 mail to: @pet_report.user.email,
 subject: "New Comment on Your PetRescue Post"
 end
end

45

App/controllers/comments_controller.rb:

def create
 @pet_report = PetReport.find(params[:pet_report_id]) # find pet report
 @comment = @pet_report.comments.create(comment_params)
 @comment.user_id = current_user.id if current_user # assign the user id of
 the current user to the comment
 @comment.username = current_user.username

 if @comment.save
 NewCommentMailer.new_comment(@comment).deliver_now # send email notifi
cation to owner of the original post
 flash[:success] = 'Comment Posted'
 redirect_to pet_report_path(@pet_report)
 else
 flash[:danger] = 'Could Not Post Comment'
 end
end

The connection details for the mailer are set up per environment, in development for
example, the connection details are as follows:

 config.action_mailer.delivery_method = :smtp
 config.action_mailer.smtp_settings = {
 address: "smtp.gmail.com",
 port: 587,
 domain: "example.com",
 authentication: "plain",
 enable_starttls_auto: true,
 #username and password in application.yml, which is included in gitignore
so credentials are not in public repo
 user_name: ENV["MAIL_USERNAME"],
 password: ENV["MAIL_PASSWORD"]
 }
 config.action_mailer.default_url_options = { host: 'localhost', port: 3000 }

Note that the username and password details are stored in the application.yml file
which is specified to be ignored by github for security, so sensitive details are not
pushed up to the public repository where this application lives.

46

The flow of the comments feature can be seen in the below process flow diagram:

47

Messaging Process

The third key feature of PetRescue is its inbox, allowing users to communicate more
sensitive details to each other privately such as phone numbers or addresses, where a
public comment would not be suitable. To implement direct messaging, a number of
avenues were explored, however as this was one of the later pieces of functionality to
enter development and time was becoming more and more limited, it was decided that
the simplest option would be to generate a messages scaffold with username_to,
username_from and user_id attributes (among others). Users post to the messages
table, but it was implemented using a simple conditional statement in the view that the
only messages that would display are messages with username_to equalling the current
user’s username. This way, a generic inbox is tailored to only display items that are
intended for the current user. Similarly, for the sent box, only items with
username_from equalling the current user’s username are displayed. This can be seen in
the following code snippet:

App/views/messages/index.html.erb:

 <tbody>
 <% @messages.each do |message| %>
 <!-- only show messages sent to the current user -->
 <% if message.username_to == current_user.username %>
 <tr class="table-light">
 <td><%= message.subject %></td>
 <td><%= message.username_from %></td>
 <td><%= message.created_at %></td>
 <td><%= link_to 'View', message, class:"btn btn-outline-
dark" %></td>
 <td><%= link_to 'Delete', message, method: :delete, data: { confirm:
 'Are you sure?' }, class:"btn btn-outline-danger" %></td>
 </tr>
 <% end %>
 <% end %>
 </tbody>

48

The following process flow diagram describes the flow of sending a message:

49

Some of the more minor pieces of functionality are still worth mentioning. For example,
the search feature which allows users to search for missing, found, or stolen pets by
breed. This was implemented by creating a search method in the pet_report model,
which is then called from the gallery controller and utilised by the view.

App/models/pet_report.rb:

 #Search Function
 def self.search(search)
 if search
 where(["breed LIKE ?","%#{search}%"])
 else
 all
 end
 end

App/controllers/gallery_controller:

 def index
 @pet_reports = PetReport.search(params[:search])
 end

App/views/gallery/index:

 <!-- Search Missing Pets -->
 <%= form_tag gallery_index_path, class:"form-inline my-2 my-lg-
0", :method => 'get' do %>
 <%= text_field_tag :search, params[:search], class:"form-control mr-sm-
2", placeholder:"Search by Breed" %>
 <%= submit_tag "Search", class:"btn btn-outline-secondary my-2 my-sm-
0" %>
 <% end %>

50

2.4. Graphical User Interface (GUI)
Landing Page – Presented to the user upon navigation to the site:

Log In – Presented to the user upon selecting ‘Log In’. Similar to register and forgot password
pages:

51

Report Pet Form – Presented to the user upon selection of ‘Report Missing / Found’:

View Gallery – The main gallery view displaying all existing pet reports. Also contains the ‘search
by breed’ functionality:

52

View Individual Pet Report – Presented to the user upon selecting ‘View’ on a pet report from
the gallery. Displays additional information about the pet, and contains comments section to
display and post comments:

Inbox – Presented to the user upon selection of ‘Inbox’ in the navbar. Contains all messages sent
to the current user:

53

View Message – Presented to the user upon selecting ‘View’ on a message from the inbox.
Displays all message details (subject, message, sender, receiver, sent date) and allows deletion
of the message or to send a reply:

Send New Message – Presented to the user upon selection of ‘New Message’ from the inbox, or
‘Reply’ from within a message:

54

2.5. Testing
Manual testing was carried out in different phases for the PetRescue application. The
decision was made to manually test the site as an emphasis was put on exploratory and
exception testing, which is better executed with the human eye rather than automation.
According to Tommy Wyher of DevOps Zone, “Human testers can quickly identify when
something looks “off.” Automated test scripts do not pick up these visual issues. When a
tester interacts with software as a user would, they are able to discover usability issues
and user interface glitches. Automated test scripts can’t test for these things” (Wyher,
2016). The testing for PetRescue was executed as follows:

2.5.1. Unit Testing
Unit testing was carried out continuously throughout the development of PetRescue. Each
change that was made during development was tested immediately after its implementation
and the code adjusted until testing of the specific change was successful. Upon completion of a
development phase, a regression test was executed before pushing code to the github
repository and merging back to the master branch.

2.5.2. Functional Testing
Upon completion of development, a functional test plan was drafted which covered testing of all
functionalities of the application, as well as all end-to-end processes. Test cases and results are
logged in the test plan which can be seen in the appendix of this document. (See Appendix
6.3.1.).

