
A Novel Failure Recovery Technique On
AWS Spot Instances With Optimal Cloud

Cost

MSc Research Project

Cloud Computing

Sarath Ravichandran
Student ID: x18174311

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sarath Ravichandran

Student ID: x18174311

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 17/08/2020

Project Title: A Novel Failure Recovery Technique on AWS Spot Instance

Word Count: 6900

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



A Novel Failure Recovery Technique On AWS Spot
Instances With Optimal Cloud Cost

Sarath Ravichandran
x18174311

Abstract

The main purpose of this research is to guarantee the reliability of the service
that is provided by the AWS(Amazon Web Services)spot instance. A novel spot
instance failure recovery life-cycle is proposed to assure the reliability with the
minimal cloud cost. This proposal comprises two main modules in it namely forecast
and spot instance failure recovery. A unique spot instance failure recovery algorithm
is also introduced as a part of this study. Data loss due to spot instance termination
is overcome by the suggested algorithm. A web application is built in order to
maintain the life cycle of the spot instance. The proposed algorithm would initiate
the spot instance AMI creation when the forecast-ed spot price is higher than the
user bid price. This AMI would be used to initiate an on-demand instance if the
spot instance is terminated. Thus the data loss due to the spot instance termination
by the vendor due to lower bid-price is resolved. Once the on-demand instance is
created then the application would continuously monitor the user bid price and
current spot price. Once the current spot price is equal to the user bid price then
the application would generate an AMI for the running on-demand instance and this
AMI would be used to create an equivalent spot instance. Thus the cost spent on
the cloud is significantly decreased. This proposal is implemented and evaluated on
the AWS cloud platform. The evaluation results have concluded that the business
continuity is achieved even after the termination of spot instance.

1 Introduction

The principal intention of this research work is to address the absence of holistic reliable
service in the cloud platform that is stated in this paperBuyya et al. (2019). Therefore,
I proposed a unique spot instance rotation technique to ensure the business continuity
of the service that is provided by the spot instance even after it’s termination. The
implementation and evaluation of this proposal are presented in the following sections of
this report.

1.1 Overview on AWS EC2 Spot Instance

In this modern world, most of the enterprises are highly preferring cloud services that
are provided by the cloud service provider instead of procuring physical servers. Pay
as per the use is one of the main benefits to prefer a cloud platform. Amazon Web
Service(AWS) is a leading cloud service provider in the cloud service provider market.
AWS is providing the virtual server that could be used as the physical server. AWS is

1



providing the virtual servers in the form of Elastic Cloud Computing(EC2) service. This
service is provided in various modes namely reserved, on-demand, and spot instance.
Spot instance is an unused spare compute capacity that is available at a steep discount
often as much as 90% more inexpensive compared to on-demand prices. The reserved and
on-demand instances would not be terminated by the cloud service provider. But spot
instances could be terminated by the service provider with a two-minute warning when
ec2 needs the capacity back. So the reliability of the service provided by the spot instance
is not reliable. AWS spot instances are provided through the bidding approach. The user
could provide the highest bid price in order to acquire a spot instance. If the user bid
price is equal to or higher than the current spot price then the spot instance would be
provided to the user for that hour. If the current spot price is higher than the user bid
price then the spot instance could be terminated by the service provider. If the instance
is terminated by the service provider then the data linked with that spot instance would
be destroyed permanently. This would affect business continuity. There is no mechanism
to recover the lost data due to the termination of the spot instance. Therefore, this study
is highly stressed on increasing the reliability of the service provided by the spot instance
through sustaining the business continuity even after the termination of the spot instance
with the least cloud cost. A pictorial representation of the proposed spot instance life
cycle is presented below:

Figure 1: Proposed Life Cycle

Forecast module is the first step and it is used to launch the back up(AMI) creation
process in order to overcome the data loss that occurred due to the spot instance ter-
mination. This proposal makes use of both on-demand and spot instance to create the
spot instance life cycle as shown in the figure to ensure the business continuity of the
AWS spot instance. A new spot instance failure recovery algorithm4.2.1 is proposed to
implement the spot instance life cycle.

2



1.2 Research Question

Since the chance of termination for spot instance is highly dependent on the ec2 instance
need in the current market. So, the reliability of the service provided by the spot instance
is not guaranteed. Therefore, this research work tries to address the following research
question.

How to improve the reliability of the service provided by the AWS spot instance with
an optimal price?

