

Configuration Manual

MSc Research Project Cloud Computing

Anurag Pravin Shriniwar Student ID: x18198171

School of Computing National College of Ireland

Supervisor: Mr. Vikas Sahani

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Anurag Pravin Shriniwar
Student ID:	x18198171
Programme:	Cloud Computing
Year:	2020
Module:	MSc Research Project
Supervisor:	Mr. Vikas Sahani
Submission Due Date:	17/08/2020
Project Title:	Configuration Manual
Word Count:	XXX
Page Count:	9

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the National College of Ireland's Institutional Repository for consultation.

Signature:	
Date:	15th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).		
Attach a Moodle submission receipt of the online project submission, to		
each project (including multiple copies).		
You must ensure that you retain a HARD COPY of the project, both for		
your own reference and in case a project is lost or mislaid. It is not sufficient to keep		
a copy on computer.		

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only				
Signature:				
Date:				
Penalty Applied (if applicable):				

Configuration Manual

Anurag Pravin Shriniwar x18198171

1 Introduction

This document is divided into 4 sections

- 1. Setup guidelines on AWS in Section 2
- 2. Setup guidelines on local laptop in section 3
- 3. Code setup and configuration in section 4
- 4. Execution instructions of code in section 5

Document should be followed based on the chosen setup. Follow section 2, 4 and 5 for cloud implementation and follow section 3, 4 and 5 for local implementation.

2 Configuration for Cloud Setup using KOPS on AWS

- Setup ubuntu Linux machine on virtual Box Configuration – 1CPU, 30GB storage, 2GB RAM. (Minimum requirements)
- 2. Install KOPS on local machine Kops.sigs.k8s.io (2020)
 - a. Sudo apt-get update

b. curl -LO https://github.com/kubernetes/kops/releases/download/ \$(curl -s ht-tps://api.github.com/repos/kubernetes/kops/releases/latest — grep tag_name — cut -d "" -f 4)/kops-linux-amd64

- c. chmod + x kops-linux-amd 64
- d. sudo mv kops-linux-amd64 /usr/local/bin/kops
- 3. 3) Configure AWS CLI
 - a. Sudo apt-get install python-pip
 - b. Pip install awscli

c. Create AWS user with IAM policy – administrative access and access type – programmatic access. Note down Access key and Secret access key of user.

d. Execute on local linux – aws configure and enter access key and secret access key.

4. Create S3 bucket

5. Domain Name Registration

DNS name was already present so that only domain so only DNS management services of AWS are used.

- a. Create a hosted zone
- b. Get name-server values after creation of sub-domain in hosted zone of AWS
- c. Enter the name server with DNS name provider.
- 6. Create Public and Private SSH key.

Ssh keygen -f .ssh/id_rsa

- 7. Install Kubectl on linux machine.
- 8. Create Kops cluster (1 Master 3 Client)

 $\label{eq:scalar} \begin{aligned} & \mbox{kops create cluster -name=kubernetes.anuragmsc.tk-state=s3://kops-state-anuragmsc.tk-zones=eu-west-1a-node-count=3-nodee-size=t2.micro-master-sizee=t2.micro-SSH_Public_Key=/home/anurag/.ssh/id_rsa.pub-dns-zone=kubernetes.anuragmsc.tk-state=s2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-sizee=t2.micro-master-siz=$

9. kops update cluster –name kubernetes.anuragmsc.tk –yes –state=s3://kops-stateanurag This command will create 4 EC2 Machines of t2.micro size, 6 Volumes, 4 Security groups and 1 Key pair.

Name -	Instance ID *	Instance Type 👻	Availability Zone –	Instance State 👻
nodes.kuber	i-081197731628d321a	t2.micro	eu-west-1a	running
master-eu-w	i-08fe0fd625ace11c2	t2.micro	eu-west-1a	running
nodes.kuber	i-0da0ead1483fb8379	t2.micro	eu-west-1a	running
nodes.kuber	i-0e8d2e4f44a5d6a5a	t2.micro	eu-west-1a	running

Figure 1: EC2 instances created on AWS

\Box	Name -	Volume ID ~	Size -	Volume Type ~	IOPS ~	Snapshot -	Created +
		vol-0dae891	64 GiB	gp2	192	snap-0ed3714	August 9, 2020 at 4:
		vol-0e3/6286	128 GiB	gp2	384	snap-0ed3714	August 9, 2020 at 4:
		vol-09d38d1	128 GiB	gp2	384	snap-0ed3714	August 9, 2020 at 4:
		vol-078b0fa6	128 GiB	gp2	384	snap-0ed3714	August 9, 2020 at 4:
	a.etcd-event	vol-02dbc5ff	20 GiB	gp2	100		August 9, 2020 at 4:
	a.etcd-main	vol-0a98032	20 GiB	gp2	100		August 9, 2020 at 4:

Figure 2: Volumes created on AWS

3 Testing Setup Configuration using Kubeadm on virtual box

1. Install Ubuntu Linux machine on Virtual Box

01 1 1 0 1			2 / /2		
anuragekcilent:~\$ kops	validate	clusterstat	e=s3://ko	ps-state	e-anurag
Using cluster from kube	ctl cont	ext: kubernetes	.anuragms	c.tk	
Validating cluster kube	rnatas a	nuramec tk			
Validating cluster Kube.	Ineces.a	indragilise.ck			
INSTANCE GROUPS					
NAME	ROLE	MACHINETYPE	MIN	MAX	SUBNETS
master-eu-west-1a	Master	t2.micro	1	1	eu-west-la
nodes	Node	t2 micro	3	3	eu-west-la
1100000	noue	02.111010			cu webe iu
NODE STATUS					
NAME			ROLE	READY	
ip-172-20-38-119.eu-west	t-1.comp	ute.internal	node	True	
ip-172-20-38-173.eu-west	t-1.comp	ute.internal	node	True	
ip_172_20_38_210_eu_ues	t-1 comp	ute internal	master	True	
ip-172-20-38-210.eu-wes	L-I.Comp	uce.incernal	master	True	
1p-1/2-20-53-12/.eu-wes	t-1.comp	ute.internal	node	True	
Your cluster kubernetes	.anuraam	sc.tk is readv			
anurag@kclient:~S		-			
and a government of the					

Figure 3: Validate cluster on AWS

Configuration of 1 Master Node – 2CPU, 30GB storage, 3GB RAM. (Minimum Requirement)

Configuration of 3 Client Node – 1CPU, 30GB storage, 2GB RAM. (Minimum requirements)

- 2. Network Configuration Virtual Box Settings
 - a. Adopter 1 NAT (Enabled)
 - b. Adopter 2 Host Only Adopter (Enabled)

Network	Network				
Adapter 1 Adapter 2 Adapter 3 Adapter 4	Adapter 1 Adapter 2 Adapter 3 Adapter 4				
C Enable Network Adapter	C Enable Network Adapter				
Attached to: NAT -	Attached to: Host-only Adapter 💌				
Name: 👻	Name: VirtualBox Host-Only Ethernet Adapter				
Advanced	Advanced				

Figure 4: EC2 instances created on AWS

3.1 Common Configuration for Master and Client Nodes

- 1. Sudo su –
- 2. Apt-get update
- 3. Swapoff -a (Turning off the swap space) Nano /etc/fstab

Comment the Swap Space line with

Figure 5: Swap off in fstab

- 4. Update the Hostname in /etc/hostname to kmaster on master node and kclient on client nodes
- 5. Set static IP address in file /etc/network/interfaces Insert following lines:

Figure 6: Static IP settings

6. Install Open SSH –

Apt-get install openssh-server

7. Install Docker –

Apt-get update

Apt-get install -y docker.io

8. Run following commands for Kubernetes installation kubernetes (2020) sudo apt-get update && sudo apt-get install -y apt-transport-https curl curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg — sudo apt-key add - cat EOF — sudo tee /etc/apt/sources.list.d/kubernetes.list deb https://apt.kubernetes.io/ kubernetes-xenial main EOF

 ${\rm sudo} \ {\rm apt-get} \ {\rm update}$

- 9. Install Kubernetes Kubelet, Kubeadm, Kubectl sudo apt-get install -y kubelet kubeadm kubectl
- 10. Edit following file

sudo nano /etc/systemd/system/kubelet.service.d/10-kubeadm.conf add following line at the end of Environment variables. Environment="cgroup-driver=systemd/cgroup-driver=cgroupfs"