2.6. Evaluation
In order to evaluate the system in its entirety, a number of users were selected to carry out two
designated tasks each on the system. Each user was timed during execution of their tasks and
the results logged (tasks and results can be seen in appendix 6.3.2.). The actual times taken by
the users to complete each task were compared to the expected timeframe for each task, which
were identified by an experienced system user completing the tasks. This allows for
identification of areas within the application which could be improved upon, or highlight area’s
which have been designed correctly, with the average user in mind. In order to evaluate the
system fairly, the users executing these tasks should span a wide demographic in terms of age,
gender, and technical capability. However, as the system was being tested locally, the number of
users that could partake in the exercises was limited to family members, due to covid
restrictions. That being the case five family members were identified which still satisfied the
need for a broad range in age, gender, and technical ability among users. The users executing
evaluation scenarios are as follows (note no personal details for any user are disclosed):

User Gender
Age
Bracket

Technical
Ability

System
Experience

User 1 Female 65 - 69 Low None
User 2 Male 60 - 64 High None
User 3 Female 30 - 34 Moderate None
User 4 Female 30 - 34 Moderate None
User 5 Male 25 - 29 High None

55

From the results of this evaluation technique, as can be seen in the appendix, it is clear that the
system poses no issues to experienced or inexperienced users, with three of the ten tasks falling
outside of the expected completion timeframe, however not by long enough to cause concern in
any instance.

Following the execution of the tasks discussed above, each user was given approximately five
minutes to explore the site at their leisure and advised to interact with the site as much as
possible. Each user was then asked to complete a short survey on their experience using
PetRescue (Survey and results can be seen in appendix 6.3.3.). The intention behind this was to
give a more detailed insight into the specific areas of the site the users felt could either be
improved upon, or were satisfactory in terms of features, design, and usability. The results show
that overall users were satisfied with the system in terms of usability, design, and functionality,
with one hundred percent of users answering that they would return to user the PetRescue site
in the future.

56

3.0 Conclusions
The initial idea for the PetRescue project was to build a web application which could
potentially offer genuine value to people in allowing them to report a missing, found, or
stolen pet. Although issues were encountered along the way, resulting in a complete
overhaul of the project; changing programming language and framework mid-way through
the second semester of this year, the final product has achieved what it set out to achieve,
as verified by independent users, and almost all functionality initially described in the
project proposal has been implemented. Given the timeframe this project had to be
completed in because of the change, there is immense pride taken from the final product.

Based on the extensive testing and evaluation carried out on the site, it is safe to say
that PetRescue is a robust site that has achieved what it set out to achieve; that is, to
improve upon the offering of its only competitor ‘lostandfoundpets.ie’ by offering users a
simpler, more effective method of communicating a missing or found pet to as many people
in as possible in the shortest amount of time. Features such as the comments section with
automated email notifications and private messaging are another reason PetRescue stands
out from the competition.

One feature initially proposed was to implement GPS to select the user’s location
when reporting a pet. Unfortunately, this was not implemented in the final product due to
time constraints, however there is no doubt that development of this web application will
continue after the project’s submission, and GPS location is something which will almost
certainly be implemented in a future release. It is felt that the positive experience taken
from development of this application will result in further exploration of Ruby and the Rails
framework and will most likely lead to development of other Ruby on Rails projects in the
future.

57

4.0 Further Development or Research
As discussed above, given more time there is one feature which was initially proposed for
this project but could not be implemented before the deadline. That is to offer GPS location
as part of the pet report form. User should be able to select the location field and have their
location displayed for selection. This was investigated during development of this project,
but again, time constraints towards the submission deadline meant that enough time could
not be dedicated to ensuring this was implemented properly. There is significant work in
implementing such a feature which involves pulling the users current latitude and longitude
coordinates and using reverse geocoding to find the location. There is no doubt that this will
be implemented in a future release of PetRescue as development continues to further
improve the site and make it a viable product for production.

5.0 References
McCormack, C., 2021. Animal groups warn of rise in numbers of dog thefts. [online] RTE.ie. Available
at: <https://www.rte.ie/news/2020/0709/1152224-dogs-stolen/> [Accessed 8 May 2021].

Tutorialspoint.com. 2021. MVC Framework - Introduction - Tutorialspoint. [online] Available at:
<https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm> [Accessed
9 May 2021].

Wyher, T., 2016. 5 Reasons Why Manual Testing Is Still Very Important - DZone DevOps. [online]
dzone.com. Available at: <https://dzone.com/articles/5-reasons-why-manual-testing-is-still-very-
importa> [Accessed 11 May 2021].

58

6.0 Appendices
6.1. Project Proposal

National College of Ireland

Project Proposal

Pet Rescue

05/11/2020

Programme Title: BSHCSDE4

Specialisation: Software Development

Academic Year 2020/2021

Student Name: Lorcan Murray

Student Number: 16105834

Email: x16105834@student.ncirl.ie

59

Contents
1.0 Objectives .. 60

2.0 Background ... 60

3.0 Technical Approach ... 61

4.0 Special Resources Required .. 61

5.0 Project Plan ... 62

Gantt Chart.. 63

6.0 Technical Details ... 64

7.0 Evaluation ... 64

60

Objectives
The core objectives for the Pet Rescue project are to develop a Rich Internet Application (RIA) which
will allow users to create an account, log in, and register details of an animal they would like to
report either missing, or found. The process of reporting a lost or found animal involves the optional
uploading of a photo, along with a description comprised of data taken from a number of user input
fields such as species, breed, colour etc. as well as date/time and a ‘last seen’ location, based on GPS
location. Users can browse all lost or found animals, select a thumbnail of any animal listed as lost or
found which will pull that animals profile and display all details on that animal to the user. A
registered user can message the poster of a lost or found animal in order to enquire further or
exchange contact details etc. Users will also receive a notification if for example an animal is
reported found and the details match an animal which had previously been reported missing. In
addition, users will have the ability to browse a personal inbox in order to view and reply to
messages from other registered users. Aside from functionality, a key objective of this project is
design. The application must be attractive, and of a sleek, simplistic design that is user friendly and
easily navigable. The data required for reporting lost or missing animals should be strictly restricted
to only relevant, necessary information, so as not to burden or overwhelm users with multiple
unnecessary fields to fill in.