A critical investigation is performed between the proposed methodology and the cur-
rent research works that are associated with the AWS spot instance in order to confirm
the novelty of this proposal. The structure of this report is as follows Related Work,
Methodology, Design Specification, Implementation, Evaluation, Conclusion, and Future
Work.

2 Related Work

This part of the report would provide an overview of the critical analysis that is conducted
over the different research works that are related to this research work. Several research
works were discovered to be related to our question. But the ones that are published in the
conferences and journals that are higher in the standard are considered for this critical
analysis. Since our proposal has multiple modules like failure recovery and spot price
forecast model. Therefore this critical analysis is segmented into two different segments
namely Forecast Spot Price Models and Enhancement of Spot Instance Reliability.

2.1 Forecast Spot Price Models

Research works that are highly focused on guaranteeing the reliability of the spot instance
by using a forecast model are critically analyzed in this section.

The research work that was submitted by Baughman et al. (2018) has used the Long
Short Term Memory Recurrent Neural Network algorithm to predict the spot price in
advance to overcome the spot instance termination. They used the Root Mean Square
Error(RMSE) and Mean Absolute Error(MAE) to measure the correctness of the predic-
tion. But still, the reliability of the spot instance is unreliable because if the prediction
goes wrong and the spot instance is terminated. Then in that case it does not have any
kind of spot instance failure recovery technique. Therefore this work could be further
improved by owning a recovery model with it as proposed in our proposal.

A framework was introduced by Zheng et al. (2015), which has the ability to provide
how the spot instance pricing is done with the user in order to bypass the spot instance
termination due to lower spot price. The major interest of this research work is to
achieve the maximum cost reduction by using the spot instance instead of on-demand
and reserved instances. Therefore the reliability of the spot instance is still unpredictable
because the spot instance may terminate at any time due to lower bid price and the
service provided by the spot instance would be suspended. So this work could be further
refined by collaborating the spot instance failure recovery techniques that are proposed in
this research work to assure the reliability even after the termination of the spot instance.

The work submitted by Khandelwal et al. (2017) is extremely concentrated on pre-
venting the spot instance termination by predicting the spot price in advance with the

3



help of the Regression Random Forest Algorithm. They evaluated the model results in
terms of MAPE and MCPE. This work does not guarantee the business continuity of
the service provided by spot instance after it’s termination. Therefore this gap could be
fulfilled by having a failure recovery module as proposed in our research work.

A framework was recommended by Fabra et al. (2019) that would predict the spot
price by characterizing each availability zones behavior. Since they are categorizing the
availability zones based on the spot price behavior it could be not that accurate as
the result produced by machine learning algorithms. So the forecast result could be
enhanced by using more than one machine learning algorithm to get more accurate results.
Therefore, in my proposal, we used LSTM and ARIMA for the forecast model and the
result which has the lowest variation with actual spot price would be considered and
presented in my application. Thus the accuracy of the forecast is raised and the reliability
is assured by having the failure recovery model.

Since the demand of the ec2 instance modifies with the region, so the spot price for
the same instance type could also vary with region. Research work was published by
Ekwe-Ekwe and Barker (2018), to explore the relationship between the spot price and
the location of the instance instead of predicting the spot price in advance. They have
classified the spot instance based on the spot price in different regions. By which they
were able to recognize the region that has the lowest deviation in the spot price. By
selecting a stable region could prevent the termination of spot instance. But again the
reliability of the spot instance is not completely ensured, it might be terminated in the
worst case. Therefore a failure recovery module4.2.1 could be collaborated with this
idea to assure the business continuity even after the instance termination. In addition,
a forecast module could be implemented instead of categorizing the regions to assure
reliability.

A new algorithm was introduced by Song et al. (2012), that would update the bid price
based on the current bid price in order to avoid the termination of that instance. This
research work is highly directed on improving the profit by making use of the spot instance
rather than an on-demand instance. Since the forecast module and failure recovery are
not considered in this research, the reliability of the service is still unreliable. Therefore
a forecast could be made more reliable by using two machine learning algorithms as
proposed in our proposal. Further, reliability could be enhanced by implementing the
failure recovery module of our proposal.

2.2 Enhancement in The Reliability of Spot Instance

The following research works are utilizing various techniques to improve the reliability of
the spot instance.

A detailed characteristics analysis of spot instances for three various regions was
presented by Pham et al. (2018) in order to block the spot instance termination. This
characterization would help them to recognize a region that has the lowest spot price
variation. If the spot price of a region is not varying often then the chance of spot instance
termination is also reduced. Thus they are assuring the spot instance reliability. Again
the chance of spot instance terminated termination is high once the user bid price is lower
than the current spot price. This could suspend the business continuity of the service
provided by the spot instance. So this gap could be fulfilled by considering machine
learning algorithms like LSTM and ARIMA for making the forecast more accurate as

4



proposed in our work. My proposal would ensure the business continuity even if the
worst-case(spot instance termination) occurs. The business continuity is assured by the
novel spot instance failure recovery algorithm 4.2.1 which is introduced in this paper.

The research work was written by Khatua and Mukherjee (2013) has introduced a new
check-pointing algorithm to increase the reliability of the spot instance. In this method,
they created two bid prices in order to increase reliability. Two bid prices would result
in two spot instance and this would reduce the cost optimization. This method also
produces two snapshots every hour. This would raise the cost further by holding more
storage. Therefore this proposal’s gap could be fulfilled by considering my proposal. The
storage cost is reduced by creating the snapshot only if the forecast-ed value is higher
than the bid price and we do not use two spot instance strategies. This would result
in higher cost optimization. Further, reliability is also assured by owning the failure
recovery module of our proposed application.

A model was introduced by Qu et al. (2016), that assures the reliability of the spot
instance by deliberating the workload of that spot instance between the mix of on-demand
instance and spot instance. This would improve the business continuity but the user has
to compromise with the cost optimization. Therefore this gap could be fulfilled by having
only one instance, either spot instance or on-demand instance based on the spot price
condition as proposed in the algorithm 4.2.1. This would improve reliability and improves
the cost optimization aspect as well.

A scheduler was recommended by He et al. (2015), that highly stressed on enhancing
the reliability and cost. This proposal has stated that they are using on-demand instance
in the event of spot instance termination. It clearly states that due to the migration the
business continuity of the spot instance would be interrupted during these times. But this
proposal does not have the idea of returning back to the spot instance once the spot price
is equal to the current bid price as proposed in this algorithm4.2.1. So by considering
the forecast model we could have the updated work-space of the spot instance even after
the termination and the cost could be further reduced by returning back the on-demand
instance to spot instance as mention in the life-cycle.

A framework was recommended by Sabyasachi et al. (2017) that enables the user
to modify the user spot price based on the importance of the task which is running
in the spot instance. An algorithm is also introduced in this research for producing
the checkpoints in the running spot instance. The evaluation of this research work is
conducted through simulation. The results of the simulation were satisfyingly achieved.
By using this proposal the user would be able to improve the business continuity but
the cost optimization aspect would be compromised. By collaborating the proposed spot
instance life-cycle the user would be able to maximize the cost optimization.

Various checkpointing strategies were introduced by Yi et al. (2012), that would start
the creation of checkpoints based on the conditions of each strategy. The principal aim of
this work is to assure business continuity by persisting in the latest workspace. The major
disadvantage of this proposal is that they do not have any kind of threshold for checkpoint
creation. This would end up creating multiple checkpoints for each instance. Therefore
the cost spent on storage for those checkpoints would affect the cost optimization aspect.
Therefore the gap in this work could be fulfilled by our AMI creation algorithm4.2.2. In
this algorithm, only one AMI would be created and the snapshot of that AMI would be
updated in an incremental manner to improve the cost optimization.

5



An overview of the entire critical analysis of the related works that are considered is
presented as a table. In which the forecast column represents whether a forecast module is
used in that related work or not, Algorithms column describes how many algorithms were
used in the forecast model, Failure recovery column express whether a failure recovery
module is present or not in that particular related work, and reliability enhancement
column indicates whether that related work enhances the reliability of the spot instance.