anurag@kmaster:~S sudo_cat_/etc/systemd/system/kubelet.service.d/10-kubeadm.conf
[sudo] password for anurag:
Note: This dropin only works with kubeadm and kubelet v1.11+
[Service]
Environment="KUBELET KUBECONFIG ARGS=bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet
.confkubeconfig=/etc/kubernetes/kubelet.conf"
Environment="KUBELET CONFIG ARGS=config=/var/lib/kubelet/config.yaml"
Environment="cgroup-driver=systemd/cgroup-driver=cgroupfs"
This is a file that "kubeadm init" and "kubeadm join" generates at runtime, populating the
KUBELET_KUBEADM ARGS variable dynamically
EnvironmentFile=-/var/lib/kubelet/kubeadm-flags.env
This is a file that the user can use for overrides of the kubelet args as a last resort. Pr
eferably, the user should use
the .NodeRegistration.KubeletExtraArgs object in the configuration files instead. KUBELET_E
XTRA_ARGS should be sourced from this file.
EnvironmentFile=-/etc/default/kubelet
ExecStart=
ExecStart=/usr/bin/kubelet \$KUBELET_KUBECONFIG_ARGS \$KUBELET_CONFIG_ARGS \$KUBELET_KUBEADM_ARG
S \$KUBELET_EXTRA_ARGS
anurag@kmaster:~\$

Figure 7: Environment Variables

11. Update /etc/hosts file with all the hostnames and IP addresses.

anurag@kmaster:~	-\$ cat /etc/hosts				
127.0.0.1	localhost				
127.0.1.1	anurag-VirtualBox				
192.168.56.101	kmaster				
192.168.56.102	kclient				
192.168.56.103	kclient2				
192.168.56.104	kclient3				
# The following	lines are desirable for IPv6 capable hosts				
::1 ip6-loca	alhost ip6-loopback				
fe00::0 ip6-loca	lnet				
ff00::0 ip6-mcas	stprefix				
ff02::1 ip6-allr	nodes				
ff02::2 ip6-allrouters					
anurag@kmaster:~	-\$ <mark>-</mark>				

3.2 Commands only on Master Node

- Initiate the Kubernetes cluster (Calico Network Commands)
 Sudo kubeadm init -pod-network-cidr=192.168.0.0/16 -api-server-advertise-addresss=192.168.56.
- Run following commands as normal user mkdir -p \$Home/.kube sudo cp -i /etc/kubernetes/admin.conf \$HOME/.kube/config sudo chown \$(id -u):\$(id -g) \$HOME/.kube/config
- 3. Apply Calico Network Commands Docs.projectcalico.org (2020) kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml
- 4. Make sure all the internally created pods are in running state

🛃 anurag@kmaster: ~					
anurag@kmaster:~\$ kube	ectl get pods -o wideall-namespaces				
NAMESPACE	NAME	READY	STATUS	RESTARTS	AGE
kube-system	calico-kube-controllers-76d4774d89-fp8w6	1/1	Running	21	68d
kube-system	calico-node-h7dpn	0/1	Running		5d20h
kube-system	calico-node-khzgq	0/1	Running	19	68d
kube-system	calico-node-rmp6b	0/1	Running	4	5d20h
kube-system	calico-node-ssssg	1/1	Running	13	66d
kube-system	coredns-66bff467f8-g7d4g	1/1	Running	20	68d
kube-system	coredns-66bff467f8-pz58d	1/1	Running	20	68d
kube-system	etcd-kmaster	1/1	Running	19	68d
kube-system	kube-apiserver-kmaster	1/1	Running	23	68d
kube-system	kube-controller-manager-kmaster	1/1	Running	19	68d
kube-system	kube-proxy-b5j8w	1/1	Running	13	66d
kube-system	kube-proxy-j28xf	1/1	Running	19	68d
kube-system	kube-proxy-mbbwf	1/1	Running		5d20h
kube-system	kube-proxy-ptvdc	1/1	Running	4	5d20h
kube-system	kube-scheduler-kmaster	1/1	Running	19	68d
kubernetes-dashboard	dashboard-metrics-scraper-6b4884c9d5-mtdll	1/1	Running	19	68d
kubernetes-dashboard anurag@kmaster:~\$	kubernetes-dashboard-7b544877d5-gccmr	1/1	Running	19	68d

Figure 9: Pods in running state

3.3 Commands only on client nodes

- 1. Update the hosts file with IP address of master node
- 2. Join the Cluster (Command to join the cluster will be displayed after initialisation of kubernetes cluster in step 1 of commands of master node)

kubeadm join 192.168.56.101:6443 – token ki8aa8.uylhd9rwtj4glbtq – discovery-token-ca-cert-hash sha256:a16547c5c5b34b4e34af953b6fae0c0be293c6e2a9c2c81f3e7b2e00bb24015c

3. Check the configuration on master node

```
anurag@kclient:~$ cat /etc/hosts
127.0.0.1 localhost
192.168.56.102 kclient
192.168.56.101 kmaster
# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
anurag@kclient:~$
```