Background
The idea for this project essentially stems from being a dog owner, and lover of animals in general. I
have often found myself in a situation whereby I encounter a dog that looks possibly stray but am
unable to do anything about it, as I may be short on time for example. In this scenario the only
option is to move on and hope the animal is ok. In general, it is not advisable to approach an animal
when one is encountered in this manner, even a family pet, as the animal may be nervous or scared
and is therefore unpredictable and should be considered potentially dangerous. The proposed Pet
Rescue application eliminates the need to approach a stray animal in the street, while still giving
users peace of mind by offering the ability to do their part in helping to reunite the animal with its
owners. Following the inception of this idea some research was undertaken to investigate whether
anything similar already exists. Surprisingly, very few offerings could be found – most attempts to
find an application to report a lost or found pet resulted in finding sites relating to pet adoptions.
One site which did seem to have similar functionality to PetRescue was ‘lostandfoundpets.ie’.
Although the core functionality is similar, the lostandfoundpets site is cumbersome and laden with
ad’s. When attempting to report a lost or found pet a lot of the details required were unnecessary
and off-putting from the perspective of a user reporting a found pet, who may not have a hugely
invested interest in reporting the pet in the first place. The aim of pet PetRescue is to make the task
of reporting a missing or found pet as effortless as possible. The project is one which I feel I will be
emotionally invested in, and as such will put great emphasis on not only the functionality of the site,
but also on the look and feel from an end user perspective.

61

Technical Approach
It is my intention that this project will be written in Python, with a html/css bootstrapped
front-end to ensure optimal design. I have chosen Python as my preferred language for a
number of reasons, the primary reason being that I currently have limited experience in
using Python but am very aware of its versatility and capabilities, not least of which are the
vast array of libraries which can be utilised. To compliment this, I intend on using the Django
web framework with virtualenv for package management. Django is a fully-featured server-
side web framework which is written in Python, and is one of the more popular choices as a
framework for Python projects. My understanding is that Django’s MVT (model-view-
template) architecture is slightly more confined when compared to other, more
architecturally loose frameworks such as Flask, however this offers better project stability
and performance. Again, I have no prior experience in using Django, so this will be a
challenge in itself but one I look forward to delving deeper into. In terms of the main
database for this project, at the time of writing, a decision has not yet been finalised on
what database system to use, however I am currently leaning towards PostgreSQL.
PostgreSQL is an object-relational database which I understand from research is well known
to be highly reliable and robust in terms of performance and works well with the Django
framework. I also intend to use GitHub for version control.

Special Resources Required
It is my intention that no special resources will be required for this project other than a
virtual environment. This will avoid the need to install Python packages globally and thus
ensure system tools remain unaffected.

62

Project Plan
Task Start Date Duration (days) End Date
Documentation

Project Pitch 14/10/2020 1 15/10/2020
Project Proposal 04/11/2020 3 07/11/2020

Mid Point Prototype 15/11/2020 36 21/12/2020
Technical Report 15/11/2020 174 08/05/2021

Environment
Deploy build server 15/11/2020 1 16/11/2020

Set up version control 15/11/2020 1 16/11/2020
Front End

User SignUp 16/11/2020 2 18/11/2020
User Login 16/11/2020 2 18/11/2020

Landing Page 16/11/2020 2 18/11/2020
Browse Lost List 19/11/2020 1 20/11/2020

Browse Found List 19/11/2020 1 20/11/2020
Report Lost 21/11/2020 2 23/11/2020

Report Found 21/11/2020 2 23/11/2020
Animal Profile 24/11/2020 2 26/11/2020

Create Private Message 27/11/2020 2 29/11/2020
User Inbox 30/11/2020 2 01/12/2020

View Private Message 02/12/2020 2 04/12/2020
Database

Schema Design 07/12/2020 1 08/12/2020
Creation 09/12/2020 2 11/12/2020
Hosting 12/12/2020 1 12/12/2020

Back End
DB Connection 15/12/2020 1 16/12/2020

User SignUp 17/12/2020 3 20/12/2020
User Login 17/12/2020 3 20/12/2020

Landing Page 21/12/2020 2 23/12/2020
Pull Lost / Found from DB 28/12/2020 6 03/01/2021

Browse Lost List 28/12/2020 6 03/01/2021
Browse Found List 28/12/2020 6 03/01/2021

Report Lost 04/01/2021 10 14/01/2021
Report Found 04/01/2021 10 14/01/2021

Post Lost to DB 04/01/2021 10 14/01/2021
Post Found to DB 04/01/2021 10 14/01/2021

Animal Profile 15/01/2021 10 25/01/2021
Create Private Message 26/01/2021 20 15/01/2021

User Inbox 26/01/2021 20 15/01/2021
View Private Message 26/01/2021 10 05/01/2020

Testing
Unit Testing 15/11/2020 174 08/05/2021

Draft Functional Test Plan 08/02/2021 3 11/02/2021
Execute Functional Testing 12/02/2021 2 14/02/2021

Draft UAT Test Plan 16/02/2021 3 19/02/2021
Execute UAT 20/02/2021 2 22/02/2021

Incremental Changes /
Fixes

Changes / Fixes 15/11/2020 174 08/05/2021

63

Gantt Chart

14/10/2020 14/11/2020 15/12/2020 15/01/2021 15/02/2021 18/03/2021 18/04/2021

Documentation
Project Pitch

Project Proposal
Mid Point Prototype

Technical Report
Environment

Deploy build server
Set up version control

Front End
User SignUp

User Login
Landing Page

Browse Lost List
Browse Found List

Report Lost
Report Found
Animal Profile

Create Private Message
User Inbox

View Private Message
Database

Schema Design
Creation
Hosting

Back End
DB Connection

User SignUp
User Login

Landing Page
Pull Lost / Found from DB

Browse Lost List
Browse Found List

Report Lost
Report Found

Post Lost to DB
Post Found to DB

Animal Profile
Create Private Message

User Inbox
View Private Message

Testing
Unit Testing

Draft Functional Test Plan
Execute Functional Testing

Draft UAT Test Plan
Execute UAT

Incremental Changes / Fixes
Changes / Fixes

64

The above is a preliminary Gantt chart outlining the estimated effort in days for each project
component. The schedule was drafted on the basis of full availability, however this is subject to
change due to factors external to this project, such as other college projects, work, and family life,
which may impact the estimated timelines outlined above. However, the schedule allows for delays
with the months of March and April left available for any work which may be still outstanding at that
point. The plan details the intention to complete front-end development as well as creation of the
database by Christmas, to allow for a tangible prototype for the project’s mid-point presentation.
Back-end development then begins towards the end of December. The chart visualises the increased
effort that is expected once back-end development begins. While unit testing will be an ongoing
iterative process, the application will undergo a full functional test plan with a suite of functional test
cases drafted prior to test execution. Similarly, once drafted, an independent potential user of the
application will execute the user acceptance testing test plan to confirm that the application will
satisfy the needs and expectations of the average user.

Technical Details
While the front-end will consist of HTML, CSS and JavaScript, utilising bootstrap for an
aesthetically pleasing design, the back-end processes and functionality will be programmed
in Python. This will all sit within the Django web framework, utilising virtual environments to
manage any package dependencies, thus eliminating the risk of clashes between pre-
existing system components and required Python packages. As outlined in section 3.0, the
selection of a database system has not yet been confirmed, with multiple options available
and under review, currently more research is needed before a final decision can be made.
That being said, the current front-runner is PostgreSQL as a RDBMS.

Evaluation
System evaluation for this project will be completed via execution of a number of different
testing methods. All components will be continually unit tested during development. A
functional test plan will be drafted and executed with an emphasis on exception testing to
ensure reliability under use by the average user. As well as this, it is my intention to have a
user acceptance test plan drafted, which will be executed by an independent potential user
of the app. This will likely be carried out by family members or friends – it should be noted
that no personal information is required for UAT execution, so there are no ethical or GDPR
implications to this.

65

6.2. Reflective Journals
October
Week 1 (26/09):
This week was very much focused on trying to get to grips with the new modules in this semester,
and trying to get back into the studying midframe, which was difficult having come from several
months of free time. Not much work was done outside of college hours, however a lot of time was
spent thinking about ideas for a software project. One or two ideas came to mind but were
dismissed as they were either impractical in terms of implementation, or already existed. I found
myself getting frustrated by my lack of solid ideas and found this bringing on some anxiousness
about the year ahead.

Week 2 (03/10):
This week, aside from labs during college hours, my extra-curricular efforts this week were invested
in beginning CA1 and CA2 for ‘Introduction to Artificial Intelligence’. Monday evening was spent
researching different techniques that can be used in games of chess and beginning to draft up a
report on those techniques. On Wednesday myself and two classmates arranged a team’s call to
discuss CA2. Following this call, I began to work on CA2, I did not get a whole lot done and come
about 11pm decided to finish up for the night. I continued to work on this on Friday evening and
again on Sunday and made some progress on pawn movements, however I found the logic difficult
to fully understand so progress on this CA is slow. I also dedicated nearly 2 hours on Sunday to
thinking and researching ideas for my software project and finally nailed down something which I
wanted to pursue – a pet finder app.

Week 3 (10/10):
On Monday evening I sat down for an hour and a half to further develop my idea for my software
project. I began by hand-drawing simple wireframes for the basic ideas I had, which I found helped
give me clarity on the functionality I wanted from the app, as well as giving me further ideas for
additional functionality that could be included. I also spent roughly an hour that evening working on
CA2 for Intro to AI module, but again, progress on this is slow as I am finding myself spending more
time trying to understand the logic than I am coding. On Wednesday I typed up a sort of script for
my project pitch and on Thursday evening after class I recorded and submitted my pitch.

Week 4 (17/10):
Sunday was spent working on CA2 for intro to AI. I made some progress on pawn movements, having
both black and white pawns moving as per the rules of the game, except for 1 issue with black
pawns not changing to a queen when taking a white piece on Y=0. I was still working on this Sunday
evening when my partner unexpectedly went into labour (3.5 weeks early). On the morning of
Monday 19th my daughter was born, however due to some complications she was admitted to NICU.
For this reason, my college work suffered quite a bit for the rest of the week, as my time was spent
visiting between 11am and 7pm each day.

Week 5 (24/10):
Again, not much was done this week. Thankfully, my daughter was discharged from NICU on
Monday, however most of time this week was dedicated to her, with feeding every 3 hours etc. I
found it difficult to devote time to college. I did however get a limited window of time on
Wednesday and Friday evening to start working on my CA for Multimedia and Mobile Application
Development. Luckily, the lecturer for this module has extended the submission deadline to 8th
November for this CA, so I can catch up on the time I missed out on the previous week.

66

Reflection
This month has had its ups and downs. In general, I feel I need to find more time to dedicate to
college work, as I feel I am falling behind a little bit. At the time of writing, I have not heard back on
whether my project pitch was successful, so I will not be able to progress in any way with my
software project until this is confirmed.

November
Week 6 (31/10):
This week saw the first (of many) submission of a substantial CA, namely CA1 for Strategic
Management in which a PESTEL analysis was undertaken. Although it took some time to complete, I
found this CA to be ok. In comparison to some of the deliverables for other modules this CA was far
less cumbersome, and I was happy to be able to get it done and submitted in an efficient manner. I
was informed this week that my project pitch was accepted and had my first supervisor meeting on
Wednesday (4th Nov) with Frances Sheridan, who was filling in for Paul Hayes, who is my assigned
supervisor. Frances gave me some valuable feedback on my project pitch, advising that the idea was
good, but encouraging me to try to develop the idea a bit more. I found this meeting to be very
helpful.

Week 7 (07/11):
This week I submitted the project proposal. I found the project proposal to be a lengthy process,
mainly due to working out expected timeframes and graphing it up as a gantt chart. I did however
find that doing this gave me some good perspective on time vs deliverables, which otherwise may
have slipped my mind and caused issues further down the line. Along with the proposal I submitted
the ethics declaration form – albeit a late submission, as I had forgotten to submit the ethics while
submitting the project proposal, however I contacted Frances and was advised to submit the ethics
form in the next ethics submission point, which I did.

Week 8 (14/11):
This was a busy week which saw more CA submissions – namely CA1 for Introduction to Artificial
Intelligence and CA1, part 1 and 2 for Web Services and API Development. CA1 for Intro to AI was a
short report on 3 different AI methodologies which can be implemented in a game of chess. All in all,
this was a nice CA which caused little difficulty. For CA1 in Web Services I managed to get the
submission in, however I found that the CA caused me great difficulty – part 1 specifically. Part 2 was
a document with questions to answer. I found this to be a relatively simpler exercise and was happy
enough with the final submission for part 2.

Week 9 (21/10):
Again, this week saw another CA deadline. I submitted CA1 for the Data Application Development
module which involved gathering datasets and doing up a report based on the findings from the
data. For this CA I found the report proved more difficult than expected, due to the IEEE format that
was expected for the document. I had not written a report in IEEE before and found it took
substantially longer to complete than a standard report, however the CA was submitted as expected.
This week on Wednesday (25th Nov.) I met with my newly appointed supervisor Rejwanul Haque.
Rejwanul went over my project idea and gave some suggestions which may help improve the overall

67

idea. One such idea was a word comparison to notify users of a matching description to one they
had posted. This is something I will investigate further, as I think it could be a great idea.

Reflection
Having gotten through some CA’s which initially seemed like a daunting task, I found that I am more
driven to keep on top of the deliverables this semester. I found the supervisor meetings were very
helpful and look forward to future meetings, which I believe will occur fortnightly.

December
Week 10 (28/11):
This week was busy in terms of college work. With multiple deliverables due in the coming weeks
pressure to complete project work is mounting. My focus this week was trying to complete the chess
project for the Intro to AI module, as its due on the 18th and I currently do not have CA2 finished, nor
have I started CA3.

Week 11 (05/12):
This week I began focusing on other assignments. Namely, my project for Mobile APP development
and my groups team project for the web services and API development module. Work is currently
incredibly busy, and I am finding myself working until after 11pm some nights which is impacting my
college work, however so far, I am confident all deliverables will be met.

Week 12 (12/12):
This week I submitted my effort for the chess CA’s for the Introduction to Artificial Intelligence
module, on 18th Dec. Unfortunately, I struggled with CA2 too much, and although I got it completed
in the end, it did not leave me with enough time to even attempt CA3, and as a result nothing was
submitted for CA3. I am happy with my submission for CA2 however, as a few weeks ago I was
seriously questioning whether I would be able to complete it.

Week 13 (19/12):
This week we submitted our team project for the Web Services and API Development module. This
was submitted on Sunday 20th and myself and my teammates were working on the final few
deliverables (report and presentation) up to a few hours before the deadline, however we were
happy with the outcome. The midpoint presentation for the 4th year software project was also due
this week. Unfortunately, not much work had commenced on my software project at that point, so I
had not much tangible software to demo.

Week 14 (26/12):
This week I submitted my project for Multimedia and Mobile App Development, as well as my
project for the Data Application Development module. The latter was tight in terms of submitting
before the deadline, but I managed to get the report complete with a few minutes to spare before
the deadline. I am also working on TABA’s this week for Intro to AI and Strategic Management.

Reflection
This was one of the busiest months I can remember. As discussed in the journal entries above,
multiple deliverables were submitted this month, while work and family life still had to keep going. I
am finding there are not enough hours in the day to get everything done in the timely manner I

68

would have always done up until 4th year, however so far almost everything has been submitted on
or before the deadline.

January
Week 15 (02/01):
This week was dedicated to TABA’s. In genera I found the TABA’s to be a much less stressful
experience compared to the usual end-of-semester examinations, however the workload for these
assignment-based assessments was substantial. My cohort, BSHCSDE4, had two TABA’s due, one for
the ‘Introduction to Artificial Intelligence’ module, and the other for ‘Strategic Management’.
Although both presented challenges, I found the Strategic Management TABA took more effort. I
was pleased with the result for both TABA’s, and both were submitted on time.

Week 16 (09/01):
This was the first week in a very long time I attempted to close the laptop, forget about college, and
focus on spending time with my family. This was a much-needed break from the stress of studying
and working on projects and allowed me to devote my time and attention to my 12-week-old
daughter. I feel this was one of the most important weeks of the year, as it not only gave me the
time with my daughter I had been missing out on up until now, but it also allowed me to recharge
the batteries, so to speak, and get myself prepared for the final stretch of a very tough 4 years in
college.

Week 17 (16/01):
This week I attempted to ease myself back into a college mind frame, starting some light work on my
software project. Work was done on the sign-up functionality and was happy enough with how that
progressed, now having a registration form that successfully posts new users to the DB. As with the
previous week, I wanted to devote as much time as possible to my family before returning to classes,
so I have not progressed my software project much further than the registration functionality.

Week 18 (23/01):
This week saw a return to classes. So far, I am surprised to see the projected workload for this final
semester seems to be slightly lighter than the previous semester, which is a welcome revelation.
Aside from my software project, the biggest workload I can see on the horizon is the project for the
cloud application development module. This is a project worth 100% of the module, and from what I
can see it looks to have a workload not far off the main software project so it will be key to get this
project started as soon as possible once more details become available.

Reflection
This was a bit of a mixed month, beginning with the stress and workload involved in submitting the
TABA’s, then followed by a week off to unwind and easing back into college work by getting a start
on coding my software project, then back to classes at the end of the month. So far, I am happy
about how this final semester has started. After the stress of the previous semester, falling behind
on my college work due to the birth of my daughter, I am determined this year to get an early start
where possible on any assignments and projects due. I am feeling motivated to complete the last
stretch of my time in NCI as diligently as possible.

69

February
Week 19 (30/01):
This week I began working on the project for cloud application development. This is a massive
project, worth 100% of the module, so I am eager to get a start on this, however the installation of
the Rails framework is proving difficult, and at the time of writing I have not yet successfully gotten
the server running on localhost. The problem seems to be with the database connection, I have tried
a multitude of things to fix this but so far have not resolved the issue and continue to work on this. I
have also started to work on a group assignment for the Usability Design module. This project does
not seem like it will cause any issues, however myself and my teammate wanted to get this
underway as it is a sizeable document and if left until closer to the deadline could cause stress that
could otherwise be easily avoided. I also got some minor work done on my software project.

Week 20 (06/02):
This week I continued work on my Software Project. At this point I have user registration and
login/logout functionality working, as well as having run my first migration to the DB, so I now have a
model to accept a report of a lost/found pet from a user – but have yet to implement this
functionality for the front end. A major breakthrough this week means I am now up and running
with rails for my ruby project for Cloud App Dev module. As discussed, last week saw a lot of
frustration around setting up rails. The issue was down to a DB issue. When creating the app via
terminal, only a ‘database’ attribute was populated in the database.yml file. When I manually edited
that file and specified a username, password, host, and port, I was able to rake the DB and run the
server successfully.

Week 21 (13/02):
This week was largely dedicated to making significant strides in the various projects. I began to work
on my Ruby on Rails project, getting the app set up and the server running. I also dedicated a decent
chunk of time on the usability design case study. The document is shaping up nicely and feel we
should get this submitted well before the deadline. I have spent some time working on my software
project this week, I now have the form to submit a missing/found report working, however have run
in to an issue attempting to submit an image to the DB as part of the upload, which I am hoping will
not cause me too much grief however at the time of writing I have not yet resolved the issue.

Week 22 (20/02):
This week myself and my teammate completed our case study for CA1 in the usability design
module. Submitting this early gave me a boost as I feel it is one step closer to the final goal. I
progressed my work on my ruby on rails project this week also, creating the MVC for the different
aspects of the project and getting CRUD functionality working for what will be an admin account
(although no accounts implemented yet).

Reflection
This month has once again been a busy month. The struggle between college, work and family life
has not gotten any easier, however I have started to focus on the fact that I am on the final stretch
now and submitting the first assignment of the semester has given me a boost and encouraged me
to proactively work on other projects. I will be giving my all over the next few months.

70

March
Week 23 (27/02):
This week I continued work on my cloud app, so far, it is going well but still only basic functionality. I
also began working on the gRPC project for the Distributed Systems module. I am finding this
module to be quite tough so I imagine the project will be challenging. So far, I have set up the
project using IntelliJ IDEA, and have decided to use Gradle as the build tool, rather than maven. I
chose this as I believe Gradle is a slightly newer technology and would be beneficial to learn. Myself
and my teammate also began work on our Usability Design project this week. I also attempted to
work on my software project this week, as the panic is starting to set in. I am still having difficulties
with Python in Django but hopefully will overcome these once I invest more time into the project.

Week 24 (06/03):
This was a busy week centred around the usability design project, as it is a big project workwise and
the deadline is getting close. Myself and my teammate work well together, so I am not too
concerned about getting this completed. We have delegated work to each other for different parts
of the project, based on our strengths and weaknesses and have left each other to work on our
respective parts and it is looking like we are almost finished. I have also tried to dedicate some time
to my other projects this week, cloud app is coming together slowly (I feel once I have time to
properly devote to this project that it will turn out quite well), the gRPC project I am struggling with
somewhat, and my main software project is plagued with errors to the point that I am considering
starting over.

Week 25 (13/03):
This week myself and my teammate submitted our project for usability design. It is the last
deliverable for that module so feels like a big milestone and should hopefully allow us to dedicate
more time to other projects with one module now down. I progressed with my cloud app project,
getting user authentication working, including session management. I also spent time working on
the gRPC project and have managed to get a simple unary call working in java. I have made a
decision this week to start my software project over from scratch. It is very late to be starting a
project that is due for submission in May, but if I do not restart the project, I may end up struggling
with what I have and end up wasting more time. As well as restarting the project, I am going to code
it in Ruby on Rails, instead of Python in Django. Although I have never used Ruby before this
semester, I have made strides in my cloud app project, which is a Ruby on Rails project, and I feel a
lot of more comfortable using this over Python, so I will arrange a meeting with my project
supervisor to discuss this.

Week 26 (20/03):
This week I met with my project supervisor Rejwanul Haque. I explained that I was struggling with
the Python project and that I would like to start over in Ruby. Rejwanul said this would be fine and
that if I had any issues to contact him, which was reassuring. So, I have now set up a project in ruby
and created a scaffold for my main model. I have found over this semester that I enjoy coding in
ruby, so I look forward to making strides with my project. I also progressed work on my gRPC
project. Having struggled to implement a server streaming service I have finally gotten one working. I
also completed some work on my cloud app project and finally have this looking like a real
application.

71

Week 27 (27/03):
This week I Submitted my gRPC project. I was unhappy with how it turned out as I could not get
several requirements working, but the core functionality is there for 3 different streaming services,
so I am hoping this is enough to get some decent marks. I dedicated significant time this week to my
main software project and am delighted with the results so far. Having been plagued with issues in
Python I am now enjoying working on this project in Ruby. At the time of writing, I have basic CRUD
functionality working for my main model and have implemented some basic user authentication,
which needs further work. My cloud app project has taken a backseat this week to allow me to
progress my main software project, but I will resume work on this next week.

Reflection
Another busy month, however significant milestones have been achieved – All deliverables for
usability design have been submitted, the gRPC project has been submitted with just one TABA left
for that module, advancements have been made on my cloud app project and most importantly my
main software project is in good shape for the first time, so all in all I am feeling confident everything
is on track.

April
Week 28 (03/04):
This week my main focus has been the cloud application development project. I have made good
progress with this project and have achieved a lot of the functionality I intended to implement. I also
spent some time this week working on my main project. This is progressing nicely however I have
had some issues with image uploads via Active Storage and have been looking into shrine instead,
which I will attempt to implement over the coming days.

Week 29 (10/04):
This week I submitted the cloud application development project. The final product was missing
some of the requirements, however in general I was happy with how it turned out. I was unable to
get the app hosted, after days of unsuccessful attempts, so I am hoping this does not cost me too
many marks, either way another module is now complete. Having gotten the cloud project
submitted, I have a lot more time to dedicate to my main software project. I still have a TBAA for the
Distributed Systems module so will need to do some study for that, but this week I managed to get
image uploads working successfully with Shrine. This is a big step forward as without it the
application is useless.

Week 30 (17/04):
This week I have started to do some study for the Distributed Systems TBAA, however most of my
time is dedicated to the software project. I now have the pet reports complete and styled the way I
want them, with edit and delete functionality possible only for the owner of the report. This took
some time to get working so I am happy it is done, as it is important. I am currently working on
functionality for users to comment on reports and link comments to users. So far, I have the
comments working, but am having difficulty associating the user to the comment.

72

Week 31 (24/04):
This week I completed comments, with user associations and allowing deletion of the comment only
for the owner of the comment. I am now working on mailers for the site. I have successfully
implemented mailers for users requesting to reset their password, and at the time of writing am
moving on to an automatic email being sent to the owner of a report when a new comment is
posted. I ran in to an issue with sending mails for password resets which took some time to resolve,
and turned out to be a configuration with the Gmail account the mails were being sent from, not
allowing access from an insecure app. Once the setting was disabled the mails were sending without
issue. I have also dedicated time this week to studying for the DS TBAA, which is taking place on 1st
May.

Reflection
As more deliverables are being submitted the pressure is easing slightly and I am enjoying working
on my software project and being able to dedicate the time to it that it requires. Once the DS TBAA
is complete on May 1st I will be working exclusively on the software project, so I am hopeful that I
will then be able to implement everything I had hoped I would for this project.

73

6.3. Other materials used
6.3.1. Pet Rescue Test Plan

ID Functional
Area

Test Case Description Steps Expected
Results

Actual
Results

Result

1.1. User
Authentication

Unregistered
User

Test that
unregistered
user can only
access gallery

1. Navigate to
site
2. Do not log in
3. Select 'View All
Missing'
4. Select 'Report
a Lost or Found
Pet'
5. Select 'View All
Missing' again
6. Select 'View'
on a Pet Report

1. User can
access the
Gallery
2. When
'Report a Lost
or Found Pet' is
selected a
message is
displayed to
the user
advising they
must be logged
in and user is
redirected to
the Log In page
3. When 'View'
is selected, a
message is
displayed to
the user
advising that
they must be
logged in and
user is
redirected to
the Log In page

As
Expected

Pass

1.2. User
Authentication

Registered
User

Ensure a
registered user
can log in

1. Navigate to the
site
2. Select Log In
3. Input an invalid
username and
password and
select Log In
4. Input a valid
username and
password and
select log in

1. Invalid
details return
an error
message to the
user and user is
not logged in
2. Valid details
return a
successful
message and
user is logged
in

As
Expected

Pass

1.3. User
Authentication

Register Ensure a user
can register

1. Navigate to the
site
2. Select Register
3. Attempt to
leave all fields
blank and Sign Up
4. Enter valid
data in all fields
and Sign Up

1. Error
message
displayed and
registration is
unsuccessful
when fields are
left blank
2. User is
successfully
registered
when valid
data entered
and user
selects Sign Up

As
Expected

Pass

74

1.4. User
Authentication

Log Out Ensure a user
can log out of
the site
successfully

1. While logged in
to the site, select
Log Out in the
navbar
2. Navigate to the
gallery and select
'View' and
'Report a Pet
Missing or Found'

1. Message is
displayed to
the user
confirming
they have been
logged out and
user is
redirected to
the landing
page
2. After log out,
the user is
unable to
access the
View or Report
Missing or
Found options
from the
Gallery

As
Expected

Pass

1.5. User
Authentication

Log In Post
Register

Ensure a newly
registered user
can log in

1. Using the
credentials from
test case 1.3.
attempt to log in
to the site

1. Log in
successful

As
Expected

Pass

1.6. User
Authentication

Forgot
Password

Ensure
Password
Recovery is
functioning as
expected

1. While logged
out, select Log In
2. Do not enter
any details
3. Select Forgot
your Password
4. Enter a valid
email address
you can access
and select 'Reset
Password'
5. Check inbox of
the email address
entered
6. Follow the link
in the email and
enter a new
password
7. Log out of the
application and
log back in with
the new
password

1. Email is
received with a
link to reset
password
2. New
password
accepted
3. User can log
in with
recovered
password

As
Expected

Pass

2.1. Pet Report Report a
missing pet

Ensure that a
pet can be
reported
missing found
or stolen

1. Log in to the
site
2. Select Report
Missing / Found
3. Enter valid
details into all
fields
4. Select Submit

1. Pet report is
successfully
posted

As
Expected

Pass

75

2.2. Pet Report Cancel Pet
Report

Ensure a Pet
Report can be
cancelled
before it is
posted

1. Log in to the
site
2. Select Report
Missing / Found
3. Enter valid
details into all
fields
4. Select Back

1. User is
returned to the
Gallery page
2. Pet Report is
not posted

As
Expected

Pass

2.3 Pet Report Edit Pet
Report

Ensure the
details of an
existing pet
report can be
edited

1. Select an
existing pet
report posted by
the current user
2. Select edit
3. Edit some
details and save
the changes

1. Pet report is
updated with
the new details

As
Expected

Pass

2.4. Pet Report Delete Pet
Report

Ensure an
existing pet
report can be
deleted

1. Select an
existing pet
report posted by
the current user
2. Select delete
3. Cancel the
warning
4. Repeat and
confirm the
warning

1. When user
selects delete
and cancels the
warning, the
pet report is
not deleted
2. When user
OK's the
warning, the
pet report is
permanently
deleted

As
Expected

Pass

3.1. Gallery Search
Gallery

Ensure the
search
functionality in
the gallery is
working as
expected

1. Ensure user is
logged in
2. Navigate to the
gallery
3. Type a breed
which matches
the breed in an
existing pet
report into the
search bar and
select search
4. Repeat the
above, this time
just partially type
the breed and
select search

1. Any pet
reports which
have a breed
matching the
breed entered
into the search
bar are
returned
2.Any pet
reports which
have a breed
containing the
partially typed
breed entered
into the search
bar are
returned

As
Expected

Pass

3.2. Gallery Report from
Gallery

Ensure the
option to
report a lost or
found pet is
working from
the gallery view

1. Ensure user is
logged in
2. Navigate to the
gallery
3. Select 'Report
a Lost or Found
Pet'
4. Complete the
form and post
the report
5. Check the
gallery for the
new report

1. The new
report is
posted and is
visible in the
gallery

As
Expected

Pass

76

4.1. Comments Post a
Comment

Ensure that a
registered user
is able to post a
comment

1. Ensure user is
logged in
2. Navigate to an
individual pet
report
3. Scroll down to
the comments
section
4. Enter some
text in the 'Add
Comment' box
5. Select 'Post
Comment'

1. Comment is
posted
2. Newly
posted
comment is
visible in the
comments
section

As
Expected

Pass

4.2. Comments Delete a
Comment

Ensure that a
user can delete
their comment

1. Ensure user is
logged in
2. Navigate to the
comment posted
in test case 4.1.
3. Select Delete
4. Cancel the
warning
5. Repeat the
above steps and
OK the warning

1. Cancelling
the warning
does not delete
the comment
and comment
is still visible in
comments
section
2. OK the
warning
deletes the
comment and
the comment is
permanently
removed from
the comments
section

As
Expected

Pass

4.3. Comments Comment
Notification

Ensure the
owner of a pet
report receives
an email
notification
when a
comment is
posted on their
report

1. Log in and
navigate to a pet
report which was
posted by a user
account whose
email address
you have access
to
2. Post a
comment
3. Check the
inbox of the pet
report owners
email address

1. An email is
received into
the pet owners
inbox

As
Expected

Pass

5.1. Messages View
Message

View a message
from the inbox

1. Ensure user is
logged in
2. Navigate to
inbox
3. Select 'View'
on a message

1. The message
is displayed to
the user

As
Expected

Pass

5.2. Messages Send
Message

Send a message 1. Navigate to the
inbox
2. Select 'New
Message'
3. Enter message
details and select
'Send'

1. Message is
sent to the
recipient

As
Expected

Pass

77

5.3. Messages Delete
Message

Delete a
message from
the inbox

1. Navigate to
inbox
2. Select 'Delete'
on a message
3. Cancel the
warning
4. Confirm the
warning

1. Cancelling
the message
does not delete
the message
2. Confirming
the message
deletes the
message and
the message is
removed from
the inbox
permanently

As
Expected

Pass

5.3. Messages Reply
Message

Reply to a
message

1. Navigate to
inbox
2. Select View on
a message
3. Select Reply
4. Enter details
and select Send

1. Reply
message is sent
to the user

As
Expected

Pass

5.4. Messages Sentbox View previously
sent messages

1. Navigate to
inbox
2. Select view
sent

1. User is
brought to the
sent box
2. All messages
sent by the
current user
are displayed

As
Expected

Pass

5.5. Messages View Sent
Message

View details of
a previously
sent message

1. Navigate to
inbox
2. Select view
sent
3. Select View on
a sent message

1. The sent
message is
displayed to
the user

As
Expected

Pass

6.1. Exceptions Security Attempt to
access site
while logged
out via URL
manipulation

1. Ensure user is
logged out
2. Enter a specific
route into the
URL, ie
/pet_reports/12

1. The user is
not able to
access the
specific pet
report with an
ID of 12

As
Expected

Pass

6.2. Exceptions Pet Report Delete other
users pet
report

1. Ensure user is
logged in
2. Navigate to a
pet report which
was not posted
by the current
user
3. Attempt to
delete the pet
report

1. There is no
option to
delete the pet
report
2. Deletion of a
pet report not
owned by the
current user is
not possible

As
Expected

Pass

6.3. Exceptions Comment Delete other
users’
comment

1. Ensure user is
logged in
2. Navigate to a
pet report with
comments
3. Attempt to
delete a
comment which
was not posted
by the current
user

1. There is no
option to
delete the
comment
unless it was
posted by the
current user

As
Expected

Pass

78

6.4. Exceptions Input Fields Exception test
on all input
fields

1. For all
mandatory input
fields, attempt to
leave the field
blank
2. for all fields of
type int, attempt
to submit text

1. Cannot leave
mandatory
fields blank
2. Int fields will
not accept text
- form
submission
fails

As
Expected

Pass

79

6.3.2. PetRescue System Evaluation Tasks

 Task Preconditions Expected Time Actual Time Comments
User 1 Post a Pet Report User is registered 50 to 60 secs 54.5 secs

User 1
View a Sent
Message

Registered
account with
message(s) sent 20 to 30 secs 37.2 secs

User initially
selected message
in inbox in error.

User 2
Comment on Pet
Report User is registered 30 to 40 secs 40.17 secs

User 2 Reset Password User is registered 50 to 60 secs 50.85 secs
User 3 Send Message User is registered 30 to 40 secs 48.35 secs
User 3 Log Out User is registered 10 to 20 secs 17.9 secs

User 4 Register Account
User is not
registered 30 to 40 secs 28.31 secs

User 4
Delete a Pet
Report

User's account
has previously
posted pet report 20 to 30 secs 25.59 secs

User 5 Edit a Pet Report

User's account
has previously
posted pet report 30 to 40 secs 27.16 secs

User 5 Delete a Comment

User's account
has previously
posted comment 20 to 30 secs 22.76 secs

80

6.3.3. PetRescue System Evaluation Survey

81

82

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirement 1: User Registration
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case
	Requirement 2: User Login
	2.1.1.5. Description & Priority
	2.1.1.6. Use Case
	2.1.1.7. Requirement 3: Report Pet
	2.1.1.8. Description & Priority
	2.1.1.9. Use Case
	2.1.1.10. Requirement 4: Delete Report
	2.1.1.11. Description & Priority
	2.1.1.12. Use Case
	2.1.1.13. Requirement 5: Edit Report
	2.1.1.14. Description & Priority
	2.1.1.15. Use Case
	2.1.1.16. Requirement 6: View Gallery
	2.1.1.17. Description & Priority
	2.1.1.18. Use Case
	2.1.1.19. Requirement 7: View Individual Profile
	2.1.1.20. Description & Priority
	2.1.1.21. Use Case
	2.1.1.22. Requirement 8: Comment
	2.1.1.23. Description & Priority
	2.1.1.24. Use Case
	2.1.1.25. Requirement 9: Delete Comment
	2.1.1.26. Description & Priority
	2.1.1.27. Use Case
	2.1.1.28. Requirement 10: Send Direct Message
	2.1.1.29. Description & Priority
	2.1.1.30. Use Case
	2.1.1.31. Requirement 11: View Sent Messages
	2.1.1.32. Description & Priority
	2.1.1.33. Use Case
	2.1.1.34. Requirement 12: Logout
	2.1.1.35. Description & Priority
	2.1.1.36. Use Case
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.4.1. Client
	2.1.4.2. Server
	2.1.4.3. Development

	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	2.5.1. Unit Testing
	2.5.2. Functional Testing

	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0 References
	6.0 Appendices
	6.1. Project Proposal
	Objectives
	Background
	Technical Approach
	Special Resources Required
	Project Plan
	Gantt Chart
	Technical Details
	Evaluation

	6.2. Reflective Journals
	October
	Week 1 (26/09):
	Week 2 (03/10):
	Week 3 (10/10):
	Week 4 (17/10):
	Week 5 (24/10):
	Reflection
	November
	Week 6 (31/10):
	Week 7 (07/11):
	Week 8 (14/11):
	Week 9 (21/10):
	Reflection
	December
	Week 10 (28/11):
	Week 11 (05/12):
	Week 12 (12/12):
	Week 13 (19/12):
	Week 14 (26/12):
	Reflection
	January
	Week 15 (02/01):
	Week 16 (09/01):
	Week 17 (16/01):
	Week 18 (23/01):
	Reflection
	February
	Week 19 (30/01):
	Week 20 (06/02):
	Week 21 (13/02):
	Week 22 (20/02):
	Reflection
	March
	Week 23 (27/02):
	Week 24 (06/03):
	Week 25 (13/03):
	Week 26 (20/03):
	Week 27 (27/03):
	Reflection
	April
	Week 28 (03/04):
	Week 29 (10/04):
	Week 30 (17/04):
	Week 31 (24/04):
	Reflection

	6.3. Other materials used
	6.3.1. Pet Rescue Test Plan
	6.3.2. PetRescue System Evaluation Tasks
	6.3.3. PetRescue System Evaluation Survey

