
Hybrid Reinforcement Learning based code
offloading in MEC

MSc Research Project

Cloud Computing

Abhinash Pati
Student ID: 18189440

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquierdo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Abhinash Pati

Student ID: 18189440

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Manuel Tova-Izquierdo

Submission Due Date: 17/08/2020

Project Title: Hybrid Reinforcement Learning based code offloading in MEC

Word Count: 7115

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Hybrid Reinforcement Learning based code offloading
in MEC

Abhinash Pati
18189440

Abstract

In recent times, the Mobile Edge Computing paradigm has become a popu-
lar paradigm in latency reduction for resource-constrained devices by utilizing the
concept of code offloading to another execution platform. With this, the IoT devices
have got a boot in data processing capabilities. This field is being widely researched;
however, many issues persist. Although many method have been developed to get
real-time results from such paradigms, it still not perfect. A variety of unpredict-
able constraints such as device roaming and unreliable network conditions hinders
the optimal operation of the code offloading, resulting in delays.
This paper proposes an online algorithm using deep reinforcement learning and
sampling and classification approach to find the most suitable execution node in
an execution platform. The primary purpose of the algorithm is to obtain the best
fit node where if the task is offloaded, the total cost of execution (TCE) will be
minimum. The algorithm considers the Femto cloud-based mobile cluster as a po-
tential platform for task offloading. It implements a Deep Q-Network which learns
from the error generated during the decision-making process.
The results, which are based on publicly available datasets used to simulate the pro-
posed system, show that the proposed algorithm performs better than the baseline
algorithms without any learning component.

1 Introduction

Today’s mobile devices are more powerful and sophisticated than the computers that
NASA used back in 1969 Kent and Williams (2018). The latest generation of mobile
devices has gone beyond being just a communication device. In this era of digitization,
mobile devices and IoT devices have matured a lot and have reached a new height in
integrating sophisticated technologies Torres Neto et al. (2019).
However, these devices still can be compared with traditional data centers that can pro-
cess billions of terabytes of data in seconds. By shifting complex and computationally
intensive tasks to these data centers, both IoT devices and mobile devices have solved
many problems requiring high computation capabilities. However, for real-time based
application, these solutions have not helped much because of latency issues.
Latency is the delay occurred due to the transmission of the data and code to another plat-
form for execution. Real-time applications such as Vehicular Adhoc Network (VANETs)
require the results to be acquired as quickly as possible and have a relatively low threshold
for delay Vaquero et al. (2019). Mobile-Edge-Cloud paradigms have recently emerged as

1



a potential candidate platform for latency intolerant applications. They have signific-
antly reduced these devices’ energy utilization but still have setbacks in specific areas
where the parameters responsible for reducing the latency are inconsistent. For example,
device mobility is a hot topic among the researchers where they are trying to find the
best way to reduce computation latency due to unpredictable mobility patterns of the
users Cicconetti et al. (2019).

When a mobile device moves from the access range of one edge device to another
edge device, latency can occur because of task migration. The latency that occurred due
to this transmission depends on the transmission policy introduced in the application.
There are always some risks involved when migrating an active task from one node to
another. One can also program the application to forward the execution request to the ori-
ginal node via the new node, but the end SLO needs to be fulfilled Meurisch et al. (2017).

Many researchers have actively proposed many solutions to curb the latency, causing
factors to make the execution of real-time application smooth. This paper proposes a
hybrid algorithm composed of deep Q-Network and sample and classification approach
for selecting the best node out of a cluster of nodes to schedule the code offloading to
achieve a minimum cost of execution.

Code-offloading involves two major steps

1. Partition the code into order to offload”: The code can be a class, a method, or
merely a few lines within a method. This can be achieved by running the application
through a code profiler. The more loose couple the code is, the more it can be sliced
for code offloading and vice verse.

2. Scheduling the task execution on a particular node: This step involves
selecting, scheduling, and queuing of the tasks in the node. The system has to
identify a node in which the execution can occur most efficiently. Various factors
that lead to latency are weighted in this step to analyze and select the best fit node
that will generate a reward to the system of having the minimum cost of execution.

1.1 Research Question

Can a hybrid algorithm composed of deep Q-Network with sample and classification
achieve a low latency cost while code-offloading in the MEC paradigm?

1.2 Justification

The proposed solution tries to solve 2 using a hybrid AI-based algorithm. The algorithm
uses deep Q-Network based reinforcement learning to gradually determine the best node
for scheduling the task that would have a minimum cost of execution.

A real-life use case scenario mentioned in Habak et al. (2015) as an example is taken
up, and the entire solution is based on it.

Today, everyone has atleast one mobile device with them. Although every user has
a different usage pattern, many user’s devices are under-utilized most of the time. The
utilization rate also differs at different times of the day. For example, during the night

2



when the user is sleeping, the device may be ideal for a vast amount of time, making these
mobile devices a potential platform for code-offloading. The work proposed is limited to
selecting the best node where the execution (latency) will be minimum. I am assuming
that the code that needs to be offloaded, has already been identified from the application
as mentioned in 1

This paper is further divided into five sections. Section 2 shows the background
work done so far. Section 3 gives the general idea about the system and its component.
The system architecture and system flow are described in section 4. Section 5 explains
the proposed algorithm, along with its internal working. The proposed system is evalu-
ated, and the corresponding results are compared in section 6, and finally, the paper is
concluded in section 7.

2 Related Work

Latency during code-offloading has always been a widely researched area for empowering
resource-constrained devices. In the paper Aazam et al. (2018), the author has examined
numerous recommended mechanisms for Code-offloading. The author starts by illustrat-
ing different criteria used to decide whether to offload to a particular node or process it
locally. Following this, the paper presents various platforms and models used with its ad-
vantages and disadvantages, showcasing its core purpose and flexibility. It also analyses
various techniques, algorithms, and AI-based approaches proposed by various authors to
solve specific issues during code offloading. The proposed paper has considered a few of
these criteria and models for evaluating the decision for offloading while taking the MEC
model and an ad-hoc cluster of mobile devices known as FemtoCloud. The different ap-
proaches analyzed in Aazam et al. (2018) have been taken as a baseline for creating the
foundation of the problem discussed in the proposal which has been further discussed in
section 4.

2.1 Code Scheduling

As discussed in section 1, once the parts of the application that demand execution else-
where are identified, a scheduling policy needs to be placed that will meet the defined
SLO. The task to be executed can be interpreted as a workflow or direct acyclic graph
(DAG), consisting of interlinked or individual tasks. The workflow’s computational re-
quirement is based on the task size and the deadline detailed in the SLA and may vary
as each task may not demand higher computation power. If such tasks are assigned
to any random node, it may create the dilemma of resource over-utilization or resource
under-utilization. The primary purpose of defining a scheduling policy is to make sure
the resource consumption are optimal, and the latency cost is kept to a minimum AD-
HIKARI et al. (2019).
The authors in ADHIKARI et al. (2019) have studied numerous work related to schedul-
ing policies for workload in multiple platforms, including MEC. The concept of work-
flow, along with its types, has been demonstrated and compared by the author. The
strengths and weaknesses of popular algorithms associated with task scheduling have
been illustrated along with various criteria for defining the scheduling policy. The de-
tailed evaluation presented as well as the insights stated in the paper has contributed to

3



the development of the proposed online algorithm.
Cicconetti et al. (2019) has offered a serverless architecture skeleton to reduce the latency
during offloading in an edge-cloud paradigm by choosing a node with the least executing
time for the task by calculating the processing time using SRPT. The calculation of the
overall processing time involves parameters such as the network delays and computational
delay while determining the best node.
While determining the network delay is as simple as subtracting the total time taken with
the computational time, determining the computation delay is not so simple, especially
in a cluster consisting of heterogeneous nodes. The author proposes a mechanism to
determine the computational delays from the history consisting of metadata about the
tasks such as task size, system load during the execution. The equation stated in section
4 are derived using the equation proposed in this paper. The author has also proposed
a reset mechanism for resetting the stored meta-data for resolving scenarios in which a
new node while being evaluated, was estimated to be overloaded or down because of a
temporary outrage and in such case, the system may never consider this node as reliable.
The paper further presents an innovative skeleton to evaluate algorithms and protocols
in MEC paradigms, and the results show that it works better than the other mentioned
frameworks in the paper.
The framework uses a mix of mathematical, cloud, and testbed models to measure the
latency produced by the supplied algorithm and compares its performance with two other
baseline algorithms. Their evaluation’s outcomes confirmed an improvement of satisfac-
tion of users by one fifth when compared to the static allocation of the node and achieving
similar performance to other approaches mentioned in their research.
However, the paper ignores the cold start cost of the serverless function. Also, the as-
sumption taken that the nodes fail rarely is not ideal, especially in case mobility is of the
devices is involved. While leaving one node’s range, the device may enter a zone where
no node is present and local processing is the only option in such scenarios.

2.2 Code Queuing

Code-offloading generally happens in an ever-changing setting with parameters such as
network connection, the utilization rate of nodes, changing constantly, and therefore needs
a practical policy to do it efficiently. Developing an AI-based approach can help accom-
plish an effective decision-building policy that favors the most reliable and cost-effective
node for offloading by examining dynamic parameters’ patterns. A scheduling policy’s
main objective is to meet the stated SLO, while resource utilization is kept optimal. If
this can be converted into a series of automated steps, it would significantly raise its
reliability and usability. Applying an AI-based approach can help gradually improve the
applied policy and finally reach a stage where it is near perfect. When scheduled for
offloading, any task can be analyzed beforehand based on its parameters, and a policy
can be applied to determine the most suitable node for execution. A model can then
be gradually trained for finding the best node when a task with similar parameters are
scheduled in the future. The proposed work is based on such an approach where DQN
based reinforcement learning is applied for determining and training the policy to decide
the best node for offloading, further discussed in section 4.
In Xu, Li, Huang, Xue, Peng, Qi and Dou (2019), the author explains EACO, which is
an Energy-aware computational offloading method. The recommended work attempts to
reduce energy consumption and latency by practicing a non-dominated sorting genetic

4



algorithm II (NSGA-II) to optimize the offloading sequence. The author illustrates an
application use-case of offloading a mobile device workflow via an Access Point (APs).
When the system receives an offloading request, it tries to find the nearest AP connec-
ted to a data center to deliver the execution request. Once this is done, the problem
is reduced to finding the shortest route between the connecting APs. NSGA-II helps
in determining the shortest path and hence reduces the offloading time. However, this
approach may encounter some hardship when multiple routes or more than one AP con-
nected to a data center. To resolve this, simple additive weighting and multiple criteria
decision making is applied. This approach is quite suitable for the proposed work as the
FemoCloud based mobile cluster may have more than one suitable node with near similar
parameters. Applying an MCDM or SAW approach to various weight parameters will
help in determining the most appropriate node.
Applying MCDM can help train the Q-Network for making a quick decision on selecting
the node in case ambiguous nodes are present in the cluster. However, only relying on
MCDM or SAW may not necessarily produce the most dependable results and can even
lead to exploitation vs. exploration problems.
When a roaming mobile device moves from the range of one node to another, it may end
up connecting to a node that has never been evaluated, and the system is not confident
about the reliability of the node. The authors in Meurisch et al. (2017) have taken up
this issue. A state of exploitation is seen when a system over chooses a known node for all
offloading tasks rather than exploring other nodes in fear of not finding the best node and
hitting a penalty. Offloading any critical computation to these nodes is very risky as the
node is not known in advance and may lead to system failure, especially in an application
that demands a low latency offloading environment. To solve such exceptional cases, the
author proposes splitting the task into numerous micro-tasks and executing them on the
unknown nodes to test its reliability and computational capabilities and gradually build
trust. The results show that by following such a strategy, the system achieved 85 %
correct predictions about an unknown node’s reliability and computational capability.
The exploration vs. exploitation problem has also been taken up in Pinto et al. (2018).
In this paper, the author has taken this problem to develop a decision-making policy
with a minimum cost of execution. The paper mentions a situation in which when a
system encounters an unknown node, its decision making efficiency is affected as it falls
into a dilemma of whether to explore the new node or exploit the known nodes only. A
serverless solution is presented by the author to strengthen the decision making policy.
The system follows a sequence of steps to decide the offloading node. The tasks are
split into light, heavy, super heavy, and obese categories and different parameters of the
nodes are weight to generate a rank to decide the best suitable node for execution. In
case the system does not have any information about any node in the cluster, it selects
a node based on a greedy approach, primarily focusing on the average time taken for
task completion. An Upper Confidence Bounds (UCB) based approach with Hoeffding’s
Inequality is presented in the paper, to generate the selection policy to balance between
exploration and exploitation problem. For generating selection policy for known devices,
a Bayesian UCB based approach is used.
Confirming the reliability of unknown nodes is quite relevant to the proposed solution as
it involves FemtoCloud based mobile clusters, which can have a large number of hetero-
geneous devices that can join and leave at any time. The solution proposed by Meurisch
et al. (2017) and Pinto et al. (2018) are well thought out and solve the problem; however,
they still might not be able to solve all aspects of the issue. In the case of Meurisch et al.

5



(2017), splitting of tasks into numerous micro-tasks can be quite tedious and depend on
the level of cohesion of the code. In the case of Pinto et al. (2018), the node history is
not maintained, and if a node is marked as unreliable, the system may never explore it
again.
The authors of Cicconetti et al. (2019) have proposed a reset mechanism to resolve
such scenarios. The mechanism resets the meta-data stored after a certain pre-defined
threshold of time. The same mechanism can also be applied while probing an unknown
node. While probing, store the data about the node and periodically delete it and again
probe it to understand the node’s current reliability level and change its ranking accord-
ingly.
Consider a real-life example of hiring an employee. The interview process can be termed
as the probing process to understand the capabilities of the candidate. After getting a
rough idea about their capabilities, few non-critical tasks can be assigned to them for
trust-building and, therefore, gradually increase the candidate’s ranking. For tasks that
do not demand more computation power or are not urgent, they can be scheduled on
unknown nodes to understand the node’s capabilities.
In Shekhar et al. (2020), a middleware for selecting a node of offloading is proposed.
The decision is made based on factors that direly impact latency, such as network re-
liability. The selection problem is divided into two sub-problems: to offload or process
locally and where to offload? It selects the node for offloading by calculating the total
cost of execution, including pre-processing cost, local execution cost, offload cost, and
network cost. The decision to offload or process locally is made via a greedy heuristic-
based algorithm. The decision process focuses mainly on the execution cost as well as
the energy consumption locally. Executing a task in the device may result in a battery
drain, but if the total cost of offload exceeds the defined deadline, the offload’s purpose
is defeated, and therefore the system makes a trade-off to meet the deadline. With each
successful iteration, the middleware refines its prediction model to predict the variance in
parameters and its corresponding latencies, making the decision process nearly perfect.
Lyapunov drift-plus-penalty optimization, Markov decision process (MDP), SAW (simple
additive weighting) and MCDM (multiple criteria decision making) are widely used for
creating an AI-based selection solution Li et al. (2019), Alam et al. (2019) ,Xu, Liu,
Luo, Peng, Zhang, Meng and Qi (2019). However, these are not perfect and have some
drawbacks. For example, if we use the Markov Decision Process-based algorithm to find
the optimal node, we need to first discrete the system, but that may not be feasible if
the solution space becomes too large.
Liu et al. proposal in Liu et al. (2019) can be asserted as the most similar to what I have
proposed. The author proposes a deep Neural Network (DNN) based optimization solu-
tion that achieves minimum latency and low battery consumption levels. Code offloading
is described as a discrete-time Markov decision process(discrete-time MDP) problem, and
implementing an AI-based approach can help find the best solution. For this, the author
has applied an actor-critic reinforcement model that uses policies to advance its actor to
get the maximum reward. The model consists of actors: action to perform, a states: of-
floading or not, and a reward: minimum cost of execution. The benchmarking is done in
two scenarios: offloading to the cloud and offloading to the edge node. The results show
that power consumption is inversely proportional to task size decrease, but the overall
performance is better than DQN.
Nevertheless, the mobility factor of a mobile device and its computational capabilities
is ignored. In my proposal, I tried to integrate the mobile’s computation environment

6



as a potential platform for the task while taking a scenario that involves the mobility of
multiple mobile devices that can arrive and leave the range of the edge devices at any
point in time.

3 Methodology

This section presents the associated hypotheses 3.2 related to the proposed solution along
with an application use case 3.1

3.1 Application use-case

As mentioned in section 1, the classroom use-case discussed in Habak et al. (2015)
is used for explaining the validity of the proposed solution. Many mobile devices are
available from different users in public places such as train stains or airports or a cafe
shop. These devices do not necessarily use 100 % of their computation power and can
be considered a potential execution platform. At NCI, we use RFID readers to mark
attendance. Consider a classroom with a camera-based IoT device responsible for taking
attendance from the video feed. The camera module records the video of the class period-
ically, meaning at any time it may or may not be recording for attendance. The system
is responsible for marking the students’ attendance with a deadline of fifteen minutes
before the end of the class.
Applying a face-matching algorithm to several video-frames may require a higher compu-
tation power. Moreover, face matching should be done without breaching the deadline;
otherwise, the attendance marked may not be valid. The system has to decide whether
to process the data locally or offload it to some execution platform. The system needs to
choose the execution platform, which can provide the minimum latency results without
breaching the deadline. The execution platform consists of FemtoCloud based mobile
device cluster, edge node, where the system is deployed, and a cloud data-center.

3.2 Assumptions

The following section contains pre-requisites and assumptions made for the proposed
system.

3.2.1 Pre-requisites

• An independent attendance management system.

• FemtoCloud based mobile cluster, as explained in Habak et al. (2015).

• A local network for connecting the cluster of devices with the system, preferably
WiFi, similar to NCI’s ”Eduroam”.

3.2.2 Assumptions

• The client-side is an IoT device with a camera having little computational capab-
ilities such as in a Raspberry pie or Pandaboard connected with a 1080p camera.

7



• The video frame quality is clear and high.

• For each period, an offloading task can be submitted with a fixed deadline.

• The input data is assumed to be more extensive compared to the output result, and
therefore, the download latency is taken as 0.

• Each student within the campus have atleast one active mobile device, connected
and registered with the system via the client-side application.

• Any device can join or leave the cluster anytime.

• The network quality of the cluster devices is not constant and varies with the
network signal strength.

• Every connected node has some load at any point in time.

• Latency delay for cloud is far worse than the edge, while the latency delay for
FemtoCloud is acceptable.

• Device mobility is within the same complex and, therefore, in a small geographical
area, which is negligible. For simplicity, I am ignoring any altitude-related attribute
when calculating the distance between a mobile device and the edge node.

4 Design Specification

4.1 Architecture

The system architecture is shown in Fig. 1. The system comprises three components:
camera-based IoT device for recording and sending video frames, control Manager (CRM)
for generating a node selection policy, and node cluster for offloading tasks.
Consider a set of edge nodes represented by E = e1, e2, e3... and M = m1,m2,m3...
number of mobile devices present in the FemtoCloud. Consider a time period containing
T = t1, t2, t3... time slots. As stated in 3.2, the mobile devices are not stationary and
move from the range of one edge device to another at different time slots. The client can
generate an offload request at any period, which will have a deadline before which it needs
to be completed. If this is not meet, the task is a timeout and the request is dropped
from the current execution platform and directly sent to the cloud for the completion.
The main focus of the proposal is the smart selection of the execution platform and
therefore for simplicity, I am assuming that all the execution platform can communicate
and collaborate fluently and if an application workflow is migrated from one execution
platform to another (such as from FemtoCloud to Cloud Data Center), the chances of
failure due to migration is ignored.
Fig 2 represents the application scenario taken up in this proposal. The scenario is
composed of several mobile devices that are either stationary at a location or either
moving along a path. The scenario also consists of various edge nodes interconnected
via LAN for data transmission and communication. The scenario is divided into few
time slots, and each time slot has a different number of available mobile devices in the
FemtoCloud, and they may not be connected with the edge node in their vicinity. The
edge nodes are stationary, but the mobile devices can be both stationary and moving in

8



the vicinity of the edge nodes.
The Total cost of latency in our scenario is composed of six components: pre-processing
time including the video frame upload to the CRM, time is taken by the CRM to select the
best execution platform, the actual execution time of the task and the communication cost
between the CRM-Platform-Client. The total cost of execution TCE is the summation
of the time taken from the task initiation to completion.

TCE = Lpp + Lns + Lte + Ln (1)

Lpp is the local processing latency of the client device, including the upload of the video
frame to the CRM. Lns is the latency due to the analysis and calculation of the workflow
for determining the best fit node. Lte is the time taken for execution of the workflow in
the selected node, and Ln is the network delay.
Each task needs to be completed within a deadline. therefore,

Tdeadline ≥ max[Lpp + Lns + Lte + Ln] (2)

Figure 1: Proposed System Architecture

If we assume that the client IoT device and the node in which CRM resides in the same
complex, the variance of Lpp will depend on the distance and the uplink network speed
between the device and the node. Liu et al. (2019) is using signal-to-noise ratio and
bandwidth to calculate the uplink speed. If we ignore the client and the node’s altitude
distance, we can fairly say that Lpp u 0 or Lpp u∞ if the node or the network is down.
Similarly, Lns depends on the distance between CRM and the selected execution node.
Whereas, Lte depends on the utilization rate of the node and the size of the task.

4.2 System Flow

The client device extracts the required data from the video recorded and uploads it to
CRM for processing. The CRM receives the request along with the data and the deadline.
It then calculates the total execution time based on different parameters to generate a
selection policy to select the best fit node with minimum latency. The CRM also trains
its Q-Network to predict the latency changes due to the variations in the parameters and
gradually polishes the selection policy, further explained in section 4.2.
Since any mobile device can join and leave the FemtoCloud cluster at any time without
a need of any administrator, the node availability is highly unpredictable. In case a node

9



Figure 2: System Sequence Diagram

is currently executing an offloaded task drops from the cluster, the system will hit a
time penalty and have to restart the task with higher priority to make up for the loss
of time. A heartbeat mechanism with a fifteen minutes time delay may help in avoiding
such scenarios. This heartbeat can also be used to update the node ranking by checking
parameters such as the battery, utilization rate, and network strength.
If, at any point, a new device joins the Femto cluster, which has not been evaluated yet,
the ranking of the device will be based on the model number of the device. The system
ranks the device based on Linpack value. ”Linpack is the most popular benchmark for
ranking of supercomputers and high performance systems by performance. General idea
of Linpack benchmark is to measure the number of floating point operations per second
(flops) used to solve the system of linear equations. Top500 list of the most powerful
supercomputers in the world is based on the Linpack results” ?. I am using the Linpack
ranking dataset for the mobile device available in ?, which consists of around 1000 mobile
devices with attributes such as CPU type, CPU Cores, Clock Speed, OS, and ram. It
contains the data for both android as well as iOS devices, and the ranking of Linpack is
based on basic vector and matrix operations.
A notification is sent by the node to the CRM when it finishes the task execution. The
CRM retrieves the output in a deadline first approach. While receiving the output, the
system fires its AI module to build a training model from the memory to train the Q-
Network. Both network and execution delay are calculated based on the equations derived
from Cicconetti et al. (2019) and Shekhar et al. (2020) along with weighted parameters
such as Linpack ranking.
Since mobile devices have a limited battery capacity, if too much battery is consumed by
the task that has been executed on it, it may affect the battery life, and the user may
or may not offer its device of executing a task in the future. For preventing this, I am

10



Figure 3: Application use case

placing a threshold for battery consumption BTthreshold. W.r.t, we can say that whatever
the task is, if the battery consumption has exceeded the threshold defined, the task will
be dropped from the device immediately. Task will also be dropped if the execution time
exceed the defined deadline i.e., Tdeadline > maxTCE. Lets denote the dropped task as
Dn(t) = 0, 1, where t is the time slot at which the task is dropped from the mobile device
n. The dropping of the task will certainly involve some cost Dcost, therefore the total
cost can be further described as:

TCE(t) = max[Lpp + Lns] + [Lte +Dn(t) ∗Dcost] + Ln] (3)

With this, we can decide on selecting the execution platform where TCE is the minimum.

Nodeselection = min
∀m⊂M(t),∀e⊂E(t)

lim
T→Tdeadline

T−1∑
t=0

TCE(t) (4)

The node selection can be made using various optimal routes finding algorithms such as
meta-heuristic or genetic or MDP. In Aazam et al. (2018), the author has clearly defined
all the possible scheduling algorithms used by other researchers to find the optimal node
for scheduling the task. However, most of these traditional optimization algorithms have
some demerits, as described in section 2. ADHIKARI et al. (2019) also mentions that
some authors have used hybrid algorithms composed of two or more types of an algorithm
to balance out the disadvantages. In this paper, I intend to take the same approach and
solve the optimal node problem with an algorithm composed of Deep Q Network as well
as SAC based algorithm.
Deep Q Network is a type of reinforcement learning in which an agent or an actor learn
an action or behavior that would give it the most reward. Moreover, Q-network is used
to examine the Q-function using neural networks. Using Q-Network, one can reduce the

11



variation among the optimal values and predicted values Liu et al. (2019). I choose to
use DQN because of two reasons: firstly, both the optimal as well as predicted values
in Q-Network are based on the same network, and therefore it is not easy to make the
predictive values as similar as the optimal value which makes the actor learn policies that
may or may not lead to the desired result. Secondly, DQN is more abstract, and because
it can use data stored in the buffer for leaning, the trainable weights of the network
(represented by θ) become independent, and any update to the predicted network does
not impact the optimal network Liu et al. (2019).
However, this model of actor and action may have a performance impact. To solve this
part, this paper has applied an approach that also involves SAC based optimization.

5 Implementation

The sequence diagram of the system is shown in Fig. 3. After the client uploads the
video frame, the CRM performs analysis and estimates the execution time and the priority
based on its deadline. The selection of the node for offloading is then followed.

The process flow of the proposed Deep Q-Network algorithm is shown in the state

Figure 4: System State Diagram

diagram in Fig 4. The entire semantics of the proposed DQN algorithm is divided into
two sections, solving the Nodeselection problem to find the node with minTCE along with
scheduling the offload (action) and updating this decision mechanism to yield the best
results (reward). The action can be achieved using DQN, and the desired rewards can
be tailored to the target values by training a set of a random batch of samples from the
buffer memory to train the DQN model.
Let us assume that a mobile device Mi is connected with the edge node Ei at a time slot ti.
At that time slot, the CRM may or may not have an offloading task for the devices. This
problem of task availability at a certain time slot can be stated as a probability function
of Bernoulli distribution Pti = [0, 1] where Pti = 1 represents that there is a task available
for offloading. Let us say the video size that needs to be processed and split into a set of
images be Dclient, and the data size received for the offloading be Doff . With this, let us

12



also assume that the processing power or the CPU cycles required for the execution of the
data is Cclient and Coff for edge and mobile devices respectively with Fclient and Foff as
the frequency of the CPU at the respective platforms. Each edge node can have a limited
number of tasks running at any point in time, each mobile device can have only one
offloading task running, and the cloud data center can have any offloading task running.
This assumption is made purely based on the resource capacity of these platforms. Lets
denote N = n1, n2, n3... as the node where the offloading is to be scheduled if at time slot
t, Pti = 1. N can be a local device, Femto cloud-connected mobile device, and a cloud
data center. When computing the best fit node for execution, if the task at hand has a
very short deadline Tdealine ≥ maxTEC or the current capacity of the local device where
CRM is deployed is enough to execute the task without breaching the deadline then its
better to execute the task locally. In such scenario, TCE ' 0

5.1 Proposed algorithm

As mention in the section 4, I intend to solve the problem of selection of node for code
offloading using deep Q-Network as well as Lyapunov optimization. Any DQN algorithm
is composed of three things: state, action, and a reward.

1. State: The capacity or the capabilities of the execution platform.

2. Action: Decision to offload to a particular platform, either Femto cloud, edge, or
the cloud.

3. Reward: Minimum latency during code offloading.

This can be represented as a function of Q Network. The system’s state can be divided
into two parts: the maximum capacity as the device or platform and the available capacity
at time slot t. The action is the probability function stated Pti in section5. The reward
is executing the task with a minimum cost of execution, i.e., executing the task with
minimum latency. Let us denote the total cost of execution in the local environment
and offloaded environment as TCElocal and TCEoff , respectively. The final aim of the
algorithm is to maximize the reward of R.

TCEDQN =
nn∑

N=n1

αN ∗ TCEoffN + (1− αN) ∗ TCElocalN (5)

This equation 5 is derived from the DQN Q Function, as stated in Liu et al. (2019),
where α is the decision to act or not. From this, we can calculate the reward of R.

R = g ∗RTCE where, (6)

RTCE = 1− TCEoff

TCElocal

(7)

Solving the best node problem in order to determine Nodeselection is a bit difficult task
as it is a non-convex optimization problem ADHIKARI et al. (2019), ?. This is why I
choose to use a Sample and Classification (SAC) approach to solve this problem. In my
algorithm, I assume that the error produced is independent of the target value in each
iteration of the learning phase. This approach is also applied in ?.
The The proposed algorithm first initializes the DQN network with random values for θ,

13



representing the different parameters to be used in DQN for building offloading policy.
The parameters are set randomly for every time slot t ⊂ T . The general idea is to
generate a set of casual offloading actions. These generated actions will then be tested
against the offloading policy to determine whether the corresponding action yields the
most reward or not.
The DQN takes this set of actions, generates the reward based on the action parameters,
creates a new pair of state and action, and stores it in the buffer memory. Before doing
so, it has to quantize the actions into K-binary action meaning, creating a set of state-
action pairs that need to be tested again, a hypothesis, out of which the best-fit action
is chosen by solving equation 4. However, this best fit node is not necessarily the best
node because we have taken random variables in the parameters. The algorithm applies
a Sample and classification approach to check if its truly the best node or not asserting
a hypothesis. Sampling is done from the action previously generated by the DQN.
Here, sampling is based on a rule that once a task hits its deadline Tdeadline, there involves
a penalty, and the task is to be immediately shifted to either local or cloud data center.
It is best to avoid penalties as it decreases the reward of the action. Before proceeding
to solve the best node, any mobile device where a task is already running Pti = 1 is
removed from the set. Although a mobile device which has a task running may have
enough capacity to accommodate another task since the environment of the Femto cloud
is too volatile, i.e., any device can join and leave at any time, there is a high risk of hitting
a penalty if the selected node leaves the premises. To avoid having multiple penalties,
each mobile device is only chosen iff it is not running any task currently as well as the
battery threshold of the mobile device has not been exceeded.
To verify if the generated solution is the best node or not, again a random action is
generated with a greedy approach and then compared with the previously generated
action. Simultaneously, when the previously generated action is not the best fit node,
the entire process is repeated until we find the best fit node. Once we find the best fit node
from the set of a generated node (action) by DQN, we proceed to train the DQN to select
similar values for the node for generating future actions. To do so, a random batch is
taken from the buffer memory to train the DQN. Based on the training, a new offloading
policy is generated, and in the next iteration of the time slot, this newly updated policy
is used to generate better action, therefore, improving the decision making process. The
best fit node returned as the output.
To solve equation 4, the system compares the parameters of various weights during
the start of the decision making process. The weights are task size, Linpack ranking of
mobile devices connected, the available capacity of the edge devices, the distance between
the device and CRM, and battery level of mobile devices. Based on these, the system
calculates the most suitable node for executing the task.

14



Algorithm 1 Proposed Algorithms using DQN and SAC approach

Input: task info
Output: best fit node
Data: selected node history
Initialize variables
SelectedNode = null
for each t in TimeSlot T do

Initialize DQN with random values θ and empty memory.
Generate a greedy offloading action by selecting random node.
Quantize the generated action into K-binary
Calculate 5 by solving 4
S = Generate best fit action
for each candidate node S do

if At time slot t ∀ T, Pti = 1 then
if S.Contains(Type.”Mobile”) then

remove all nodes where battery threshold is BTthreshold ≥ 15%
remove all nodes from S where Pti = 1 /* If any task is already

running remove it from the list of potential candidate */

select random nodes from candidate Node S from all possible nodes available
where ∀m ⊂M , ∀e ⊂ E
set N(St) = 1 /* Assign the randomly selected node */

N(t) → minTCEDQN /* Calculate TCE for the node by solving 5 */

if node is Type.”Mobile” then
CurrentBatteryOfDevice = S.Node.Battery

let rand = uniformly sampled value from S for each node in rand do
apply greedy policy for selected node and store results
Snew = Generate best fit action using values from rand

if Snew is not better than S then
repeat the process untill best fit node found

else
Snew(Pti) = 1
update memory related variables
CurrentBatteryOfDevice = CurrentBatteryOfDevice - S.Node.Battery
update battery threshold related variables
SelectedNode = Snew Uniformly sample a batch of data set from the memory
Train the DQN

return SelectedNode

s

6 Evaluation

6.1 System Simulation

In my simulation environment, I have used three datasets for simulating the proposed
algorithm. I have used edge sites location in Melbourne data taken from ?. The dataset
is generated from the Australian Communications and Media Authority for the radio

15



base station dataset and user location details. Each edge site has a limited coverage area
around which users are connected to it. ? is the dataset that contains the ranking of
different mobile devices with their configuration and OS details. The system configuration
that are used are presented in Table 1. The values used are all random and doesn’t
have any correlating with each other. This is done in order to simplify the evaluation
otherwise, we need to go further and define each parameter based on various other factors.
The overall cost for task execution TCE is the main criteria taken for evaluation.

Table 1: Configuration Parameters

Parameters Assigned values
Time Slot Length 3 ms
Number of Time Slots 50
Task Dropped Penalty 2 ms
Average Task Deadline 2 ms
Probability of a task available for offloading 0.6
Unit CPU Cycle 737.5
Local Input Size 100 bits
Local CPU frequency 1.5 GHz
Max battery consumption allowed 15%
Edge Input Size 3000 bits
Max Assigned Tasks in edge 4
Edge CPU freq 32 GHz
Bandwidth 1.5 GHz
Min Distance 150
Max distance 400
Number of Mobile devices 10
Capacity of Memory Structure 1024
Update interval for adaptive K 32
Size of train data 80%
Size of Test data 20%
Learning rate 0.01
Batch size 100

6.2 Benchmarking

In paper Aazam et al. (2018), Alam et al. (2019), Cicconetti et al. (2019), the
author have evaluated their proposed system with general baseline algorithm as a Greedy
algorithm. The authors have tested their proposal against the results obtained without
the system’s presence using a baseline algorithm. I also took the same approach as I
could not find any direct code related to the implementation of the proposed solution in
various papers reviewed in section 2.
The proposed algorithm is evaluated against three algorithms.

1. Randomly selected: Each time a task is available for offload at any time, out of all
the nodes available in the cluster, a random node is selected at once, and the task
is scheduled, and no consideration to any parameters is given.

16



2. Nearest node selected: Each time a task is available for offloading at any time, out
of all the nodes available, the node which is the nearest to CRM (around 150 to
200m) is selected, and the task is scheduled there for execution.

3. Local node only: Each time a task is available for offloading, the execution takes
place locally on the edge device where the CRM is deployed.

6.3 Results

As shown in Fig 5, the experiment done shows that the proposed algorithm has a better
performance when compared with at least two baseline algorithms define in 6.2. It
shows tremendous improvement over randomly selected nodes for offloading. The graph
indicates that my algorithm performed at approx. 81% better than randomly selection
algorithm, 27% improvement over the nearest selection algorithm.
However, compared to local execution, the proposal algorithm lags around 38%. This
can be since there is no cost of analysis of the task in local processing and no cost of
network delay. The only cost that involves in executing a task in the local device is the
cost of execution of the task, i.e., Lte and therefore, in this case, TCE =u 0.

Figure 5: Proposed System Architecture

7 Conclusion and Future Work

This paper has proposed a reinforcement learning-based algorithm that determines the
best fit node among several nodes involving edge device and Femto clouds based mobile

17



devices for scheduling code offloading. The proposed work can efficiently choose an exe-
cution platform by taking various parameters available then by weighing each parameter
and applying a hybrid approach involving DQN and SAC to solve the problem with the
shortest total cost of execution. The learning component used in the algorithm makes use
of Q-Network to learn the past offloading action taken up by the system and gradually
improves it. The results are based on dataset taken from public sources and show that
the proposed algorithm performs better than a typical baseline algorithm; however, it
still lacks behind when the processing is done locally, which is natural.
However, the proposed algorithm does not consider parallel execution. If the task execu-
tion is made so that it can be spliced and executed among several nodes parallel, it may
further reduce the latency. Another aspect in which this proposal lacks is the ability to
do a cross-platform execution.

References

Aazam, M., Zeadally, S. and Harras, K. A. (2018). Offloading in fog computing for iot:
Review, enabling technologies, and research opportunities, Future Generation Com-
puter Systems 87: 278 – 289. Impact Factor 4.639.
URL: http://www.sciencedirect.com/science/article/pii/S0167739X18301973

ADHIKARI, M., AMGOTH, T. and SRIRAMA, S. N. (2019). A survey on scheduling
strategies for workflows in cloud environment and emerging trends., ACM Computing
Surveys 52(4): 1 – 36.
URL: http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,cookie,shibdb=bthAN=138600186site=eds-
livescope=sitecustid=ncirlib

Alam, M. G. R., Hassan, M. M., Uddin, M. Z., Almogren, A. and Fortino, G. (2019).
Autonomic computation offloading in mobile edge for iot applications, Future Genera-
tion Computer Systems 90: 149 – 157. Impact Factor 4.639.
URL: http://www.sciencedirect.com/science/article/pii/S0167739X18303996

Baresi, L. and Filgueira Mendonça, D. (2019). Towards a serverless platform for edge
computing, 2019 IEEE International Conference on Fog Computing (ICFC), pp. 1–10.
Core Ranking C.

Cicconetti, C., Conti, M. and Passarella, A. (2019). Architecture and performance eval-
uation of distributed computation offloading in edge computing, Simulation Modelling
Practice and Theory pp. 1–21. Impact Factor 2.092.
URL: http://www.sciencedirect.com/science/article/pii/S1569190X19301406

Habak, K., Ammar, M., Harras, K. A. and Zegura, E. (2015). Femto clouds: Leveraging
mobile devices to provide cloud service at the edge., 2015 IEEE 8th International
Conference on Cloud Computing p. 9.

Hai Duc Nguyen, A., Chaojie Zhang, A., Zhujun Xiao, A. and Andrew A. Chien,
A. (2019). Real-time serverless : Enabling application performance guarantees.,
Serverless Computing p. 1.
URL: http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,cookie,shibdb=edscmaAN=edscma.3368133site=eds-
livescope=sitecustid=ncirlib

18



Hall, A. and Ramachandran, U. (2019). An execution model for serverless functions
at the edge, Proceedings of the International Conference on Internet of Things Design
and Implementation, IoTDI ’19, Association for Computing Machinery, New York, NY,
USA, p. 225–236. Core Ranking B.
URL: https://doi.org/10.1145/3302505.3310084

Kent, A. and Williams, J. G. (2018). Computers in Space-
flight:The NASA Experience, 2 edn, NASA. Chapter 2-5,
https://www.hq.nasa.gov/office/pao/History/computers/Ch2-5.html.

Li, L., Guo, M., Ma, L., Mao, H. and Guan, Q. (2019). Online workload allocation
via fog-fog-cloud cooperation to reduce iot task service delay., Sensors 19(18): 3830.
Impact Factor 2.475.
URL: http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,cookie,shibdb=a9hAN=139048725site=eds-
livescope=sitecustid=ncirlib

Liu, Y., Cui, Q., Zhang, J., Chen, Y. and Hou, Y. (2019). An actor-critic deep reinforce-
ment learning based computation offloading for three-tier mobile computing networks,
2019 11th International Conference on Wireless Communications and Signal Processing
(WCSP), pp. 1–6.

Meurisch, C., Gedeon, J., Nguyen, T. A. B., Kaup, F. and Muhlhauser, M. (2017).
Decision support for computational offloading by probing unknown services, 2017 26th
International Conference on Computer Communication and Networks (ICCCN), pp. 1–
9. Core Ranking A.

Nobre, J. C., de Souza, A. M., Rosário, D., Both, C., Villas, L. A., Cerqueira, E., Braun,
T. and Gerla, M. (2019). Vehicular software-defined networking and fog computing:
Integration and design principles, Ad Hoc Networks 82: 172 – 181. Impact Factor 3.151.
URL: http://www.sciencedirect.com/science/article/pii/S1570870518305080

Pinto, D., Dias, J. P. and Sereno Ferreira, H. (2018). Dynamic allocation of serverless
functions in iot environments, 2018 IEEE 16th International Conference on Embedded
and Ubiquitous Computing (EUC), pp. 1–8. Core Ranking C.

Shekhar, S., Chhokra, A., Sun, H., Gokhale, A., Dubey, A., Koutsoukos, X. and Karsai,
G. (2020). Urmila: Dynamically trading-off fog and edge resources for performance
and mobility-aware iot services, Journal of Systems Architecture 107: 101710.
URL: http://www.sciencedirect.com/science/article/pii/S1383762120300047

Torres Neto, J. R., Rocha Filho, G. P., Mano, L. Y., Villas, L. A. and Ueyama, J. (2019).
Exploiting offloading in iot-based microfog: Experiments with face recognition and
fall detection., Geofluids pp. 1 – 13.
URL: http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,cookie,shibdb=a9hAN=136236235site=eds-
livescope=sitecustid=ncirlib

Vaquero, L. M., Cuadrado, F., Elkhatib, Y., Bernal-Bernabe, J., Srirama, S. N. and
Zhani, M. F. (2019). Research challenges in nextgen service orchestration, Future
Generation Computer Systems 90: 20 – 38. Impact Factor 4.639.
URL: http://www.sciencedirect.com/science/article/pii/S0167739X18303157

19



Xu, X., Li, Y., Huang, T., Xue, Y., Peng, K., Qi, L. and Dou, W. (2019). An
energy-aware computation offloading method for smart edge computing in wireless
metropolitan area networks., Journal of Network and Computer Applications 133: 75
– 85. Impact Factor 3.991.
URL: http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,cookie,shibdb=edselpAN=S1084804519300529site=eds-
livescope=sitecustid=ncirlib

Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S. and Qi, L. (2019). A compu-
tation offloading method over big data for iot-enabled cloud-edge computing, Future
Generation Computer Systems 95: 522 – 533. Impact Factor 4.639.
URL: http://www.sciencedirect.com/science/article/pii/S0167739X18319770

20


	Introduction
	Research Question
	Justification

	Related Work
	Code Scheduling
	Code Queuing

	Methodology
	Application use-case
	Assumptions
	Pre-requisites
	Assumptions


	Design Specification
	Architecture
	System Flow

	Implementation
	Proposed algorithm

	Evaluation
	System Simulation
	Benchmarking
	Results

	Conclusion and Future Work

