
1

Performance Optimization of Software Defined
Networks By Dynamic Placement of Controllers

MSc Research Project

Cloud Computing

Imran Abdul Rahman Syed

StudentID: x16145119

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

2

 National College of Ireland
 Project Submission Sheet

 School of Computing

Student Name: Imran Abdul Rahman Syed
Student ID: x16145119
Programme: Cloud Computing
Year: 2020
Module: MSc Research Project
Supervisor: Mr. Vikas Sahni
Submission Due Date: 17/08/2020
Project Title: Performance Optimization of Software Defined Networks

By Dynamic Placement of Controllers
Word Count: 5789

Page Count: 19
I hereby certify that the information contained in this (my submission) is information pertaining

to research I conducted for this project. All information other than my own contribution will be fully
referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to
use the Referencing Standard specified in the report template. To use other author’s written or
electronic work is illegal (plagiarism) and may result in disciplinary action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the National
College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 17th August 2020
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple
copies).

Attach a Moodle submission receipt of the online project submission, to each
project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy
on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the
assignment box located outside the office.

Office Use Only
Signature:

Date:

Penalty Applied (if applicable):

3

Contents
1 Introduction ... 4

1.1 Research Question .. 5

1.2 Research Objective ... 5

2 SDN Architecture .. 5

2.1 Infrastructure Layer .. 6

2.2 Southbound APIs .. 6

2.3 Control Layer .. 6

2.4 Northbound APIs .. 6

2.5 Application Layer ... 7

3 Literature Review and Related Work .. 7

3.1 OpenFlow protocol .. 8

3.2 Architecture of multiple controllers .. 9

3.3 Dynamic controller placement ... 9

4 Methodology ... 11

5 Implementation and Design ... 11

5.1 Tools and Technologies .. 11

5.1.1 Mininet and Mininet Python API ... 11

5.1.2 POX Controller .. 12

5.1.3 Operating System and Virtualization Platform .. 12

5.1.4 XTerminal .. 12

5.1.5 Gnuplot and Iperf .. 13

5.1.6 Wireshark .. 13

5.2 Topology Generation .. 14

6 Evaluation .. 17

6.1 Performance of a Single Controller Network ... 17

6.2 Performance of a Two-Controller Network ... 18

6.3 Performance of a Three-Controller Network .. 18

7 Conclusion and Future Work.. 19

4

Performance Optimization of Software Defined Networks By
Dynamic Placement of Controllers

Imran Abdul Rahman Syed
x16145119

MSc in Cloud Computing

17th August 2020

Abstract

Software Defined Networking is a new model in the era of cloud computing. It provides
programmability which in turn helps to configure and administer a network with
continuously changing network state. Software Defined Networking has logical plane
separated from the data plane. The logical plane is centralized where all the decision
making happens. The data plane receives logical decisions from the control plane and works
on forwarding of data packets. The control plane consists of the controllers and the data
plane consists of the switches. A typical SDN has a controller which handles the routing
decisions and switches that work on the decisions made by the controller. However, this
has constraints as a single controller can be overloaded and become a single point of failure.
This reduces scalability and performance of the whole network. Recent works have been
put forward to mark these issues. Most of them suggested the placement of multiple
controllers, instead of a single one, which can work concurrently to serve the switches
better. However, this approach raises another problem. Since the network’s state keeps
changing, placing of multiple controllers becomes more challenging. Hence, the problem of
Dynamic Controller Placement comes in to picture. The number of controllers in a network
should be increased dynamically depending on the number of switches and hosts. This will
lead to load balancing among the controllers. When the controllers in a network are
balanced, the performance increase can been seen in terms of increased throughput and
reduced latency.

• Keywords: Software Defined Networking, Dynamic controller placement, Controller Load
Balance, Throughput

1 Introduction
Software Defined Networking has been widely adopted by organizations as it suits well to the needs
of cloud computing. Surpassing the traditional internet, due to its lack of adaptability to huge
networks such as cloud Datacentres, Software Defined Networking meets the key requirements of
Cloud Computing. It provides programmability to configure and administer a network. In SDN,
the logic and data planes are separated, where the logic plane is centralized for decision making
(Bari et al.; 2013). With a typical set-up of the SDN, as the network grows, the controller gets
overloaded and also becomes a single point of failure. Moreover, finding the best possible placement
locations gets difficult. Similarly, the flow set-up time, the time taken to assign a forwarding rule
to an Open Flow switch, increases which in turn affects the performance of networks and
applications (Bari et al.; 2013).

