
Configuration Manual

MSc Research Project

Cloud Computing

Emmanuel Okechukwu Weje
Student ID: 19122411

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Emmanuel Okechukwu Weje

Student ID: 19122411

Programme: Cloud Computing

Year: 2019

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 17/08/2020

Project Title: Configuration Manual

Word Count: 1018

Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Emmanuel Okechukwu Weje
19122411

1 Introduction

In our research paper, we introduced a context aware heterogeneous mobile cloud comput-
ing approach which was aimed at augmenting the performance of smart mobile devices.
In this configuration manual, we present how to set up the system and approaches we
applied in order to replicate results achieved. This document is structured as follows.
Section 2 presents the system environments and configurations, Section 3 shows how to
set up Remote Configuration, Section 4 presents the Android Studio IDE Setup, Section
5 explains offloading options, Section 6 shows the experiments carried out and in Section
7, we show how to monitor performance metrics.

2 System Environment and Configurations

In this section, we present the various minimum requirements needed to set up our
approach in order to replicate experiments. All have to be set up before progress can be
made with setting up the experiments.

2.1 Software Requirements

• Windows 10 64-bit Operating System

• Java SE 1

• Android Studio IDE 2

2.2 Hardware Requirements

• Core i5 CPU or equivalent

• 8 GB RAM

• 500 GB HDD

1Java SE Development Kit: https://www.oracle.com/java/technologies/javase/

javase-jdk8-downloads.html
2Android Studio IDE: https://developer.android.com/studio

1

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://developer.android.com/studio


3 Remote Configuration

For remote configurations, we use Google Firebase Remote Config3. To set this up, a
Firebase account is needed which can be created with the following steps.

1. Create account on Firebase4

2. Navigate to the console (https://console.firebase.google.com/) and add a new pro-
ject

3. Download generated google-services.json file

4. Open up submitted application code named ”CodeOffloadingApp” and add the
downloaded file inside the ”app” directory in the folder

After this has been done, the next step is to open up Firebase and navigate to Remote
Config in the menu bar. When this has been done, add the default parameters for the app
as shown in figure 1. This parameters can be changed at any time and will be reflected
in the app.

Figure 1: Remote Configuration

4 Android Studio IDE Setup

In order to run our experiments, Java and Android Studio IDE (ASI) have to be installed
as per the software requirements. After these have been installed, we have to set up an
Android Virtual Device (AVD) to run the experiments. The following steps are needed
to create an AVD:

1. Open Android Studio IDE

2. Open the AVD manager by navigating to the top menu bar then Tools > AVD
Manager. This is shown in figure 2.

3Firebase Remote Config: https://firebase.google.com/docs/remote-config
4Firebase: https://firebase.google.com/

2

https://firebase.google.com/docs/remote-config
https://firebase.google.com/


Figure 2: Open AVD Manager

3. Click on ”Create Virtual Device” at the bottom left corner as shown in figure 3.

Figure 3: AVD Manager

4. Follow prompt and choose device configurations

5. Start the newly created AVD by clicking the green play button shown shown under
actions. This is shown in figure 4

Figure 4: Start AVD

5 Offloading Options

For our offloading options, we have serverless functions and remote mobile clients. The
serverless functions have been deployed already so in this section, we show how to set up
the remote mobile client. Set up the remote mobile client by taking the following steps:

1. Unzip submitted code titled ”Code Offload Client”

2. Double click ”build.gradle” file in root folder to open application in ASI

3



3. Run the application by clicking on the green play button on the top menu bar. This
will run the application in any available AVD

After the following steps have been taken, the device will be ready to receive offloaded
tasks.

6 Experiments

For our experiments, we built a mobile application that contains both an Optical Char-
acter Recognition (OCR) system and an N-Queens Problem. In this section, we show
steps on how to set up and run this application.

1. Unzip submitted code titled ”CodeOffloadingApp”

2. Double click on ”build.gradle” file in the root folder of the application in order to
open it in ASI

3. Click on the green play button on the top menu bar to run the application. This is
shown in figure 5.

Figure 5: Run Project in ASI

The above steps will open up the application in the available AVD. This is shown in
figure 6.

Figure 6: Code Offloading Application

4



6.1 Experiment 1 / Optical Character Recognition

To run this experiment, click on the ”Optical Character Recognition” button as shown
in figure 6. This leads to the OCR screen as shown in figure 7a. In order to proceed with
the experiment, click on the scan button to select an image to scan. Depending on the
context configuration of the AVD, our decision making algorithm will decide on whether
to offload the task or not. For our current device, the battery level is 20%, 700 MB RAM
and excellent network. With this context, the expected offload decision should be cloud
and the results are shown below in figures 7b and 7c.

(a) Optical Character Recogni-
tion Test.

(b) Running task using cloud. (c) OCR cloud task result.

Figure 7: OCR Experiment

6.2 Experiment 2 / N-Queens Problem

To run this experiment, click on the ”N Queens Problem” button as shown in figure 6.
This leads to the N Queens Problem screen as shown in figure 8a. The next step is to
enter the number for N which is the number of queens we want to place on the chessboard.
Once this number is provided, press the ”Get Solution” button. Depending on device
context parameters, this action will either be performed on the cloud or performed locally.
The loading screen and result screen are shown in figures 8b and 8c respectively.

5



(a) N Queens Problem Test. (b) Running task using cloud. (c) N Queen cloud task result.

Figure 8: N Queen Problem Experiment

7 Performance Monitoring

In order to capture performance of experiments, we used the Android Profiler tool which
comes with ASI. The profiler can be opened by navigating to the top menu bar and
clicking on View > Tools Windows > Profiler. This is shown in figure 9.

Figure 9: Open Android Profiler

When the Profiler dialog opens, click on the add session button. This is used to select
an AVD to profile. This is shown in figure 10 below.

6



Figure 10: Add device to Profiler

After a device has been selected, the following screen in figure 11 is shown. This
screen is used to monitor resource usage and execution time.

Figure 11: Android Profiler

7


	Introduction
	System Environment and Configurations
	Software Requirements
	Hardware Requirements

	Remote Configuration
	Android Studio IDE Setup
	Offloading Options
	Experiments
	Experiment 1 / Optical Character Recognition
	Experiment 2 / N-Queens Problem

	Performance Monitoring

