~

""—-
\ National
College

Ireland

Configuration Manual For AWS Instance
Management

MSc Research Project
Cloud Computing

Sarath Ravichandran
Student ID: x18174311

School of Computing
National College of Ireland

Supervisor: Sean Heeney

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sarath Ravichandran
Student ID: x18174311
Programme: Cloud Computing
Year: 2020
Module: MSc Research Project
Supervisor: Sean Heeney
Submission Due Date: 17/08,/2020
Project Title: Configuration Manual For AWS Instance Management
Word Count: 2209
Page Count: [16]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual For AWS Instance Management

Sarath Ravichandran
x18174311

Abstract

AWS Instance Management is a web application that is created to achieve busi-
ness continuity and cost optimization in the AWS spot instance. This report would
provide the configurations of each technology that is used while implementing the
web application.

1 Introduction

The main objective of this report is to provide the configurations of each technology that
is used while creating the web application.

2 Configuration Specifications

This section of the document would provide the configuration specification of each module
that is present in the AWS instance management application. Since this web application
contains two major modules in it. This section is further categorized into two sub-sections
namely Configuration of Forecast application, and Configurations of AWS instance man-
agement application

2.1 Configuration and Implementation of Forecast Module

Various technologies were used in order to predict the spot price of the instance in ad-

vance. Those technology specifications are mentioned below.
Table 1: Overview of Tools and Technologies

Tools and Technologies
Technologies Version Purpose
Anaconda Navigator 1.9.12 Forecast Module
Jupyter Notebook 6.0.3 Forecast Module
Python 3.7.6 Forecast Module

2.1.1 Anaconda Navigator

Anaconda is python package management tool. For the forecasting module 1.9.12 version
of anaconda is used. In which an environment is created for the forecast module as shown
below:

From the above diagram, it could be clearly seen that an environment was created
with the name of TensorFlow. In that, all the required python libraries are installed for

{D ANACONDA NAVIGATOR

A Ho a| [
base (root)
@ cnvionments | | s— > ”
m
@ Learning g s
‘e Communil ity o
o
e
nur
¢ Bo
.
o
panc
P
Documentation -
pars
Develogersiog e
pict
Yy & ? - a |] -

Figure 1: Proposed Life Cycle

the forecast model. This environment would have all the predefined packages with it but

the following libraries are added for the forecast model.
Table 2: Python Libraries for Forecast Model

Python Libraries

Library Name Version
Tensorflow 2.1.0
Pandas 1.0.3
Keras 2.3.1
Numpy 1.18.1
Scikit-Learn 0.22.1
matplotlib 3.1.3

The above-mentioned libraries are installed in the TensorFlow environment for the
forecast model to make the forecast of the spot price in advance. In which pandas and
NumPy python libraries are used to clean the dataset. Scikit learn, and Keras are used
to make use to create the forecast models. Matplotlib is used to produce graphs of the

result. Two models were created with two different machine learning algorithms namely
ARIM and LSTM as shown below:

2.1.2 Implementation of Forecast Model Using LSTM

The below figure shows the code of the created LSTM forecast model. All the librar-
ies that are configured in the anaconda are used in this Jupyter Notebook file. All the
required libraries are imported for this forecast module namely Keras, Scikit Learn, Mat-
plotlib, and etc. From the code, it could be seen that 70 percent of the dataset is used
for training and the remaining 30 percent are used for the testing purpose. The forecast
is measured in terms of Mean Absolute Error, and Root Mean Squared Error.

df =pd.read_csv('t2-micro-linux-unix.csv')
df.columns = ["1", "2","3","price”,"5"]

dataset = df.price.values #numpy.ndarray
dataset = dataset.astype('float32')
dataset = np.reshape(dataset, (-1, 1))

scaler = MinMaxScaler(feature_range=(@, 1))

dataset = scaler.fit_transform(dataset)

train_size = int(len(dataset) * 0.70)

test _size = len(dataset) - train_size

train, test = dataset[0:train size,:], dataset[train size:len(dataset),:]

def create_dataset(dataset, look back=1):
X, v =11, [l
for i in range(len(dataset)-look back-1):
a = dataset[i:(i+look back), @]
X.append(a)
Y.append(dataset[i + look back, @])
return np.array(Xx), np.array(Y)

look_back = 24
X_train, Y_train = create dataset(train, look_back)
X_test, Y_test = create_dataset(test, look_ back)

reshape input to be [samples, time steps, features]
X train = np.reshape(X train, (X train.shape[©], X train.shape[1], 1))
X test = np.reshape(X test, (X test.shape[@], X test.shape[1], 1))

model = Sequential()

model.add(LSTM(10@, input shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(0.2))

model.add(Dense(1))

model.compile(loss="mean_squared error’, optimizer='adam')

history = model.fit(X_train, Y_train, epochs=50, batch_size=70, validation_data=(X_test, Y_test),
callbacks=[EarlyStopping(monitor="val loss', patience=18)], verbose=1, shuffle=False)

model . summary()

pre lis =[]

df n =pd.read csv('t2-micro-linux-unix.csv')
df_n‘columns = [II]_"J II2FI,Ir3IIJII4H’II’5II]
#Create a new dataframe

predict=[]

new df = df n.filter(['4"])

last 6@ days = new df[-24:].values

#Scale the data to be values between @ and 1

last 60 days scaled = scaler.transform(last 68 days)
#Create an empty list

X test = []

#Append teh past 60 days

X test.append(last 66 days scaled)

#Convert the X test data set to a numpy array

X test = np.array(X test)

#Reshape the data

X test = np.reshape(X test, (X test.shape[@], X test.shape[1], 1))
batch = X test

for 1 in range(24):
pre_lis.append(model.predict(batch)[@])
batch = np.append(batch[:, 1:,:], [[pre_lis[i]]], axis=1
kundo the scaling
pre lis = scaler.inverse transform(pre lis)
print(pre lis)
3

Figure 2: Forecast Model Using ARIMA

2.1.3 Implementation of Forecast Model Using ARIMA

from pandas import read csv

import pandas as pd

import datetime

from matplotlib import pyplot

from statsmodels.tsa.arima model import ARIMA
from sklearn.metrics import mean squared error

t2micro =pd.read csv('t2-micro-linux-unix-us-east-la.csv')
t2micro.columns = ["1", "2","3","4","5"]

#Create a new dataframe

predict=[]

new df = t2micro.filter(['4"])

X = new _df.values
size = int(len(X) * ©.66)
train, test = X[©@:size], X[size:len(X)]
history = [x for x in train]
predictions = 1list()
for £ in range(len(test)):
model = ARIMA(history, order=(5,1,0))
model fit = model.fit(disp=8)
output = model fit.forecast()
yhat = output[@]
predictions.append(yhat)
obs = test[t]
history.append(obs)
print('predicted=%f, expected=kf' % (yhat, obs))
error = mean_squared _error(test, predictions)
print('Test MSE: %.3f' % error)
plot
pyplot.plot(test)
pyplot.plot(predictions, color="red")
pyplot.show()
print(predictions)

Figure 3: Forecast Model Using ARIMA

From the above figure, it could be clearly seen that the jupyter notebook is used
for coding the forecast model. All the libraries that are configured in the anaconda
environments are used here to construct the corresponding model. In this case, the
model is created with the ARIMA. In which the dataset is divided into 66% for the
training purpose and the remaining percentage is used for the testing. The forecasts are
made and it is measured in terms of MSE.

2.2 Configuration and Implementation of Failure Recovery

A web application was created as a part of this research to implement the proposal
and make it available for the end-users. The name of the created web application is

4

AWS Instance Management(AIM). Overview of tools and technologies that are used are

mentioned below.) _
Table 3: Overview of Tools and Technologies

Tools and Technologies
Technologies Version Purpose
PyCharm 11.0.5 Development Tool
Python Python 3.8.3 Programming Language
Postgres 12.3 DataBase
PgAmin 4.21 DataBaseAdmin
Boto3 1.14.12 Python Library
Django 3.0.7 Python Library
Django-heroku 0.3.1 Python Library
Jquery 3.4.1 Frontend Technology
Bootstrap 4.3.1 Frontend Technology
Ajax 1.14.7 Frontend Technology

2.2.1 PyCharm

PyCharm would provide the python development environment to develop the python
program. This tool was used throughout the web application development phase. The
following figure would provide more details on the python version and PyCharm.

Refactor Run Tools VC
project

Project +

=
=V project

| 3

Figure 4: PyCharm and Python Version

A virtual environment was created with the name of the test in pycharm and all the

dependent python libraries are installed in that variable. Python 3.8.3 version is used in
this application. From the above figure, we could verify that. It also provides a list of
dependent python libraries and their version that is used in this project. By default, the
Django framework would have predefined libraries on top of we for this project various
libraries like boto3, and Django-Heroku are installed manually. In which boto3 is used to
make the communication with the user’s AWS account. Django-Heroku library is used
to deploy the created web application in the cloud platform.

2.2.2 Postgres

Postgresql is used as the database to store the content of our application. This database is
used to store the data of the registered user, forecast-ed spot price, newly created instance,
and AMI creation. These details could be accessed from the admin functionality of the
proposed web application. PgAdmin is a database administration tool that is used to
verify the entries in the database.

CElAdmin Filev Objectv Toolsv Helpv

Browser $ /B w Q Dashboard Properties SQL Statistics Dependencies Dependents ESpublic.auth_use.. B8 public.aws_t2micro/aws/postgres@pPostgreSQL 12
> AaFTS Parsers e ev@mlalvl&alvin|al zv Nolmt ~ H P v &H B v T B
> FTS Templates
» B} Foreign Tables | ¢ |public.aws_t2micro/aws/postares@PostgresaL 12
> {&Functions Query Editor Query History Scratch Pad

> Materialized Views
> {}Procedures
» 1.3Sequences
~ [FTables (17)
> [auth_group

1 *

2

> [auth_group_permit
> [auth_permission
> Fauth_user

» FHauth_user_groups
> 5 auth_user_user_pe
> Faws_c4cxlargetabl
> [aws_t2micro

> [cdcxlarge

> Ediango_adminlog | pata Qutput Explain Messages Notifications
> Eddjango_content_ty = =

. id , date , time , price fr_price ”
» [diango_migrations 4 [PKlinteger character varying (250) character varying (250) character varying (250) numeric (10,9)
> B3 django_session 1 1 28-07-2020 00:00:00 0.0034761 0.003476100
> Einstances_amicre | 2 28-07-2020 01:00:00 0.00344968 0.003443680
> [Finstances_c4cxlar
3 328072020 02:00:00 0.00345459 0.003454590
> [instances_check_¢
> Binstances_instanci | 4 428072020 03:00:00 0.00345665 0.003456650
» {2 Trigger Functions 5 5 28072020 04:00:00 0.00345859 0.003458590
3
> [0 Types 6 6 28-07-2020 05:00:00 0.00346048 0.003460480
> [E Views 7 7 28:07-2020 06:00:00 0.00346263 0.003462630

Figure 5: Postgres and PgAdmin

2.2.3 Implementation of Failure Recovery Module

Spot instance failure recovery module is implemented using various phases namely spot
instance AMI creation, on-demand instance creation, on-demand AMI creation, spot
instance creation. These phases would form a spot instance life cycle as proposed in the
research document. Here the implementation of each phase is shown in the following
figures.

Ami Creation The following figures would provide the implementation of AMI cre-
ation of the running instance in the proposed application. The logic behind the AMI
creation of spot instance and on-demand instance could be observed from the below fig-
ures. As per the proposal, an AMI would be created for the running spot instance if the
predicted spot price for that instance type is greater than the user bid price. An AMI
would be created for the on-demand instance if the user bid price is equal to the current
spot price of that instance type. The definition of AMI creation is also presented. It
would create an AMI for that particular instance with the help of the instance id.

print(

=ami_id)

=ami_id)

ami_obj.s

Figure 6: AMI Creation Implementation

On-Demand Instance Creation The logic behind the on-demand instance could
be observed from the following figures. If the spot instance is terminated by the cloud
service provider then the web application should automatically initiate the on-demand
instance creation process as using the AMI of the terminated spot instance. Logic and
the definition of the on-demand instance creation process is presented below:

Figure 7: OnDemand Instance Creation Implementation

From the above figures, we could understand how the OnDemand instance is created
in the proposed web application. Various parameters are passed as part of the creation
process namely session, instance type, termination id, and img. The session attribute
would hold the AWS secret key and access key. Instance Type would hold the type of the
instance that is terminated. Termination id would hold the id of the terminated instance
and img would hold the AMI of the terminated instance. Based on the logic that is
shown corresponding action would be taken every ten seconds in order to maintain the
spot instance life cycle.

Spot Instance Creation The logic behind the spot instance could be observed from
the following figures. If the on-demand instance is terminated by the web application
then the application should automatically initiate the spot instance creation process as
using the AMI of the terminated on-demand instance. Logic and the definition of the
spot instance creation process is presented below:

spot_ins_creation(ami

Figure 8: Spot Instance Creation Method

From the above figure, it could be clearly seen that the spot instance creation method
takes multiple parameters as input namely AMI, instance type, availability zone, and
session. AMI would hold the AMI id of the terminated on-demand instance. Instance
type would hold the type of the on-demand instance that is terminated. Availability Zone
would have the region in which the spot instance should be created. The session would
hold the AWS parameter of the user.

Figure 9: Spot Instance Creation Logic

From the above image, it could be clearly seen that the logic for the spot instance
creation that is used in the web application.

3 User Requirements

To make use of the AWS Instance Management application the user must have the fol-
lowing pieces of information. The user must have an AWS account and they should have
these parameters namely aws_access_key, aws_secret_key, and region from that account.

3.1 AWS Account Creation

If the user does not have an AWS account then they could go the following link ht-
tps://portal.aws.amazon.com/billing /signup to create an account. The user should provide
the following parameters to create an account with the AWS.

10

adWs English v

p—
Create an AWS account

Email address

AWS Accounts Include
12 Months of Free Tier Password
Access

Confirm password

Including use of Amazon EC2, Amazon S3, and Amazon

DynamoDB
AWS account name &

Visit aws.amazon.com/free for full offer terms

Continue

Sign in to an existing AWS account

© 2020 Amazon Web Services, Inc. or its affiliates
Al rights reserved

Privacy Policy | Terms of Use

Figure 10: AWS Account Creation

3.2 Required AWS Parameters

If the user have an exsisting account with AWS then the user user could get the aws_access_key,
aws_secret_key, and region from that account as shown below:

<« C (O @ consoleawsamazon.com - % B & @
aws Services v Resource Groups v % SarathRavichandran . Virginia v
My Account
S l My Organization
AWS Management Console

My Billing Dashboard
Orders and Invoices

AWS services Stay ¢
resou My Security Credentials

Find Services Sign Out

You can enter names, keywords or acronyms / Mobile App
= Learnmore 3

v Recently visited services
Explore AWS

O ec2 D 1am &> AWS Snow Family
2 Bill B} EC21 Build .
& Billing © ec2image Builder Join Other ML Experts
Connect with ML experts to discuss machine
» All services learning topics. Learn more [4

Figure 11: AWS Account Security

Once the user logged into the AWS account the user could see my security credential
option as shown in the above diagram. After clicking on that option then the user should
see the below figure. Through which the user could get the required parameters.

11

Resource Groups ~ % [\ SarathRavichandran v Global ¥ Support ~

. Your Security Credentials
Use this page to manage the credentials for your AWS account. To manage credentials for AWS Identity and Access Management (IAM) users, use the IAM Console .

To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials in AWS General Reference

~ Password
- Multi-factor authentication (MFA)

~ Access keys (access key ID and secret access key)

Use access keys to make programmatic calls to AWS from the AWS CLI, Tools for PowerShell, the AWS SDKs, or direct AWS API calls. You can have a maximum of two access keys (active
or inactive) at a time. Learn more
Last Used Last Used

Created Access Key ID Last Used - . Status Actions.
Region Service

Jun 23rd 2020 AK R 2020-08-07 08:22 UTC+0100 us-east-1 ec2 Active Make Inactive | Delete
Create New Access Key

Root user access keys provide unrestricted access to your entire AWS account. If you need long-term access keys, we recommend creating a new |IAM user with limited
permissions and generating access keys for that user instead. Learn more

Figure 12: AWS Access Key and AWS Secret Key

4 AWS Instance Management Modules

Once the user has all the required parameter then the user could use our application
through this link:
AWS Instance Management: https://awsinstancemanagement.herokuapp.com/

4.1 Search Form

Once the user registers with the application then they should log in to this application
to make use of the failure recovery module. After the login to the application, the user
could see a screen like below where they could provide the required parameters in the
search form to make use of this proposal.

AWSInstanceManagement Admin Logoat

. Search for your aws instances |3)

aws aceess key aws_secret access key Region

Figure 13: AWS Instance Management Application Search Form

12

4.2 Home Screen

Once the user hits the above URL they would be able to see the following home screen.
Through which they could see the forecaster spot price for the instances. It helps them
to register and login to our application

AWSInstanceManagement Home Registr Login

AWSInstanceManagement Home Registr Login

AWS SPOT PRICE FORECAST

Predictions By Category

t2micro Linux/UNIX
Time ?Predicted Spot Price Date

Figure 14: AWS Instance Management Application Home Screen

4.3 Registration Form

Once the user clicks on the registration tab of the home screen the user could see the
following form that would allow them to register to the AWS Instance Management
application.

13

First Name

AWS Spot Instance Management
Registration Page

Login or register from here to access.

Enter Your First Name

Last Name

Enter Your Last Name

User Name

Enter Your User Name

Email Id

Enter Your Email Address

Password

Enter Your Password

Confirm Password

Enter Your Confirm Password
o |t | oo

Figure 15: AWS Instance Management Application Registration Screen

4.4 Login Form

Once the user clicks on the login tab of the home screen the user could see the following
form that would allow them to log in to the AWS Instance Management application.

AWS Spot Instance Management

Login Page

Login or register from here to access.

User Name

User Name

Password

Password

Figure 16: AWS Instance Management Application Login Screen

4.5 Admin Screen

If the user is already logged in to AWS Instance Application and if he is admin then they
could see the admin tab in the home screen as shown in the below figure. Through which
the user could interact with the tables that are present in the database.

14

Django administration

@& Post

& Valid credentials

Site administration

AUTHENTICATION AND AUTHORIZATION)
Recent actions
Groups + Add # Change

Users + Add # Change My actions

+ ami_creation object (11)
Ami_creation

* ami_creation object (10)
CA4cxlargetables + Add # Change Ami_creation

t2micro object (25)

T2micros + Add # Change S—

t2micro object (24)
T2micro

INSTANCES

t2micro object (23)

Ami_creations + Add ' Change T2micro
C4cxlargetables +Add & Change # 12micro object (22)
T2micro
Check_spots + Add & Change # 12micro object (21)
T2micro
Instance_creations + Add # Change

t2micro object (20)
T2micro

Figure 17: AWS Instance Management Application Admin Screen

4.6 Search Result Screen

Once the user makes a valid search operation after the login to the application. They
would be able to see a search result as shown below with all the instances that are
associated with the searched AWS parameters.

AWSInstanceManagement Amin Logont

Instances from This Region(us-east-1)

_Eﬂ pRetERE

i-05h66449ab485975¢ st s {2.MICIO terminated 0.003900 0
i-098f1794036159082 st s {2.MICFO running 0.003900 1
i-0da58412b5da07d00 st see £2.MICIO terminated 0.003500 1

Figure 18: AWS Instance Management Application Admin Screen

References

[1] “Composite learning index: CLI” Amazon, 2006. [Online]. Available: ht-
tps://docs.aws.amazon.com/cli/latest /reference/ec2/.

15

[2] "EC2 — Boto3 Docs 1.14.39 documentation”,
Boto3.amazonaws.com, 2020. [Online]. Available: ht-
tps://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html.

[3] Khandelwal, V., Chaturvedi, A. and Gupta, C. P. (2017). Amazon ec2 spot price
predic-tion using regression random forests,IEEE Transactions on Cloud Comput-
ingpp. 1-1.Khatua, S. and Mukherjee, N. (2013).

[4] A novel checkpointing scheme for amazon ec2spot instances,2013 13th
IEEE/ACM International Symposium on Cluster, Cloud,and Grid Computing, pp.
180-181.Pham, T., Ristov, S. and Fahringer, T. (2018).

[5] Aresilient auction framework for deadline-aware jobs in cloud spot market,2017
IEEE36th Symposium on Reliable Distributed Systems (SRDS), pp. 247-249.Song,
Y., Zafer, M. and Lee, K. (2012).

[6] Monetary cost-aware checkpointing andmigration on amazon cloud spot in-
stances,JEEE Transactions on Services Computing5(4): 512-524.Zheng, L., Joe-
Wong, C., Tan, C. W., Chiang, M. and Wang, X. (2015).

16

	Introduction
	Configuration Specifications
	Configuration and Implementation of Forecast Module
	Anaconda Navigator
	Implementation of Forecast Model Using LSTM
	Implementation of Forecast Model Using ARIMA

	Configuration and Implementation of Failure Recovery
	PyCharm
	Postgres
	Implementation of Failure Recovery Module

	User Requirements
	AWS Account Creation
	Required AWS Parameters

	AWS Instance Management Modules
	Search Form
	Home Screen
	Registration Form
	Login Form
	Admin Screen
	Search Result Screen