5

Hence, the idea of placing multiple controllers, which are physically distributed but logically
centralized, was proposed by (Hassas Yeganeh and Ganjali; 2012) and (Tootoonchian and Ganjali;
2010). This gives rise to another problem which comes up because of the dynamic nature of the
networks. Since the networks’ state keeps changing continuously, placing of controllers cannot be
static. The best possible solution should consider the location of controllers, flow set-up time and
controller communication overhead. In a multiple-controller environment, the controllers need to
communicate to each other to have an updated network state. This communication can cause
slowness. Moreover, the controller placement strategy should dynamically alter the number of
controllers as well as the location, as traffic may change at different locations. Hence, the controller
communication overhead problem cannot be ignored (Bari et al.; 2013). (Bari et al.; 2013) and
(Lange et al.; 2015) are the works done on the aforementioned problems. (Bari et al.; 2013)
formulated the problem of Dynamic Controller Placement and approached with 2 algorithms which
worked together to solve the controller placement problem. They came up with a Greedy Knapsack
algorithm, where they treated controllers as the knapsacks and switches as the objects to be added
to those knapsacks. The algorithm assigned the switches to the controllers in each iteration. If any
given switch was not assigned to a controller, that particular controller would be turned inactive.
When all the switches were assigned to the controllers, the iteration would stop. The output of this
algorithm would then go as an input to their second algorithm called Dynamic Controller
Provisioning with Simulated Annealing (DCP-SA). This algorithm enhances the controller-switch
assignments further. However, in the Greedy Knapsack algorithm has a probability of having
unassigned switches. The algorithm assigns these switches to any random controller. This can
affect performance significantly. (Lange et al.; 2015) also works on inter-controller latency and
controller to node latency using Pareto based Simulated Annealing algorithm. They used POCO
framework, implemented in MATLAB, which comprehensively analyses all the probable
placements of the desired network topology. It considers various scenarios with respect to NFV
also. This work proposes an algorithm to add controllers in a network, based on the number of
switches. Furthermore, to map and remap the switches based whenever new controllers are added.
The Algorithm is called as Round Robin Switch scheduler, which assigns switches one by one to
each controller in turns making sure the load of switches on the controllers is balanced.

1.1 Research Question

Can the performance of Software Defined Networks be enhanced by dynamic placement of
controllers using Round Robin Scheduler Algorithm?

1.2 Research Objective

To address the problem raised in the research question, the below mentioned objectives will be
followed. Section 2 describes the SDN Architecture with detailed explanation of its components.
Section 3 critically analyses the existing literature on multiple controllers problem and proposed
solutions. It also describes the problem of Dynamic Controller Placement. Section 4 describes the
methodology by explaining the algorithm of addition and removal of controllers in a multi controller
SDN. Section 5 details the practical implementation of the proposed logic with brief description of
the tools and technologies used. The evaluation of the work done has been described in section 6,
with appropriate measurements and visual interpretations. Section 7 concludes with brief re-
iteration of the work done and potential areas to focus on as the future work.

2 SDN Architecture
In this section, Software Defined Networking architecture will be discussed. Different SDN layers
and components will be discussed. Software Defined Networking divides the control plane and data

6

plane which makes the switches mere forwarding devices. The decision making takes place on
logically centralized controllers (Zhang, Cui, Wang and Zhang; 2017). The controllers are in charge
of policy enforcement, network configuration, topology management, link discovery etc. A Software
Defined Network consists of 3 layers i.e. Application layer, Control layer and Infrastructure layer.
It also consists of two interfaces i.e. Southbound interface and Northbound interface.

Fig.1 SDN Architecture (Zhang, Cui, Wang and Zhang; 2017).

2.1 Infrastructure Layer

Switches and various network devices constitute the infrastructure layer. The flow forwarding
information will be passed on to the controllers by the infrastructure layer via the data-control
plane. This plane is also referred as Southbound APIs. The infrastructure layer is responsible to
send traffic in accordance with the logic of control layer. There are three main components of the
switch, Secure Channel, Flow Table and OpenFlow protocol. Every OpenFlow switch is linked to
the controller using Secure Channel interface. Flow table stores all forwarding policies. The
southbound API which links the control plane and data plane is the OpenFlow protocol (Zhang,
Cui, Wang and Zhang; 2017).

2.2 Southbound APIs

The infrastructure layer and the control layer are linked by the Southbound APIs. Providing
communication between the controllers and other network devices, for finding the network
topology, update flow table and put in force the control policies, is the key objective of the
Southbound APIs. The most widely used Southbound API for SDN is the OpenFlow protocol
(Zhang, Cui, Wang and Zhang; 2017).

2.3 Control Layer

It is the central layer that is in charge of managing the network. It can have a single controller or
many controllers. It forms required network policies and configures switches by having overall
network information. It also communicates with different controllers through east-west interface
(Zhang, Cui, Wang and Zhang; 2017).

2.4 Northbound APIs

It is a link in between the application layer and the control layer. Making applications to utilize
network resources and capabilities is the main objective of the Northbound APIs. In contrast to the

7

Southbound APIs, the Northbound APIs does not have standard protocols yet. This Is mainly
because of the fact that there are different characteristics of controllers and applications (Zhang,
Cui, Wang and Zhang; 2017).

2.5 Application Layer

SDN applications and services developed as per user specifications constitutes the application
layer. Both the data plane switches and the control layer can be accessed by the application layer
through control layer and Northbound APIs respectively (Zhang, Cui, Wang and Zhang; 2017).

3 Literature Review and Related Work
There are a number of multiple controller platforms that have been worked upon previously. These
works were tailored for different applications and requirements. The works done previously were
of two approaches. One of them involving shared datastores in order to share the network state
and other ones working based on the traffic conditions.

(Bari et al.; 2013) formulated the problem of Dynamic Controller Placement and approached with
two algorithms which worked together to solve the controller placement problem. They came up
with a Greedy Knapsack algorithm, in which they treated controllers as the knapsacks and
switches as the objects to be added to those knapsacks. The algorithm assigned the switches to the
controllers in each iteration. If any given switch was not assigned to a controller, that particular
controller would be turned inactive. When all the switches were assigned to the controllers, the
iteration would stop. The output of this algorithm would then go as an input to their second
algorithm called Dynamic Controller Provisioning with Simulated Annealing (DCPSA). This
algorithm enhances the controller-switch assignments further. However, in the Greedy Knapsack
algorithm has a probability of having unassigned switches. The algorithm assigns these switches
to any random controller. This can affect performance significantly.

(Lange et al.; 2015) works on inter-controller latency and controller to node latency using Pareto
based Simulated Annealing algorithm. They used POCO framework, implemented in MATLAB,
which comprehensively analyses all the probable placements of the desired network topology. It
considers various scenarios with respect to NFV also.

(Hassas Yeganeh and Ganjali; 2012) devised a framework which divides the controllers in two
layers. The bottom layer consists of local controllers which are unaware of the network state. Local
control applications alone are run in this layer. The upper layer consists of a root controller which
is aware of the overall network state. The network operators will be capable of replicating the local
controllers on the go and reduce overhead on the top layer using Kandoo’s design.

(Botelho et al.; 2014) is the work done based on a shared replicated datastore that saves the overall
network state. The architecture of Smartlight incorporates a primary centralized controller and
backup controllers. The idea is to fail over the backup controllers in when the primary centralized
controller goes down. The cache of the datastore is managed by the primary controller.

A clustering based distributed datastore architecture has been proposed by (Kim et al.; 2017). It
comprises of Shards, part of the datastore. All cluster members contain a shard. In order to have
consistency, the shard leader alone has the authority to receive updates. Dispersing the shard
leaders throughout the controllers is the major objective of the OpenDaylight platform.

(Lee et al.; 2014) worked on developing IRIS, a recursive SDN controller platform which involves
horizontally scalable architecture. It increases performance on the go by adding servers to the

8

controller cluster. It reduces management cost, transport interoperation by adopting domainbased
network abstraction.

Elasticon (Dixit et al.; 2014) was proposed as framework for elastic distributed controllers. They
worked on the idea that the controller pool would expand and contract based on the traffic. The
load is balanced across controllers. For balancing load among many controllers and incorporating
elasticity, novel switch migration protocol and algorithms were used. Load and imbalance among
controllers is identified by Elasticon, which monitors controllers in a timely manner and the lightly
loaded controllers are assigned with switches from the overloaded ones. Since OpenFlow is not
suited for disruption free switch assignment, assignment of a switch from one controller to another
might lead to disturbance majorly affecting Datacentre applications. Hence, they came up with a
four-phase migration protocol which is compliant to the Open Flow protocol. Generating a single
trigger which is communicated over to the controllers, to perform the hand off without any
disturbance, is the main functionality of the protocol.

Another novel approach in (Krishnamurthy et al.; 2014) is used for allocation of switches and
partitions of application state to the distributed controllers. The assignment problem has been
developed with strict time constraints. They have claimed to achieve reduction of flow set-up time
and controller operating costs by 44% and 42% respectively.

(Moazzeni et al.; 2018) works on improving the reliability of controllers by devising a new method
called “Reliable Distributed SDN”. Their idea is to divide the network into multiple domains, each
having a master controller along with one or many slave controllers. The reliability rate of the
controllers is found out by the master controller of each domain by using the proposed formula.
Each controller receives the reliability rate in regular time intervals via edge switches through the
East/West bound interface. To check the status of all the controllers on a regular time interval, the
controller with the best reliability rate would be assigned as a coordinator. In case of a controller
discovered to be inactive, the coordinator makes a decision on selecting the best possible active
controllers to take over the sub network. The coordinates do this by getting the reliability rates
from the cache and will run the fast recovery till the failed controller is fixed.

3.1 OpenFlow protocol

OpenFlow protocol is an open standard southbound API for Software Defined Networking. It is one
of the most widely used protocols (Zhang, Cui, Wang and Zhang; 2017). Open Networking
Foundation, an organization committed to SDN’s advancement, governs this protocol’s standards.
To enhance reliability of controllers, OpenFlow describes a multi-controller approach from version
1.2.0 (Zhang, Cui, Wang and Zhang; 2017). Creating communication of switches with multiple
controllers was put forward in version 1.2.0. The protocol is getting enhanced since version 1.0.0 to
version 1.5.0 (Zhang, Cui, Wang and Zhang; 2017). Table 1 describes different the development of
the OpenFlow protocol.

Table 1: OpenFlow protocol versions

Version Date Features

OpenFlow 1.0.0 Dec, 2009 Fundamental architecture, single flow table, IPv4
OpenFlow 1.1.0 Feb, 2011 Multiple flow table, group table, MPLS and VLAN
OpenFlow 1.2.0 Dec, 2011 IPv6, multiple controllers
OpenFlow 1.3.0 June, 2012 Single flow measure, IPv6 extend header
OpenFlow 1.4.0 October, 2013 Flow table synchronization mechanism, bundling message
OpenFlow 1.5.0 December, 2014 et type identification process, egress table, scheduled bundle exp

9

(Zhang, Cui, Wang and Zhang; 2017)

3.2 Architecture of multiple controllers

SDN was initially designed to handle the network switches from a centralized controller. However,
one controller managing the switches gets overloaded and becomes a single point of failure. To
combat this issue, the concept of having multiple controllers came into existence. Based on the
functionality of controllers, the architecture of SDN multiple controllers comes in two
classifications: centralized and distributed architecture (Zhang, Cui, Wang and Zhang; 2017). A
centralized controller architecture has only one controller, whereas a distributed architecture has
multiple controllers which are logically centralized (Zhang, Cui, Wang and Zhang; 2017). The
centralized controller architecture was worked upon by (Botelho et al.; 2014). It was done based on
a shared replicated datastore that saves the overall network state. The architecture of Smartlight
incorporates a primary centralized controller. There are other backup controllers which come into
play only in case failure of the primary one. (Lee et al.; 2014) involved scalable architecture. It
increases performance on the go by adding servers to the controller cluster. It reduces management
cost, transport interoperation by adopting domain-based network abstraction. The centralized
architecture has its limitations in terms of performance and scalability. The distributed
architecture addresses the concerns related to the former. Smartlight (Botelho et al.; 2014) devised
backup controllers for fault tolerance. However, it does not fully eliminate the issues of
performance and scalability as single controller still handles requests from all the switches. In case
of IRIS (Lee et al.; 2014), the scalability is relatively high.

This section discussed two major categories of controller architecture in SDN: centralized and
distributed. The centralized architecture has only a single controller responsible for managing the
underlying switches. In contrary, the distributed architecture has many controllers working
together which in turn performs better in terms of performance and scalability.