Figure 10: Hosts file on client nodes

🧬 anurag@kmaster: ~						
anurag@kma	ster:~\$	kubectl g	get nodes	-o wide		
NAME	STATUS	ROLES	AGE	VERSION	INTERNAL-IP	
kclient	Ready	<none></none>	66d	v1.18.3	192.168.56.102	
kclient2	Ready	<none></none>	5d20h	v1. 18.6	192.168.56.103	
kclient3	Ready	<none></none>	5d21h	v1.18.6	192.168.56.104	
kmaster	Ready	master	68d	v1.18.3	192.168.56.101	
anurag@kma	ster:~\$					

Figure 11: Hosts file on client nodes

🗬 anurag@kmaster: ~		
anurag@kmaster:~\$	python	version
Python 2.7.17		
anurag@kmaster:~\$		

Figure 12: python version

4 Code Setup and configuration

- 1. Python and Libraries installation Install Python 2.7 version
- 2. Install python-pip on each node sudo apt-get install python-pip
- 3. Install Kubernetes, Psutil, Paramiko and numpy on each node with pip pip install Kubernetes psutil paramiko numpy
- 4. Place python file in home directory

On Master node - custom scheduler.py, topsisWithoutPrint.py, kubenginxrc.yaml, nginxrc.yaml.

On Client Node - systemConfiguration.py

5. Generate Pub and Private SSH key on master node and place .pub key on private nodes

5 Execution of the code instructions

1. Execution of existing Kubernetes scheduler

kubenginxrc.yaml is used to create pods with default Kubernetes scheduler.

Command: kubectl create -f kubenginxrc.yaml

Node name is displayed as kelient. This node is used for scheduling the nginx pod created with kubenginxrc.yaml.

Figure 13: kubernetes scheduler

2. Execution of custom scheduler

nginxrc.yaml is used to create pods with custom scheduler.

Command: kubectl create -f nginxrc.yaml

Status of pod will remain pending until custom scheduler.py is not executed.

anura	g@kmaster	:~/Deskt	op/Schedul	er\$ kubectl	creat	te -f ngin	xrc.yaml		
repli	cationcon	ntroller/	nginx crea	ted					
anura	g@kmaster	:~/Deskt	op/Schedul	er\$ kubectl	get p	ods -o wi	de		
NAME		READY	STATUS	RESTARTS	AGE	IP	NODE	NOMINATED	NO
DE	READINESS	GATES							
nginx	-wzqqz <none></none>	0/1	Pending	0	9s	<none></none>	<none></none>	<none></none>	
anura	g@kmaster	:~/Deskt	op/Schedul	er\$ kubectl	get p	ods -o wi	de		
NAME		READY	STATUS	RESTARTS	AGE	IP	NODE	NOMINATED	NO
DE	READINESS	GATES							
nginx	-wzqqz <none></none>	0/1	Pending	Θ	16s	<none></none>	<none></none>	<none></none>	
anura	g@kmaster	:~/Deskt	op/Schedul	er\$ kubectl	get p	ods -o wi	de		
NAME		READY	STATUS	RESTARTS	AGE	IP	NODE	NOMINATED	NO
DE	READINESS	GATES							
nginx	-wzqqz <none></none>	0/1	Pending	Θ	23s	<none></none>	<none></none>	<none></none>	
anura	g@kmaster	:~/Deskt	op/Schedul	er\$ python	custor	n\ schedul	er.py		
Input	IP is 19	2.168.56	.103						
kclie	nt2								
Sched	uling ngi	Inx-wzqqz							

Figure 14: custom scheduler pod creation

3. Execute custom scheduler

Command: python custom_scheduler.py

anurag@kmast	er:~/Desl	ktop/Schedu	uler\$ kubec	tl get	pods -o wide		
NAME	READY	STATUS	RESTARTS	AGE	IP	NODE	NOMI
NATED NODE	READINES	SS GATES					
nginx-wzqqz	1/1	Running	0	93s	192.168.55.7	kclient2	<non< td=""></non<>
e>	<none></none>		_				

Figure 15: custom scheduler execution

References

Docs.projectcalico.org (2020). Quickstart for calico on kubernetes. URL: https://docs.projectcalico.org/getting-started/kubernetes/quickstart

Kops.sigs.k8s.io (2020). Installing - kubernetes operations - kops. URL: https://kops.sigs.k8s.io/gettingstarted/install/

kubernetes (2020). Installing kubeadm.

 $\label{eq:urrel} \textbf{URL:} \ https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm$