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Enabling scatter-gather communication between
serverless function on a novel framework

Saurabh Kumar
x18193188

Abstract

Serverless computing is a concept in the cloud computing world where the de-
veloper writes code in any of the high-level languages with all its dependencies
pushes it to the cloud platform for execution. The code written by the developer
is called as serverless functions, these functions are executed on the trigger of an
event. There are many providers of the serverless platform like the lambdas by
Amazon Web Services, azure functions by Microsoft Azure and cloud functions by
Google Cloud Platform are the well-known commercial enterprise level providers of
the serverless architecture.

The most prevalent use case of the serverless platform is IoT and microservices.
However, the serverless platform is incapable of handling distributed computing
tasks that involve communication between the serverless functions. The commu-
nication patterns like scatter-gather and point to point communication are difficult
to establish. As the address of the function spawned is unknown to the developer,
communication between the functions is impossible.

Since the cloud computing infrastructure has access to vast resources and incom-
prehensive computing power, the power of distributed computation can be leveraged
on the resources provided by the platform. As a part of the thesis, an artifact is de-
veloped which solves the scatter and gather problem on the serverless platform. The
application could launch containers on uploading a file and distributed its chunks
to the containers to process it parallelly and then get results. Using this approach,
the serverless platform can be used for solving scatter and gather communication
problems. This artifact shows that the address of the spawned nodes can be known
to a master process.

This artifact is a library that shows that it is possible to establish communication
between serverless functions, but it lacks features of container creation, keeping the
system highly available and fault-tolerant.

1 Introduction

Serverless functions have become ubiquitous among developers and software development
companies, they give the advantage of focusing on the core business logic of the application
rather than spending money and hours on managing the servers and systems for smooth
running. Most of the problems that the serverless platform caters to are in the domain of
IoT and trigger-based applications. Microservices are the best example of trigger-based
use case where a monolithic application comprising of many functionality are broken
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down into individual services which promotes development teams to work on separate
features and develop a refined product.

The cloud platform has a diverse and vast availability of resources, these resources
should not be kept idle when its not used by the consumer application, therefore it has
been argued in the academic community that why the serverless platform cannot be used
to run distributed computing applications[1][2]. The serverless function running on the
platform are short lived, i.e. the functions can be a process running on a random con-
tainer that is scheduled by a container orchestrator like kubernetes1 or mesos2 depending
on a algorithm that ranks nodes based on resource availability[3]. The address of the
running process is not known to the application developer, which makes it difficult to
write distributed applications that requires each of the processes to communicate with
each other during the application execution. Figure 1 describes the communication pat-
terns that are required for distributed computing applications to work on the serverless
platform.

Figure 1: Communication patterns that are required for distributed computing applica-
tions on serverless[1]

The communication patterns like broadcast, scatter-gather and peer to peer commu-
nication is difficult to achieve when the address of the function is not known. There
has been research conducted in the academic community for developing process aware
manager that has knowledge of the address of the function spawned. PyWren[4] is one
of the projects which uses distributed computation on the serverless architecture to run
map-reduce type jobs. ExCamera[5] is another framework on the serverless platform

1k8’s docs: https://kubernetes.io/docs/home/
2mesos docs: http://mesos.apache.org/documentation/latest/
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for processing 4K quality videos. ggIR[6] framework that used distributed computation
to create an intermediate representation of the libraries a software program uses, and
containerize it so it can be deployed on the serverless architecture. There are many dis-
tributed processing frameworks like map-reduce - CIEL [7] and MARLA [8] on serverless
platform in academia.

All the above frameworks discussed have communication between the worker and
master/coordinator as a common problem. Since the functions are ephemeral, the address
of the functions or process is important to communicate data and signals. There is
no common daemon process or library that these applications use to find the address
of the functions/processes in real time. There are several strategies discussed in the
literature[9] [10] for establishing communication between serverless functions, they are
actors, tuplespaces, pub/sub and distributed hash tables(DHTs).

It has also been claimed that direct communication between workers has been estab-
lished by using the NAT-traversal techniques[6] on the AWS Lambda platform but the
lack of features such as high availability and fault-tolerances make it impossible to use it
for distributed computation. This problem begs and motivates the academic community
to answer the following question

Research Question - Can the serverless platform be leveraged to develop
process/function aware manager to support communication patterns such as
broadcast, peer-to-peer and scatter-gather?

The artifact developed as a part of this thesis is aimed to prove that peer to peer
communication can be established between master and worker nodes. The master node
distributes data to the worker nodes and get the results back from them which shows a
two-way communication between master and workers. There are some assumptions made
for the full-functioning of the artifact.

It has been assumed here that replicas of the workers donot exist and the master is not
working in highly available configuration. The scheduling of the workers is handled by
kubernetes default scheduling algorithm. The worker process is pre-built into an image
using docker which is dynamically loaded and started on the cluster by the artifact. The
image doesnot contain any minimalist operating system. NATS3 server is used which
provides a communication paradigm that supports pub/sub as well as request-response
type of communication between two communication processes on the cluster.

The code for the worker is written in golang4 which complies to binary and doesnot
need a virtual machine for execution, which makes the size of the image small i.e. 5.6
megabytes. NATS server is used for a two way communication between nodes on the
cluster. The worker and the master should know the address of the NATS server and
need to connect to it for the communication to take place. This paper will drill down into
details on how the artifact works and the way this concept can be used by distributed
computing applications in the cloud.

The remainder of the paper is divided into six sections. Section 2 contains related
work which is further divided into five sub themes, Section 3 talks about methodology,
Section 5 entails implementation and Section 6 compares the artifact with existing state
of the art scatter-gather communication pattern. Section 7 talks about limitations and
future works of the artifact.

3NATS docs: https://docs.nats.io/
4golang docs: https://golang.org/doc/
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2 Related Work

Study of related work consist of different frameworks used in software open source com-
munity and academia. It helps in understanding the mapping of frameworks to the prob-
lems they are trying to solve. Moreover, it gives a thorough view into the advantages and
limitations of the different frameworks. Additionally, it gives an insight into the design of
a new framework that could leverage the serverless platform to allow processes/functions
to communicate with each other.

2.1 Distributed computing frameworks on serverless

Fouladi et al.[5] claims to have developed a video processing framework on the serverless
architecture that is capable of processing 4K and VR quality videos.

Figure 2: Linking state of one lambda to the next[5]

It can be clearly seen from the results of this paper that the mu framework can solve
the video-editing problem on the serverless platform. However, can the mu framework
be leveraged to solve the problem with the communication pattern that is required for
high performance computation? Since it is a video editing framework, a few missing data
points can be tolerated, but can this approach be adopted by the distributed computing
paradigm. The authors have not clearly described the fault-tolerance and high availability
mechanisms that can be used to recover from failures and lost processes. Is the framework
aware of the data locality while spawning threads? These are the few questions that need
to be further answered for this framework to be used for the distributed computing
problem.

L. Ao et al.[11] claims to have developed a video processing platform similar to Ex-
Camera that uses a modified version mu framework internally. It consists of the coordin-
ator but not a rendezvous server. The coordinator is a long running server that runs on
the user platform in VM or a container. When a video file is uploaded it sends request
to the lambda gateway to launch the processes. Each process is coupled with a daemon
process which is controlled remotely the coordinator, the figure 3 shows the sequence of
control flow of how the coordinator communicates with the daemon process using remote
procedure calls to get the status of the lambda process.

The sprocket framework is a good contender of video processing framework on the
serverless platform but lacks the communication pattern that could be employed in high
performance communication. The cloud functions that process the distributed chunks of
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Figure 3: Sprocket video processing framework on serverless

the video file store the partial output to an intermediate storage. According to the paper
there is a significant delay in storing of the intermediate data on the available storage on
the serverless platform, then linking all the partial outputs adds to the delay. Remote
procedure calls (RPCs) have been used for communication between the master and the
worker process. This particular approach is good for scenarios where video processing
involved but will not work for communication patterns related to distributed computation
on scale.

Jonas et al.[4] and his team have developed a map-reduce like framework in python on
the serverless platform. The PyWren[4] framework is implemented on burst synchronous
processing (BSP) model. According to this model, multiple tasks are processed in parallel.
As we know that a Map-Reduce phase consists of shuffle operations at various stages e.g.
at the time of writing from buffer memory to disk and when map outputs are picked
from different sources and sorted. Shuffle intensive workloads tend to induce latency and
consume network bandwidth.

Since the user doesnot have an agreement with the cloud service provider to view
the location of the stored data for security reasons, the data local map jobs cannot be
run. This framework is not good for tasks that are long running and require coordination
between them. The PyWren model re-spawns a thread when one fails, it processes on the
data from the beginning and not from the state where it failed. Therefore, it doenot have
a stateful failure recovery mechanism, which adds up to the processing time. The threads
that are spawned are processes that donot communicate the progress to the master, they
simply write the results to the intermediate storage. As there is no communication
between the threads, there is no way to know the progress of the tasks. Therefore,
it is required to build a system where the master process running in highly available
configuration is able to know about the progress of the processes running on the serverless
platform.

Shi et al.[12] claims that map-reduce and spark application frameworks have different
use cases. The paper claims that Spark is faster than MapReduce by a factor of 2.5x,
5x and 5x for word count, k-means and PageRank problems. However, the sort phase
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during reduce phase for MapReduce is faster at 2x than Spark.
There are trade-offs between parallelism and context switching, in-memory and on-

disk caching, serialization and memory consumption. The above parameters can help
to design a better framework for running serverless mapreduce[8]. The communication
between the worker and master is an important part of the distributed computing plat-
form, such types of communication patterns should be supported by the serverless archi-
tecture.

Giménez-Alventosa et al.[8] has studied the viability of MapReduce execution model
on serverless platform AWS Lambda, the author and his team have developed a MapRe-
duce like distributed processing framework in python called MARLA (MapReduce on
AWSLambdas).

In his paper, the author claims that MARLA is an improvement over the previous
map-reduce frameworks on serverless platform such as PyWren[4], Corral5 and Ooso6.
The results of the study show that the MARLA framework cannot handle failure recovery
and coordination activities without the need for a local application manager. However,
this framework is still tightly constrained to solve problems concerned with map-reduce
problems. There is no mention of the progress updates of workers that is sent of the
manager on regular intervals. Nevertheless, the study of this framework has given deep
insight into the development of framework that supports different communication patterns
on serverless.

Aytekin et al.[13] and Johansson et al.[13] have developed master-worker framework
on AWS Lambda which is capable of solving large scale optimization problems. It uses
parallelly working workers with coordination between them. The authors have elabor-
ately identified system-level bottlenecks and limitations and proposed improvements and
solutions.

The framework developed by the authors can achieve significant performance gains
which is relative speedups up to 256 workers and an efficiency of 70% up to 64 workers.
Still the framework is unbale to answer the statelessness of the serverless functions, as
the algorithm requires to maintain state running for long time. The serverless functions
cannot accept inbound connections which is another problem, therefore distributed com-
munication protocol like scatter-gather and point-to-point communication is difficult to
achieve.

2.2 Application containerization on serverless in academia

Weinstein et al. [6] and his team claims to have successfully addressed the most prominent
problems of the serverless architecture like limited runtime of the workers, limited on-
worker storage memory, constraint on the number of workers provided by the cloud
provider, failures of worker at runtime and reusability of libraries on applications on the
cloud.

The workaround to address the above challenges was to develop a custom application
containerization abstraction called as “Thunk” which is representation of a linux x86-64
container which can be scheduled and executed on the cloud functions. While the de-
pendency management strategy of the framework helped to gain huge benefits, it does not
provide any answer to the direct communication between workers. In fact, the paper has
stated its limitations clearly that this framework is suitable for burst parallel processing

5github repo: https://github.com/bcongdon/corral
6github repo: https://github.com/d2si-oss/ooso
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but not embarrassingly parallel jobs. As serverless functions cannot accept incoming
connections [9], a mechanism should be devised to enable communication between them
once their address is known.

Oakes et al. [14] claims that the high-level languages tend to make a bigger software
footprint on the serverless platform, the author claims that since high level languages
tend to run a virtual machine, their compilation time and bytecode is more the low level
languages such as C. The results clearly state that the strartup of an application written
in higher level language is 10X slower than its equivalent written in C.

Lambdas are containers which are running in an isolated manner which have their
sandboxing overheads[15]. Typically, serverless platforms have to wait for hours or
minutes for de-allocation of resources if the functions are idle or un-billed[16]. If the
resources are de-allocated quicker, it will help reduce the cold start-up time of applic-
ation containers. The author has developed an application containerization framework
called SOCK[14] to address the above limitation, the drawback of SOCK is that it’s
caching of the dependency libraries is only supported for python and not other high
level languages. This paper does not provide any insight into the type of communication
patterns that can be used to leverage distributed computation on serverless platform.

Perez et al. [17] have designed an application container on docker in a high level
language with dependencies in a minimal memory footprint. The framework is called
SCAR [17]. The author claims that it supports deployment of scientific application that
have dependencies. Moreover, it also supports languages that are not natively supported
by serverless platform. Since the application is containerized, feature such as auto-scaling
can be leveraged.

The limitation of the SCAR framework is the AWS Lambda platform on which it
is run. AWS Lambda only supports 5 minutes of execution time, restricted memory
(3008 MB) and limited disk capacity of 512 MB. Moreover, SCAR is highly dependent on
udocker for image creation and execution on the serverless platform. The other drawback
is python support, since udocker is developed in python, it needs a python runtime. The
framework supports communication between docker containers in the user space, this
idea can be leveraged to design serverless functions that allow communication between
them to support distributed and parallel computation.

2.3 OpenSource serverless platforms

Li et al. [18] Kulkarni et al. [18] and Ramakrishnan et al. [18] tried to compare the
opensource platforms like Knative 7, Kubeless 8, Nuclio 9 and OpenFaas 10 for serverless
computing. These frameworks have been evaluation against the three parameters i)
role and interaction of different components ii) configuration parameters iii) mode and
operation of auto-scaling.

The results of the baseline performance tests show that Nuclio performs much better
than the other counterparts. Concurrent request handling capability of Nuclio is much
better than the other frameworks. Auto-scaling strategies are insufficient to meet the
increasing workload demand. Also, study and benchmarks of these frameworks are con-
ducted from the perspective of running microservices and trigger-based applications. The

7github repo: https://github.com/knative
8https://kubeless.io/
9github repo: https://github.com/nuclio/nuclio

10github repo: https://github.com/openfaas/faas
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study has not conducted any tests to show the viability of distributed computation on
these platforms as well as no benchmarks of communications between these functions
have been shown in the results.

Hendrickson et al.[19] and Sturdevant et al.[19] and team have claimed to develop
a serverless platform for research called OpenLambda11 where researchers can modify
the code of the vanilla serverless platform for conducting workload studies, developing
optimized package management capabilities for high level language, optimizing execution
engines like docker containers, sandboxing and just-in-time containers.

This platform can also be used for experimenting with the communication pattern for
scatter and gather on OpenLambda, the authors have mentioned it as one of the topics
open for research. Driving inspiration from OpenLambda, an artifact has been developed
for the purpose of this research on Kubernetes platform which serves as a multi-cloud
worker orchestration and management engine.

Kuntsevich et al. [20], Nasirifard et al. [20] have investigated bottlenecks and limit-
ations of the Apache OpenWhisk12 serverless platform. The results of their study shows
that auto-scaling guarantees cannot be offered by the framework. Benchmarks were car-
ried out to evaluate the performance of CPU intensive task such as calculation of Nth
prime number, memory consumption was tested using matrix multiplication, I/O bottle-
necks were measured loading it with HTTP requests.

Since the serverless applications are used for microservices and trigger-based applica-
tions, the openwhisk platform was compared with a springboot13 microservice, the results
show that there is a significant latency on the serverless platform and requires modifica-
tions and changes to increase performance. For the purpose of the artifact development,
the openwhisk platform makes a strong contender.

3 Methodology

The study of the different frameworks on the serverless platform gives an insight into
their limitations and strengths. It has been seen that frameworks such as PyWren[4] and
ExCamera[5] uses a third party framework “mu” which has coordination and rendezvous
server for communication between two functions on the serverless platform. MARLA
[8] uses a fire and forget kind of an approach where the failures of the map processes
are unaccounted. Moreover, there is no communication between the master and worker
processes. The processes are spawned on trigger without any communication about the
updates.

It is known that the serverless functions are spawned on the trigger of an event.
There might be a function or many replicas of the same function in a highly available
configuration being launched. The address of these functions is unknown to the pro-
grammer/developer. To develop distributed applications on the serverless platform, it is
important to know the address of the functions spawned so they can communicate.

From the study in section 2, it has been seen that most peer to peer or master to
worker communication is done using NAT hole punching. It’s been described in the
figure4 the steps involved in UDP NAT hole punching. NAT hole punching[21] requires
a rendezvous server to get the public address in order to communicate with the other

11OpenLambda: https://github.com/open-lambda
12OpenWhisk: https://openwhisk.apache.org/
13Springboot: https://spring.io/projects/spring-boot

8

https://github.com/open-lambda
https://openwhisk.apache.org/
https://spring.io/projects/spring-boot


peer behind the NAT. The rendezvous server can be TURN[22] or a STUN[23] server
depending upon the requirement. Since this is the only medium of communication in the
serverless domain that has been discussed so far, there is a need for a new communication
paradigm that could support the communication between serverless functions.

Figure 4: NAT hole punching[21]

Scatter and gather is the most rudimentary communication pattern that is required
in the world of distributed computation, for leveraging distributed computation on the
serverless platform, it is required to develop a framework that has knowledge of the
addresses of the functions being launched so that the master process can communicate
with the worker and perform scatter and gather kind of operations.

The artifact developed is responsible for keeping a list of the addresses of the functions
spawned, it is also instrumental in letting know the user/developer change in the status
of the container in which the process is running. Figure 5 shows the components used to
achieve scatter-gather communication.

Figure 5: Components used in artifact

For achieving scatter-gather communication pattern on the serverless, the following
communication constructs will be used as per the new artifact.

� Request/Response

� Publisher/Subscriber
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Figure 6: Scatter-gather communication between master and workers using NATS3 server

The distinguishing feature of the artifact and the way it is different from other frame-
works discussed in the literature review is that it has a controller for listening to all
the events from the Kubernetes api server. The api server of the Kubernetes platform
launches containers on pods, the event is captured by the artifact to maintain addresses of
functions launched. Figure 6 shows how scatter-gather communication will be achieved.

The functions that are spawned is master and worker functions. For simplicity and
for the development of the artefact, a file is submitted and partitioned into chunks by
the master and distributed to its workers, the workers find the wordcount and submit the
results back to the master. The distribution of the chunks acts as a scatter pattern and
returning of the results acts as a gather pattern.

The NATS3 server is instrumental in achieving scatter-gather communication pattern.
How does it do that? The artifact spawns worker function depending on the number of
file chunks created. When it is spawns a worker, a topic name is supplied as argument
parameters to which the worker must listen to. The master process has a list of the
argument parameters, it used them to rendezvous with all the workers, thus achieving
scatter-gather communication pattern.

4 Design Specification

The artifact is designed for enabling scatter-gather communication pattern on a developed
serverless platform, It shows that with the use of the components mentioned in section 3,
a master can be launched that has the information about the addresses of the workers.
This concept can be further leveraged on to other open-source serverless platforms for
distributed computations. The next few sub-sections contain technical diagram which
provide a deep insight into how the artifact is designed.

4.1 Class Diagram

Figure 7 represents class diagram of different entities in the artifact.
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Figure 7: Class diagram of the artifact

4.2 Component diagram

Figure 8 refers to the components of the artifact. It shows the components that have
been used in the development of the artifact and their interaction with each other.

Figure 8: Component diagram of the artifact

4.3 Sequence diagram

Figure 9 shows the sequence diagram of the artifact, here moving from left to right, we
see that a file is uploaded of a certain size, the request reaches the controller, a master
function is launched which calculates the number of chunks in which the file is divided.
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Depending on the number of chunks, equal number of worker nodes are launched by the
artifact, since all these workers are containers inside pods, they take time to initialize,
they keep sending status report to the artifact, when they are in running status, the data
chunk is sent to the individual workers for execution. When the execution is finished by
the worker the result is sent back to the master function.

Figure 9: Sequence diagram of the artifact

4.4 Algorithms

The artifact consists of a master and worker functions and their interaction between them
in a scatter-gather form of communication, the algorithm related to master and worker
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functions are described below.

Algorithm 1: Algorithm for creating file blocks to be processed by workers

Data: file of a definite size
Result: map of file id and its contents in bytes
numberOfBlocks, fileByteSize, byteCount = 0, blockByteSize = 300, lineLength
= 1000;

line = byte[lineLength];
numberOfBlocks = fileByteSize / blockByteSize;
if fileByteSize%blockByteSize != 0 then

numberOfBlocks = numberOfBlocks + 1;
else

m
end
apper = map(int,[]byte) ;
eofStatus = scan first line of file;
count = 0;
while eofStatus! = false do

line = append(line, newLineCharacter);
byteCount = byteCount + len(line);
if byteCount == blockByteSize then

addByteToSlice(line, blockSlice);
if count ≤ numberOfBlocks then

mapper[count+1] = blockSlice;
count++;

end
blockSlice = 0;
byteCount = 0

end
if byteCount ≥ blockByteSize then

if count ≤ numberOfBlocks then
mapper[count+1] = blockSlice;
count++;

end
blockslice = 0;
addByteToSlice(line, blockSlice);
byteCount = len(line);

end
addByteToSlice(line, blockSlice);
eofStatus = scanner.Scan();

end
mapper[count+1] = blockSlice;
return mapper;

Algorithm 1 refers to the functionality of the master function. The master function
receives the file which is broken into chunks based on a configurable value as shown in
the algorithm represented by the variable blockByteSize, the default value is taken to be
300. The blocks of bytes are stored in a map where the key is an unique integer and the
value is an array of bytes that is sent to worker for processing. The complexity of the
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algorithm is depends on the number of bytes read by the function which is O(n).

Algorithm 2: Algorithm for starting worker and watching them for status
changes, and listening for results from workers

Data: map of id and bytes
Result: Launch workers and watch them for their status
i=0;
for i← 1 to len(map) do

start a worker function with cmd argument parameter workeri ;
end
i=0;
for i← 1 to len(map) do

if workerStatus == running then
send byte chunk to the workers for processing.;
set flag = true for worker i;

end

end
i=0;
for i← 1 to len(map) do

listen to data from worker i;
end

Algorithm 2 refers to the master spawning worker containers on the kubernetes engine,
the image is pulled from docker private registry and run on pods. The status of the
container keeps changing, when the container reaches the running status, the data can
be transferred for processing. Once the data reaches the workers, it is processed and
returned to master function, the master function has to listen in a callback function,
which is triggered once the data arrives from one of the spawned workers. The complexity
of the algorithm is O(n).

Algorithm 3: Algorithm for worker function that is accepting data bytes for
determining word count

Data: bytes of data
Result: return a string of word count
s = convert bytes into string;
arrayOfLines = split s by ”newLineCharacter”;
wordBank = empty;
i=0;
for i← 1 to len(arrayOfLines) do

arrayOfWords = split arrayOfLines[i] by ” ”;
wordBank.add(arrayOfWords);

end
wordMap = new map;
for i← 1 to len(wordBank) do

if wordMap[i] == null then
wordMap[i] = 1 ;

end
wordMap[i] = wordMap[i] + 1;

end
return wordMap
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Algorithm 3 refers to worker functions which is waiting for data from the master
function. As it receives the data, it finds the word count and returns a map of word
count. The complexity of the algorithm is O(n).

5 Implementation

The following open-source projects will be used for developing the artifact that ensures
scatter-gather communication patterns between master and the worker on a serverless
platform.

� Docker14 - It is used for wrapping function with its dependencies into an image,
which is pulled by the k8’s engine and run as containers.

� Kubernetes1 - It is used for scheduling functions on its platform and sending the
status of lunched containers to the artifact.

� golang4 - Programming language used for the development of all the components,
golang doesnot need virtual runtime environment, code directly compiles to machine
code which makes it fast. Moreover, the dependency management of libraries used
is optimized and compilation time is significantly reduced.

� linux15 - All the components are installed on linux VMs.

� NATS3 - NATS server is used as a messaging queue with request and response
support, which helps in achieving scatter and gather communication pattern in a
master and worker configuration.

� Openstack16 - It is a opensource cloud platform that is capable of launching linux
VMs of any configurable size.

The source code of the artifact is hosted on github17 with a detailed readme.md file
and the artifact is deployed on openstack.

The algorithms used for the artifact 1, master function 2 and worker function 3 are
described in section 4.

Figure 10: NATS acting as a publisher/subscriber as well as request/response server

Figure 10 shows the state of the kubernetes cluster before application are launched by
the artifact. It only consists of the nats server running which is waiting from connection
from master and worker functions.

Figure 11 shows the state of the kubernetes cluster after application are launched by
the artifact.

14docker docs: https://github.com/docker
15linux docs: https://github.com/torvalds/linux
16openstack docs: https://docs.openstack.org/ussuri/
17artifact source code: https://github.com/saurabh7517/thesis
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Figure 11: Different states of the container before they are actually running

6 Evaluation

The artifact is run as a server that accepts a text file, It is responsible for decomposing
the text file into a configurable size, if the size is small the number of blocks created is
large, we will be conduction experiments with different sizes and check the time taken.
This time evaluated using these experiments will be compared with other scatter-gather
techniques. It is assumed that Kubernetes platform is pre-installed on a cluster of 3 nodes
each having 2GB of RAM, 10 GB hard-disk space, 2.5 Ghz processor and Ubuntu-server
as the operating system.

For the purpose of our experiments, the file size will be kept constant and the block
sizes will be changing. The file size for the purpose of the experiments will be 1654 bytes.
The number of functions launched are dependent on the block size. The algorithm for
number of blocks has been stated in algorithm 1.
numberOfBlocks = fileSize/blockSize
So, it is seen that the number of functions spawned are dependent on the file size and
block size. Below are some console outputs of the services that are running before and
after application run on the kubernetes orchestrator.

Figure 12: Response from different workers with their result sent to master function

Figure 12 contains the response of word count calculated by the workers launched by
master function. Each worker after calculation of the word count sends the result to the
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master function.

6.1 Experiment / Case Study 1

For the first experiment, the following parameters are taken for file size and block size.

� file size = 1,654 bytes

� block size = 300

� pods created = 6

Figure 13: Time calculation given the above parameters

Figure 13 shows the time taken for the master function to distribute tasks to worker
function and get back results from each worker function.

6.2 Experiment / Case Study 2

For the second experiment, the following parameters are taken for file size and block size.

� file size = 1,654 bytes

� block size = 150

� pods created = 11

Figure 14: Time calculation given the above parameters

Figure 14 shows the time taken for the master function to distribute tasks to worker
function and get back results from each worker function.

6.3 Experiment / Case Study 3

For the third experiment, the following parameters are taken for file size and block size.

� file size = 1,654 bytes

� block size = 100

� pods created = 17

Figure 15 shows the time taken for the master function to distribute tasks to worker
function and get back results from each worker function.
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Figure 15: Time calculation given the above parameters

6.4 Experiment / Case Study 4

For the fourth experiment, the following parameters are taken for file size and block size.

� file size = 1,654 bytes

� block size = 50

� pods created = 35

Figure 16: Time calculation given the above parameters

Figure 16 shows the time taken for the master function to distribute tasks to worker
function and get back results from each worker function.

6.5 Discussion

Figure 17: Left Image : time vs worker functions launched Right Image : time vs process
nodes of intranode scatter-gather communication in MPI[24]

Figure 17 shows two graphs depicting scatter-gather communication patterns, the left
side graph shows a plot of the functions spawned vs the time taken by the artifact. The
graph on the right is about intranode scatter-gather communication, the plot is between
number of processes and time taken using MPI library[24].Figure 18 suggest that the
scatter-gather latency on the artifact is much more than in using the MPI library [25].
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The above experiments suggest that the time is exponentially increasing as the number
of worker nodes are increased linearly. The exponential increase in time can be attributed
to the time taken by the Kubernetes engine to request docker to create an image of the
worker functions. It is also ensured here that the image created is of minimal size and
with bare minimum dependencies, the image of the worker function is 5MB in size.

Figure 18: Time taken in scatter-gather communication in MPI[25]

The reduced size is taken so that it has minimum memory footprint while running on
the docker containers. After the images are created, they are pulled by the Kubernetes
engine through a private repository and started on the Kubernetes cluster. The Kuber-
netes cluster is instrumental in sending regular heartbeats to the master function with
the addresses of the worker functions, this communication makes the master aware of the
worker functions failed or newly spawned. Though the artifact solves the scatter-gather
communication problem, but the evaluation statistics shows more feasibility tests to be
conducted.

7 Conclusion and Future Work

The objective of the thesis enables the communication between serverless function by de-
veloping a novel artifact. The artifact developed solves the scatter-gather communication
pattern between a master and worker functions. To show the scatter-gather communica-
tion, a file is divided into chunks of configurable size called blocks, the number of blocks
created is equal to the number of worker functions spawned by the master. The block of
data is distributed to the worker functions. This phase is the scatter phase. The worker
function processes this data and send the results back to the master. This is the gather
phase. The implementation shows the development of the artifact and the components
that have been used in its development.

Though the artifact solves the scatter-gather communication problem on the serverless
platform, it requires the availability of a orchestrator engine like Kubernetes, mesos or
docker compose in order to be aware of the functions spawned. Another dependency of
the artifact is the NATS server which is used for scatter-gather type of communication
between master and worker functions.
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The experiments in the evaluation shows that as the number of workers increase lin-
early the time taken for spawning them increases exponentially, which puts questions on
the feasibility of the framework. Further research and experiments needs to be conduc-
ted to reduce cold start latency. The reduction in latency will provide a huge leverage
to this framework to be used commercially by scientific computation and distributed
computation which have sub operations of scatter-gather.
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[8] V. Giménez-Alventosa, G. Moltó, and M. Caballer, “A framework and a performance
assessment for serverless mapreduce on aws lambda,” Future Generation Computer

20

https://doi.org/10.1145/3290480.3290507
https://doi.org/10.1145/3127479.3128601
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi


Systems, vol. 97, pp. 259 – 274, 2019, impactfactor : 4.639. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X18325172

[9] J. M. Hellerstein, J. M. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti,
A. Tumanov, and C. Wu, “Serverless computing: One step forward, two
steps back,” CoRR, vol. abs/1812.03651, 2018, citedby:13. [Online]. Available:
http://arxiv.org/abs/1812.03651
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