Table 1: Overview of Related Work

Related Works
Reference Forecast Algorithms Failure Recovery Reliability

Enhancement
Baughman et al.
(2018)

Yes 1 No Yes

Zheng et al. (2015) No 0 No Yes
Khandelwal et al.
(2017)

Yes 1 No Yes

Fabra et al. (2019) No 0 No Yes
Pham et al. (2018) No 0 No Yes
Khatua and
Mukherjee (2013)

No 0 Yes Yes

Qu et al. (2016) No 0 Yes Yes
He et al. (2015) No 0 Yes Yes
Sabyasachi et al.
(2017)

Yes 1 No Yes

Ekwe-Ekwe and
Barker (2018)

No 0 No Yes

Song et al. (2012) Yes 1 No Yes
Yi et al. (2012) No 0 Yes Yes
Proposed Research Yes 2 Yes Yes

2.3 Novelty of This Proposal

Numerous research works were discovered in the current state of the art that is related
to the AWS spot instance. Most of the researches is extremely concerned about cost
optimization by preventing spot instance termination by foretelling the spot price in ad-
vance. Some of the research works are highly concentrated on assuring business continuity
through different check-pointing strategies like the ones that are explained in the critical
analysis. In the current state of the art, the user can either obtain cost optimization or
service reliability. But with this proposal, it has the failure recovery module to assure the
service reliability of the spot instance, and the proposed algorithm4.2.1 would guarantee
the cost optimization. Further, this proposal has used a couple of machine learning al-
gorithms namely LSTM and ARIMA to make the spot price forecast to be more precise,
which is not done in any of the related works. A web application that has both the
capabilities like projecting the spot price in advance and spot instance failure recovery
is not present in any of the related works. This provides evidence of the novelty of this
proposal. Each module of this proposal is described in detail in the subsequent section
of this report.

6



3 Methodology

A web application is created in order to implement the proposed spot instance life cycle.
The principal objective of this web application is to guarantee the business continuity of
the AWS spot instance even if it terminates and the secondary focus is to assure cost
optimization throughout the life cycle. This application has two major modules in it
namely spot price forecast module and spot instance failure recovery module. Spot price
forecast module is used to project the predicted spot price for the end-user through the
web application home screen. Failure recovery module is implemented with the help of
this novel algorithm4.2.1. This algorithm would ensure both the objectives. The detailed
figure of my entire proposal is presented in the figure2.

Figure 2: Proposed Methodology

As presented in the above figure the end user could make use of our proposal through
the web application that is hosted in the link that is given in the following section5.

7



3.1 Spot Price Forecast

The chief objective of the spot price forecast module is to initiate the AMI creation process
before the spot instance termination. This module is the initial step of the proposed life
cycle. This module is responsible for AMI creation of the running spot instance. If the
predicted spot price is higher than the user bid price then the chance of spot instance
termination is very high. Therefore, this module would initiate the AMI creation of the
running spot instance. This spot instance AMI would be used for the corresponding
equivalent on-demand instance creation in case of spot instance termination. Thus the
data of spot instance is persisted even after its termination. A detailed description of
this forecast module is provided in the design section4.1.

3.2 Spot Instance Failure Recovery

The main agenda of the spot instance failure recovery module is to initiate the corres-
ponding alternative instances based on the algorithm4.2.1 conditions. This module would
make use of the created AMI to initiate the corresponding instance creation process. If
the spot instance is terminated then an equivalent on-demand instance would be created.
Thus the business continuity aspect is achieved. Once the user bid price is equal to the
current spot price. Then running an on-demand instance could cost more to the user.
Therefore the running on-demand instance is terminated and an equivalent spot instance
is created only if the user bid price is equal to the current spot price. Therefore the cost
optimization aspect is also enhanced. A detailed explanation of this module is presented
in the following section 4.2

4 Design Specification

This section of the report would give a detailed design of each module that is present in
this proposal. The forecast module, of this proposal, has used two machine algorithms
namely Long Short Term Memory(LSTM) and Auto-Regressive Integrated Moving Av-
erage(ARIMA). The results of both the algorithm would be compared with the current
spot price and the result with the lowest error rate would be presented to the end-user
through the created web application. As a part of the spot instance failure recovery
module, two new algorithms like spot instance failure recovery algorithm4.2.1 and AMI
creation algorithm4.2.2 are proposed.

4.1 Spot Price Forecast Module

The forecast module is the initial step in our proposed spot instance life cycle process.
If the forecast-ed value is higher than the user bid price then the chance of spot in-
stance termination is very high. Therefore, this module would start the backup creation
process(AMI creation) once the forecast-ed value is higher than the user bid price. To
forecast the spot price in advance we need some sample data to train and create a model
to make the predictions. AWS is providing the spot price history for each instance type,
OS type, and regions that are available. They are providing the spot price history for the
last ninety days. This data was retrieved in JSON format using AWS CLI. Therefore, a
script was created a script to retrieve the spot price history for the last 90 days and it
would write that JSON output to the text file. Then this text file is converted into CSV

8



file using the python program. This CSV file is used to train and test the created model
to forecast the spot price in advance. Before creating the model it is mandatory to clean
the dataset. Cleaning of the dataset is performed with the help of the pandas library
which is available in the python. This cleaning process includes clearing the empty rows
and filling the data between the time range. Once the data is cleaned then the models
could be created to forecast the spot price in advance. In our proposal, the forecast
module is used to forecast the spot price in advance. That implies the user would be able
to see the spot price for each hour of the current day. As per our proposal, I have created
two models using two different machine learning algorithms namely LSTM and ARIMA.
In which LSTM has shown the lowest error rate so we projected the result of LSTM in
the created web application. Forecast models are created with the help of the Jupyter
Notebook. A detailed diagram of our forecast model is shown in the below figure:

Figure 3: Forecast Module

4.2 Spot Instance Failure Recovery Module

Two novel algorithms were created for this module. The web application would execute
these algorithms for every ten seconds in order to initiate the corresponding process like
instance creation and AMI creation based on the algorithm’s conditions. Those two
algorithms are mentioned below:

• Spot Instance Failure Recovery Algorithm

• AMI Creation Algorithm

4.2.1 Spot Instance Failure Recovery Algorithm

A novel algorithm is proposed as a part of this research to assure the reliability of the
service that is provided by the spot instance. If the forecast-ed spot price is higher than

9



the user bid price. This would begin the AMI creation of the running spot instance. Every
AMI is backed up with the snapshot of the corresponding instance. If a running spot
instance is terminated by the vendor due to out of bid then the created web application
would create a corresponding on-demand instance of the same type with the help of the
AMI that is created previous step. Therefore, the business continuity is ensured even
after the termination of the spot instance. The created on-demand instance will be alive
until the spot price reaches the user bid price. Once the user bid price is equal to the
current spot price then this algorithm would generate an AMI of the running on-demand
instance. Once the on-demand AMI is created then that on-demand instance would
be terminated automatically. After the on-demand instance termination, an equivalent
spot instance would be created with the on-demand AMI. This would enhance the cost
optimization. The logic of this algorithm is shown below:

Algorithm 1: Spot Instance Failure Recovery Algorithm

Result: Instance Creation
Predicted SpotPrice, User BidPrice, Termination Check, OnDemand Instance,
Spot Instance, Current SpotPrice;

FailureRecovery(Predicted SpotPrice, User BidPrice, Termination Check,
OnDemand Instance, Spot Instance, Current SpotPrice);

if Predicted SpotPrice >= User BidPrice then
SpotInstanceAMI Creation() ;

end
if (Termination Check = True) AND (Spot Instance = True) then

On-DemandCreation(SpotInstanceAMI);
end
if (Current SpotPrice = User BidPrice) AND (OnDemand Instance = True)
AND (Termination Check = True) then

OnDemandAMI Creation();
OnDemand Termination();
SpotInstance Creation(OnDemandInstanceAMI);

end

4.2.2 AMI Creation Algorithm

A novel algorithm is created in order to persist the updated data of the running instance.
This algorithm would produce an AMI for each instance based on the conditions that are
mentioned in the Algorithm4.2.2. Every AMI is associated with a snapshot of the running
instance. Therefore with the help of the AMI’s Snapshot, the content of the terminated
instance would be persisted even after the termination of the instance. This algorithm is
highly focused on avoiding the creation of Duplicate AMI. If an AMI is not created for an
instance then it would create a new AMI for that instance. If the AMI is already created
for an instance then this algorithm would update the snapshot associated with that AMI
incrementally. In order to have the updated data for instance creation. Through which
duplication in the creation of AMI is prevented. The logic of this algorithm is shown

10



below:

Algorithm 2: Spot Instance Check-Pointing

Result: AMI Creation
Predicted SpotPrice, User BidPrice, AMI Check ;
AMI Ceation(Predicted SpotPrice, User BidPrice, AMI Check);
if AMI Check = False then

AMICreation() ;
else

end
Incremental SnapshotCration(AMI);

end

5 Implementation

AWS Instance Management(AIM) is a web application that was designed in order to
implement the proposal and it would enable the end-user to make use of our proposal.
Various technologies were used in the created web application namely Python, Django,
HTML, Jquery, AJAX, Postgres, AWS CLI, and etc. The web application was created
using the Django framework which is a python web application framework. This web
application is deployed in Heroku. Heroku is a cloud platform that provides Platform as
a service. In the web application, the back-end code was written in python and the front-
end was written in HTML. Postgresql is used as the database to keep track of instance
creation and AMI creation. All the AWS interaction in our application is performed
through the boto3 python library. The technical specification of used technologies are
mentioned below.

Technical Specifications:

• Programming Language - Python 2.8.1

• Web Application Framework - Django 3.0.7

• Database - Postgres 12.3

• AWS Library - boto3 1.14.12

• Machine Learning Library - Keras 2.3.1

• Machine Learning Library - Tensorflow 2.1.0

• Machine Learning Library - Pandas 1.0.3

Web Application Link: https://awsinstancemanagement.herokuapp.com/

5.1 AWS Instance Management Functionalities

AWS Instance Management(AIM) was built with the above specifications and hosted in
Heroku and the link is mentioned above. To make use of this application the user needs to
have an AWS account and these following parameters from that account AWS Access Key,
AWS Secret Key, and Region. Once the user has this information then they would be
able to make use of our proposal by logging in to our application. This web application

11



has various modules in it namely Registration, Login, Home Page, Admin Page, and
Instance Monitor Screen.

5.1.1 Registration

Registration functionality of the AIM application would allow the end-user to register
themselves into this application. The user can get into the registration screen by clicking
on the register tab on the home screen. The user needs to provide the FirstName,
LastName, Username, Email, Password, and confirm password information to register
with the AIM application.

5.1.2 Login

The login functionality of the AIM application would allow the user to login to the
application. To log in to the application, the user needs to provide the username and
password. Once the user is authenticated then they would be forwarded to the homepage.
If the user is not valid then the user would be asked to log in again.

5.1.3 Home Page

The home page of the AIM application would update on its own based on the user login
status. If the user is not logged in then they would be able to only see the predicted
spot price4. But if the user is login then they would be able to see the search form5.
Using this search form the user can monitor their AWS instances in our application by
providing the following parameters namely AWS Access Key, AWS Secret Key, Region,
and User Bid Price. Based on these parameters my application would interact with the
corresponding AWS account through the boto3 library. The home screen would look like
as shown before for the not logged in user and logged in user.

Figure 4: Home Screen of Not Logged in User

12



Figure 5: Home Screen of Logged in User

5.1.4 Admin Page

If the logged-in user is admin user then that user can see the admin tab in the navigation
bar of the application. Once the user clicks on the admin tab then the user would be
able to see all the tables that are present in the database. Using that screen the user
could perform the Create, Read, Update, and Delete(CRUD) operations on any available
table. The admin page of our application is shown below:

Figure 6: Admin Page

5.1.5 Instance Monitor Screen

Once the user provide a valid search parameters then this screen would appear to them
as the search result. This screen would display a table with the status of every instance
that is associated with the provided parameter’s AWS account. Using this screen the user
could monitor the running instances. The logic of this algorithm4.2.1 would be performed

13



every ten seconds on this screen in order to enhance the reliability of the spot instance
with optimal cost. Various parameters are presented in the table namely instance id,
instance type, instance state, start, stop, current spot price, and spot instance indicator.
Instance-id represents the id of that particular instance. Instance type would present
the type of that particular instance. The instance state represents the current state of
that instance. Start link would allow the user to start the instance if it is in the stopped
state. Stop link would enable the user to stop the running instance. The current spot
price would present the current spot price for that particular type of instance. The spot
instance indicator would present whether the instance is a spot instance or not. The
figure for instance monitor screen is shown below:

Figure 7: Instance Monitor Screen

6 Evaluation

This proposal was implemented with the AWS Instance Management web application
and various evaluation was performed on it to ensure that the implementation is working
as expected.

6.1 Spot Instance AMI Creation

To evaluate the spot instance AMI creation scenario the user should have a spot running
spot instance in their AWS account. AWS instance management application would create
the AMI of the running spot instance if the predicted spot price for the current hour of
the particular instance is greater than the user bid price. After providing a valid search
parameter the user would see the following result:

Figure 8: Running Spot Instance

To evaluate the business continuity let us install the Postgres database in the running
spot instance. The following figures will show the before and after installation of Postgres
in the spot instance.

14



Figure 9: Before Postgres Installation on Spot Instance

The above image shows the status of the spot instance, before installing the Postgres
database. This command psql -V shows an error of command not found. Therefore
Postgres is not present in the spot instance.

Figure 10: After Postgres Installation on Spot Instance

The above image shows the status of the spot instance after installing the Postgres
database. This command psql -V shows the version of the Postgres as Postgres 9.2.24.
Therefore Postgres is present in the spot instance.

For the spot instance, AMI creation process evaluation let us consider the predicted
spot price for t2.micro Linux/Unix is 0.0035 for that particular testing hour. The user
provides a bid value of 0.0033. Since (0.0033¡0.0035) which is the user bid price is lower
than the forecasted spot price. So AMI with a snapshot of the running spot instance
should be created in AWS as shown as follows.

Figure 11: Spot Instance AMI Creation

The above image shows the created AMI id for the running spot instance. From the
AMI name, we could find for which instance the AMI was created.

15



Figure 12: Spot Instance Snapshot Creation

The above image shows the created Snapshot id for the running spot instance. From
the snapshot id and description column, we could identify which snapshot is associate
with which AMI id.

6.2 On-Demand Instance Creation

To evaluate the on-demand instance creation process the running spot instance should be
terminated. This would initiate a corresponding on-demand instance. Since the running
spot instance of t2.micro is terminated AWS Instance Management application should
create an equivalent t2.micro on-demand instance with the created spot instance AMI as
follows:

Figure 13: On-demand Instance Creation

From the above Figure, we could clearly see that an equivalent t2.micro on-demand
instance is created for the terminated spot instance.

Figure 14: AMI of On-Demand Instance

From the above figure, we could cross-check whether the newly created spot instance
AMI is used for created on-demand instance. The AMI used for this instance creation
could be revealed from the above figure.

To evaluate the business continuity we could check for the Postgres installation in the
newly created on-demand instance. The following figure provides a piece of evidence that
the newly created on-demand instance has the Postgres database in it:

16



Figure 15: Postgres Check in On-Demand Instance

The above image shows the status of the on-demand instance. This command psql
-V shows the version of the Postgres as Postgres 9.2.24. Therefore Postgres is present in
the on-demand instance. Hence the business continuity is achieved in a newly created
on-demand instance.

6.3 Spot Instance Creation

To evaluate spot instance creation condition the user needs to have a running on-demand
instance as shown before. Once the current spot price is equal to the user bid price then
AIM application would create an AMI of the running on-demand. For example, the value
of the current spot price column of the running on-demand instance is 0.0039 and the user
bid price is also 0.0039. Since (0.0039(current spot price)=0.0039(user bid price)) AIM
application should create an AMI with a snapshot of the running on-demand instance as
shown below:

Figure 16: On-Demand Instance AMI Creation

The above image shows the created AMI id for the running on-demand instance. From
the AMI name, we could find for which instance the AMI was created.

Figure 17: On-Demand Instance Snapshot Creation

The above image shows the created Snapshot id for the running on-demand instance.
From the snapshot id and description column, we could identify which snapshot is asso-
ciate with which AMI id.

17



Figure 18: Spot Instance Creation

Once the AMI and snapshot are created then the AIM application should terminate
the running on-demand instance and create an equivalent spot instance as shown above.

Figure 19: Spot Instance Creation

From the above figure, we could cross-check whether the newly created on-demand
instance AMI is used for created spot instance. The AMI used for this instance creation
could be revealed from the above figure.

Figure 20: Spot Instance Creation

The above image shows the status of the spot instance. This command psql -V shows
the version of the Postgres as Postgres 9.2.24. Therefore Postgres is present in the spot
instance. Hence the business continuity is achieved in the newly created spot instance.

18



Figure 21: Spot Instance Creation

The above figure could provide the status of each instance that is present in the AWS
console. To cross-check whether every instance is created in the AWS environment or
not.

6.4 Discussion

If the AWS Instance Management application is not used then the data associated with
the spot instance would be lost and the business continuity of the service provided by
the spot instance would be interrupted. But by using this proposal the end-user would
be able to have the business continuity even after the termination of spot instance. The
evaluation results have provided evidence to achieved business continuity. Spot instance
would be created if the user bid price is equal to the current spot price in order to achieve
higher cost optimization. Therefore with the evidence of each evaluation result I could
conclude that the proposed idea could be implemented in the real cloud platform and it
would enhance the business continuity and cost optimization.

7 Conclusion and Future Work

The principal intention of this research work is to assure the business continuity of the
service that is provided by the AWS spot instance with the minimal possible cost. There-
fore various modules like forecast module and spot instance failure recovery module are
proposed. Two novel algorithms were proposed as a part of our research namely spot
instance failure recovery algorithm and AMI creation algorithm. A web application was
created with Django(python web application framework) to implement the proposed idea.
This research work is evaluated on the AWS cloud platform. The evaluation section would
provide evidence to the business continuity of the spot instance even after the termina-
tion with the possible minimal cost. This proposal has some limitations like it would be
applicable only for the AWS users. AWs access key and AWS secret key are mandatory
to make use of this web application. This application would work for the instance type
that has the predicted value. In this research work, only a few variants of instance’s spot
price are forecast-ed. But this could be enhanced by forecasting the spot price for each
possible instance type and availability zones.

References

Baughman, M., Haas, C., Wolski, R., Foster, I. and Chard, K. (2018). Predicting amazon
spot prices with lstm networks, Proceedings of the 9th Workshop on Scientific Cloud
Computing, ScienceCloud’18, Association for Computing Machinery.

19



Buyya, R. et al. (2019). A manifesto for future generation cloud computing: Research
directions for the next decade, ACM Comput. Surv. 51(5): 105:1–105:38.

Ekwe-Ekwe, N. and Barker, A. (2018). Location, location, location: Exploring amazon
ec2 spot instance pricing across geographical regions, 2018 18th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 370–373.

Fabra, J., Ezpeleta, J. and Álvarez, P. (2019). Reducing the price of resource provisioning
using EC2 spot instances with prediction models, Future Gener. Comput. Syst. 96: 348–
367.

He, X., Shenoy, P., Sitaraman, R. and Irwin, D. (2015). Cutting the cost of hosting online
services using cloud spot markets, Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing, HPDC ’15, Association for
Computing Machinery, p. 207–218.

Khandelwal, V., Chaturvedi, A. and Gupta, C. P. (2017). Amazon ec2 spot price predic-
tion using regression random forests, IEEE Transactions on Cloud Computing pp. 1–1.

Khatua, S. and Mukherjee, N. (2013). A novel checkpointing scheme for amazon ec2
spot instances, 2013 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, pp. 180–181.

Pham, T., Ristov, S. and Fahringer, T. (2018). Performance and behavior characterization
of amazon ec2 spot instances, 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 73–81.

Qu, C., Calheiros, R. N. and Buyya, R. (2016). A reliable and cost-efficient auto-scaling
system for web applications using heterogeneous spot instances, J. Netw. Comput.
Appl. 65: 167–180.

Sabyasachi, A. S., Kabir, H. M. D., Abdelmoniem, A. M. and Mondal, S. K. (2017). A
resilient auction framework for deadline-aware jobs in cloud spot market, 2017 IEEE
36th Symposium on Reliable Distributed Systems (SRDS), pp. 247–249.

Song, Y., Zafer, M. and Lee, K. (2012). Optimal bidding in spot instance market, Proceed-
ings of the IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30, 2012, pp. 190–
198.

Yi, S., Andrzejak, A. and Kondo, D. (2012). Monetary cost-aware checkpointing and
migration on amazon cloud spot instances, IEEE Transactions on Services Computing
5(4): 512–524.

Zheng, L., Joe-Wong, C., Tan, C. W., Chiang, M. and Wang, X. (2015). How to bid
the cloud, Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, Association for Computing Machinery, p. 71–84.

20


	Introduction
	Overview on AWS EC2 Spot Instance
	Research Question

	Related Work
	Forecast Spot Price Models
	Enhancement in The Reliability of Spot Instance
	Novelty of This Proposal

	Methodology
	Spot Price Forecast
	Spot Instance Failure Recovery

	Design Specification
	Spot Price Forecast Module
	Spot Instance Failure Recovery Module
	Spot Instance Failure Recovery Algorithm
	AMI Creation Algorithm


	Implementation
	AWS Instance Management Functionalities
	Registration
	Login
	Home Page
	Admin Page
	 Instance Monitor Screen


	Evaluation
	Spot Instance AMI Creation
	On-Demand Instance Creation
	Spot Instance Creation
	Discussion

	Conclusion and Future Work