3.3 Dynamic controller placement

Even though physically dispersed, the distributed controllers should work in a logically centralized
way. This requires having a consistent overall view of the network which demands the sharing of
information between controllers. Issues arise while communicating information between
controllers, such as deciding the number and location of controllers (Zhang, Cui, Wang and Zhang;
2017). The placement of controllers dynamically comes with two major problems: Controller
consensus overhead and controller to switch latency. In order to appropriately place the controllers,
a number of metrics have been put forward (Zhang, Cui, Wang and Zhang; 2017). (Bari et al.; 2013)
has worked on different costs as parameters to decide upon the correct placement of controllers.

• Statistics collection cost – For gathering information from their assigned switches, the
number of messages required for the controllers every second, is the statistics collection cost
(Bari et al.; 2013).

• Flow setup cost – Initiating flow related rules between switch and controller generates flow
setup cost (Bari et al.; 2013). Initial path setup request, intermediate path setup request and
the rule installation cost are further derived from the flow setup cost (Bari et al.; 2013).

• Synchronization cost – To maintain the overall view of the network, the controllers need to
communicate with each other. The number of messages sent and received among controllers
is the synchronization cost (Bari et al.; 2013).

• Switch reassignment cost – The cost incurred while allocating a switch to a new controller is
the switch reassignment cost (Bari et al.; 2013).

10

The POCO framework used by (Lange et al.; 2015) considered the problem of controller-to-controller
latency to make sure the latency is as low as possible during the synchronization of controllers. Their
work represented the calculation in Fig 2. They did so by representing the controllers in colours. i.e.
every controller is shaded according to the distance to the most far away controller.

Fig.2 Controller-to-Controller latency (Lange et al.; 2015).

Therefore, the POCO framework in (Lange et al.; 2015) has considered both controller to
controller latency and node to controller latency. (Lange et al.; 2015) also points out that the
latencies among controllers and controller to switch latency is low in a tightly coupled clusters
while it is vice versa in case of a widely dispersed layout of controllers. Hence, POCO framework
gives the options to the decision makers about their choices while finding out possible placements.
While (Lange et al.; 2015) builds a Pareto based optimal placement framework POCO for
evaluating all the possible placements for given topologies, it does not consider the traffic factor.
POCO is a Heuristic based approach which can be used for large-scale networks as well. However,
as the networks grow, one the most important factors to consider is the network traffic, which is
ever-changing, Hence, we can conclude that POCO is not dynamic in nature, whereas (Bari et al.;
2013) considers various metrics, described in cost measurements and also considers traffic. The
algorithms used by (Bari et al.; 2013), Greedy Knapsack and Simulated Annealing, consider the
traffic matrix which gives (Bari et al.; 2013) an edge over (Lange et al.; 2015) which is not dynamic.
In this section, we discussed the problems related to placement of controllers, the metrics to be
considered and the placement considering traffic as a key factor. Placing controllers by speculating
the number and location of controllers, dynamically is the best possible way to deal with the
controller placement problem.

Fig.3 Application state for multi-tenant virtualized datacentre application (Krishnamurthy et

al.; 2014).

In this section, we have discussed distributed datastore approach and application state
partitioning approach. Both of these approaches are quite different than that of typical approaches
to the controller placement problem. The former approach works by dividing the datastores into
several parts called ‘shards’, whereas, the latter approach works on dividing the state of an
application and assigning it, along with the SDN switch, to the controllers.

11

4 Methodology
The placement of controllers in a dynamic environment is the necessity of the day. In this work, we
propose an algorithm known as Round Robin Switch Scheduler, which would allocate the OpenFlow
switches to multiple controllers on a round robin basis. The idea is to provide load balancing among
the controllers, so that the controllers are not overwhelmed with more number of switches. On a
particular Network Topology, based on the number of controllers running, the algorithm assigns
each controller, the switches in every turn. This gives the network better stability as the load of
switches on a set of controllers is continuously balanced. Furthermore, it maintains the upper
threshold of 70%. If this threshold is reached on any of the controllers, another controller is added
dynamically and the switches are automatically redistributed based on the number of switches and
controllers. The controllers would be removed or made inactive if the percentage on any of the
controllers falls back to below 30%. This would increase the network performance by reducing the
controller communication overhead and optimizing the network throughput.

Fig.4 Flow Chart of Round Robin Switch Scheduler.

5 Implementation and Design
5.1 Tools and Technologies

5.1.1 Mininet and Mininet Python API

Algorithms can be tested and worked upon by the Mininet simulator. It has been worked upon to
enhance the performance (Mallesh; 2017). As (Mallesh; 2017) has pointed out,(Barrett et al.; 2017)
has worked on contrasting the performance of the Mininet and other test beds. They have inferred
that Mininet simulator works better for in order to test. Moreover, it suits OpenFlow protocol. The
real-time networks can be duplicated involving various topologies.(Mallesh; 2017) also mentioned

12

that (Ortiz et al.; 2016) worked on evaluating the performance and compatibility of the Mininet
framework. Datacentre type topology was duplicated and it was concluded that the performance of
Mininet was better.

Fig.5 Active, Mininet Design (Mallesh; 2017).

Mininet allows you to create and run networks using the mn command. However, to implement
customized topologies and better controlling the network deployment, the Mininet Python API is
used. It uses Python programming for Software Defined Networking. In this research project, we
have used the Python API for generating custom topologies with single and multi-controller
scenarios. The network is deployed using python scripts.

5.1.2 POX Controller

POX is one of the famous types of Controllers used. The OVS or OpenFlow Switches talk to this
controller seamlessly to receive the flow rules. In this project, we have deployed the POX controller
on a separate LINUX based Ubuntu VM. The network topologies connect to this Controller using
its IP address and the default port for Controllers.

5.1.3 Operating System and Virtualization Platform

Mininet simulator works with LINUX operating systems such as Ubuntu. In order to install,
configure and work on Mininet, a 64-bit virtual machine with Ubuntu 20.04 Desktop Operating
System, has been created in Oracle Virtual Box. It also provides a CLI for running Linux commands
to manage the framework. The virtual machine will need to have at least 2 GB of RAM. As part of
the network configurations, a Host-Only Network Adapter has been added with DHCP enabled.
The IP address assigned by the DHCP will be used to SSH into the VM from the Host machine, in
this case, a MacBook Pro.

5.1.4 XTerminal

Along with the tools used, another important application used is XTerminal. It is used to leverage
the graphical experience of applications in LINUX based Operating Systems.

In this project, XTerm is used extensively for the following needs:

13

• SSH into the VM from host - This is done by using the -X or -Y option in the SSH command

• Running Shell of each host in the deployed Mininet topology - This is used in the Mininet CLI

when the network is running

• Running Wireshark on individual hosts deployed in the Mininet topology.

Fig.6 Using XTerm to display instances of multiple hosts.

5.1.5 Gnuplot and Iperf

Iperf is utilized to measure speed and throughput of a network. In Mininet, it can be used to dump
measurements readings to a file. We can use this file as an input and pass it on to the Gnuplot tool
for generating some meaningful insights.
Using Gnuplot, we can chart graphs of throughput and latency from the input file carrying the
measurement readings.

5.1.6 Wireshark

Wireshark is one of the best packet analyser tools and it is widely used by researchers, developers
and networking engineers. It records detailed information of the packets generated on a particular
network interface. In this project, Wireshark has been used on the Ubuntu VM and on individual
hosts from the Mininet Network. It lists all the packets with details such as Time, Source (MAC
address/IP address), Destination (MAC address/IP address), Protocol (ICMP, MDNS, OF etc).

Fig.7 Wireshark packet analysis of the Mininet Network connected a remote POX Controller.

14

5.2 Topology Generation

In order to address the issue of network congestion and reduced throughput because of having a
single controller, we have demonstrated the following scenarios with single and multiple
controllers environment.

• Scenario 1: Having a single controller

In this scenario, we have deployed a Mininet network with a single local Controller running
on default port 6633. We have used tree topology with depth level 2 and Fanout 5. This will
deploy 1 Controller, 6 OVSSwitches and 25 hosts.

Fig.8 Topology generated in Mininet using Python Script

15

Fig.9 Python Script for Single Controller Network.

• Scenario 2: Having two Controllers in a Network

In this scenario, we have deployed 2 Controllers, one running locally on 127.0.0.1 and another
one is the POX Controller running remotely on 192.168.56.105. We have used tree topology
with 2 levels of depth and Fanout being 5. This will deploy 2 Controllers, 6 OVSSwitches and
25 hosts. The Switches are mapped to their corresponding Controllers using the cmap
function.

Fig.10 Topology with two controllers generated in Mininet using Python Script.

16

Fig.11 Python Script for Two Controllers Network.

• Scenario 3: Having three Controllers in a Network

In this scenario, a network has been deployed with 2 local controllers and a remote POX
Controller. We have used tree topology with 2 levels of depth and Fanout of 8. This deploys
3 Controllers, 9 OVSSwitches and 64 hosts.

Fig.12 Topology with three controllers generated in Mininet using Python Script.

17

Fig.13 Python Script for Three Controllers Network.

6 Evaluation
When a large scale SDN is deployed, it is practically next to impossible to leave it on a single
Controller. The throughput and latency of the network takes a hit and the whole purpose of the
SDN is not served. We have demonstrated this by deploying the network in 3 scenarios using the
Mininet Emulator. There has been thorough analysis and of the network performance by
measuring the throughput.

As discussed in the topology section, in the first scenario, we have seen that the throughput of the
network with a single controller is quite low when compared to that of multi controller networks.
As we progress with the multi controller environment, we see that the overall throughput of the
network increases significantly. As the proposed algorithm is executed, the number of controllers
increase as there is a rise in the fanout number. Hence, when the switch count increases, the
controllers are increased and the load is balanced across all the network controller. When this
model is deployed on the real time large scale networks, there would be better throughput and
stability in the network.

6.1 Performance of a Single Controller Network

The Single Controller Network recorded a maximum throughput of around 22 Gbps. However,
when the packets were flooded for a brief period of time, the throughput decreased and kept
fluctuating around 21 Gbps mark. The graph clearly shows that the throughput decreased and
remained on the lower side.

18

Fig.14 Throughput of a Single Controller Network

6.2 Performance of a Two-Controller Network

With two controllers, we can see that the throughput improved and kept at around 23 Gbps
throughout.

Fig.15 Throughput of a Two Controller Network

6.3 Performance of a Three-Controller Network

With three controllers, the network performance surged significantly. The network throughout
kept around 25 Gbps and with minimal fluctuations among the values.

19

Fig.16 Throughput of a Three Controller Network

7 Conclusion and Future Work
In this paper, we have discussed about Software Defined Networks with single controller and multi
controllers. Based on the multi controller scenarios, an algorithm is proposed to add multiple
controllers in a network and assign switches to them in a round robin fashion. Based on the upper
threshold of 70% of switches and the lower threshold of 30% of switches the number of controllers
will increase and decrease respectively. Mininet is used to simulate multiple topology networks
and demonstrate the working of algorithm. Based on the experimental results, it is evident that
the throughput increases drastically from one controller to two and more controllers.

Another area to focus in the future works could be applying this working model on a real time
large Datacentre SDN network wherein the performance can be measured on the real time network
traffic. Furthermore, this model can be enhanced further to include inter-controller latency and
overall network latency.

Acknowledgement

Finally, I must express my heartfelt gratitude to my supervisor Mr.Vikas Sahni, Professor in
Computing at National College of Ireland who has been the driving force throughout the course of
this research. Without his encouragement, guidelines and continuous support, this project would
not have been possible. His valuable inputs and suggestions have always been extremely helpful
to me in improvising the idea in completion of the project.

I would also like to take this opportunity to thank Dr.Horacio Gonzalez-Velez who helped me
giving continuous feedbacks in the initial stages of research . Lastly, I would also like to thank my
parents and friends for their continuous support and encouragement.

References

Bari, M. F., Roy, A. R., Chowdhury, S. R., Zhang, Q., Zhani, M. F., Ahmed, R. and Boutaba, R.
(2013). Dynamic controller provisioning in software defined networks, Network and Service
Management (CNSM), 2013 9th International Conference on, IEEE, Zurich, Switzerland, pp. 18–
25. CORE Ranking: B.

20

Barrett, R., Facey, A., Nxumalo, W., Rogers, J., Vatcher, P. and St-Hilaire, M. (2017). Dynamic
traffic diversion in sdn: testbed vs mininet, Computing, Networking and Communications
(ICNC), 2017 International Conference on, IEEE, Silicon Valley, USA, pp. 167–171.

Botelho, F., Bessani, A., Ramos, F. and Ferreira, P. (2014). Smartlight: A practical fault-tolerant
sdn controller, arXiv preprint arXiv:1407.6062 .

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T. and Kompella, R. R. (2014). Elasticon; an elastic
distributed sdn controller, Architectures for Networking and Communications Systems (ANCS),
2014 ACM/IEEE Symposium on, IEEE, Los Angeles, CA, USA, pp. 17–27.

Hassas Yeganeh, S. and Ganjali, Y. (2012). Kandoo: a framework for efficient and scalable
offloading of control applications, Proceedings of the first workshop on Hot topics in software
defined networks, ACM, pp. 19–24.

Kim, T., Choi, S.-G., Myung, J. and Lim, C.-G. (2017). Load balancing on distributed datastore in
opendaylight sdn controller cluster, Network Softwarization (NetSoft), 2017 IEEE Conference
on, IEEE, Bologna, Italy, pp. 1–3.

Krishnamurthy, A., Chandrabose, S. P. and Gember-Jacobson, A. (2014). Pratyaastha: an efficient
elastic distributed sdn control plane, Proceedings of the third workshop on Hot topics in software
defined networking, ACM, Chicago, USA, pp. 133–138.

Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hock, D., Jarschel, M. and Hoffmann, M. (2015).
Heuristic approaches to the controller placement problem in large scale sdn networks, IEEE
Transactions on Network and Service Management 12(1): 4–17.

Lantz, B., Heller, B. and McKeown, N. (2010). A network in a laptop: rapid prototyping for software-
defined networks, Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
ACM, Monterey, CA, USA, p. 19.

Lee, B., Park, S. H., Shin, J. and Yang, S. (2014). Iris: the openflow-based recursive sdn controller,
Advanced Communication Technology (ICACT), 2014 16th International Conference on, IEEE,
Pyeongchang, South Korea, pp. 1227–1231.

Mallesh, S. (2017)). Automatic detection of elephant flows through openflow-based openvswitch.

Moazzeni, S., Khayyambashi, M. R., Movahhedinia, N. and Callegati, F. (2018). On reliability
improvement of software-defined networks, Computer Networks 133: 195–211. CORE Ranking:
A.

Ortiz, J., Londoño, J. and Novillo, F. (2016). Evaluation of performance and scalability of mininet
in scenarios with large data centers, Ecuador Technical Chapters Meeting (ETCM), IEEE, IEEE,
Guayaquil, Ecuador, pp. 1–6.

Ros, F. J. and Ruiz, P. M. (2016). On reliable controller placements in software-defined networks,
Computer Communications 77: 41–51. CORE Ranking: C.

Shamugam, V., Murray, I., Leong, J. and Sidhu, A. S. (2016). Software defined networking
challenges and future direction: A case study of implementing sdn features on openstack private
cloud, IOP Conference Series: Materials Science and Engineering, Vol. 121, IOP Publishing, p.
012003.

Simulator, M. (n.d.).
URL: https://mininet.org

21

Tootoonchian, A. and Ganjali, Y. (2010). Hyperflow: A distributed control plane for openflow,
Proceedings of the 2010 internet network management conference on Research on enterprise
networking, pp. 3–3.

ul Huque, M. T. I., Si, W., Jourjon, G. and Gramoli, V. (2017). Large-scale dynamic controller
placement, IEEE Transactions on Network and Service Management 14(1): 63–76.

Zhang, T., Giaccone, P., Bianco, A. and De Domenico, S. (2017). The role of the inter-controller
consensus in the placement of distributed sdn controllers, Computer Communications 113: 1–
13. CORE Ranking: B.

Zhang, Y., Cui, L., Wang, W. and Zhang, Y. (2017). A survey on software defined networking with
multiple controllers, Journal of Network and Computer Applications . CORE Ranking: A.

	1 Introduction
	1.1 Research Question
	1.2 Research Objective

	2 SDN Architecture
	2.1 Infrastructure Layer
	2.2 Southbound APIs
	2.3 Control Layer
	2.4 Northbound APIs
	2.5 Application Layer

	3 Literature Review and Related Work
	3.1 OpenFlow protocol
	3.2 Architecture of multiple controllers
	3.3 Dynamic controller placement

	4 Methodology
	5 Implementation and Design
	5.1 Tools and Technologies
	5.1.1 Mininet and Mininet Python API
	5.1.2 POX Controller
	5.1.3 Operating System and Virtualization Platform
	5.1.4 XTerminal
	5.1.5 Gnuplot and Iperf
	5.1.6 Wireshark

	5.2 Topology Generation
	• Scenario 1: Having a single controller
	• Scenario 2: Having two Controllers in a Network
	• Scenario 3: Having three Controllers in a Network

	6 Evaluation
	6.1 Performance of a Single Controller Network
	6.2 Performance of a Two-Controller Network
	6.3 Performance of a Three-Controller Network

	7 Conclusion and Future Work

