
Robotic Process Automation using
Container-related Methodologies

MSc Research Project

Cloud Computing

Jaison John
Student ID: 19104910

School of Computing

National College of Ireland

Supervisor: Manuel Tova-Izquiredo

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jaison John

Student ID: 19104910

Programme: Cloud Computing

Year: 2020

Module: MSc Research Project

Supervisor: Manuel Tova-Izquiredo

Submission Due Date: 17/08/2020

Project Title: Robotic Process Automation using Container-related Method-
ologies

Word Count: 5937

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 23rd September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.



Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Robotic Process Automation using Container-related
Methodologies

Jaison John
19104910

Abstract

The World is moving towards a new normal of “Work-From-Home” in this pan-
demic which has led to the adoption of Intelligent Automation more than ever
before. And what better than Robotic Process Automation(RPA) which is an
emerging technology based on software robotics to aid the automation of business
processes. However, the use of RPA can be revolutionized by using the container-
related methodologies. To realize this objective, the concept of Cloud Robotics
have been analyzed in this paper with respect to both Hard and Soft Automation.
Existing methodologies of different architectures have been reviewed, identifying its
corresponding gaps and thus laying the groundwork for better practices in the field
of RPA which comes under Soft Automation. Inspired from the Resource allocation
techniques of the containers, a new Queue-based bot locking algorithm has been
implemented using Blue Prism RPA tool with virtualized “Multi-Robot” architec-
ture. This has helped in achieving better scalability and increased performance.
It has been successfully implemented on an Insurance Web application to solve
its pandemic-related surging problems. An evaluation using Multiple Regression is
conducted to determine the performance difference of Multi-Robot RPA against the
traditional RPA along with determining the mathematical functions for the same.

1



1 Introduction

While the world is slowly coming out of the pandemic slumber, Engineers throughout the
world are constantly researching to develop and innovate new applications and processes
that would help the mankind to tackle such calamitous scenarios. One of the primarily
focused research is on the extension of Cloud Computing principles. This research focuses
on how their applications can be done in the field of Robotic Process Automation(RPA).

1.1 Background

The world is shifting towards the paradigm of Containers. Gone are those days, when
there were separate environments for development and deployment of various applications.
Containerization has eliminated this problem by bundling the run dependencies along
with the application code. While Containers is a relatively older term, RPA is on the
horizon with its ability to automate complex applications efficiently in a non-intrusive
manner. To explore further, Process Automation is generally classified into two parts,
namely, Hard Automation and Soft Automation (Issac et al.; 2018). In Hard Automation,
designing of a physical robot or machine is done to perform a set of specific repetitive tasks
whereas in Soft Automation, a more developed version is provided where software bots
can be programmed in the computer as per the requirements to perform a set of tasks.
And Robotic Process Automation (RPA), rightly comes under Soft Automation (Lacity
and Willcocks; 2015).

As per Forrester estimates by 2021 (Clair; 2018), there would be more than 4 million
robots carrying out administrative and office tasks. Thus, Robotic Process Automation
is a software that can be programmed to automate different forms of activities and pro-
cesses that are otherwise carried out by humans thus reducing their burden of repetitive
tasks. RPA is suitable for processes with high transactions volume, structured data,
logic-driven procedures, low variance, etc. (Leshob et al.; 2018) The software robot is fed
with a workflow of instructions to perform operations which are based on the application
of Artificial Intelligence as it allows companies with legacy systems to automate their
tasks. Different RPA tools in the market include Blue Prism, UiPath, Appium, Kofax,
Workfusion, etc. out of which this research focuses implementation using Blue Prism
since it is one of the pioneers in this industry.

1.2 Motivation

RPA often has a single robot assigned for carrying out a particular process. Though
multiple robots can be used on multiple processes, the idea of using multiple robots for a
single process can increase its scalability and also the performance of the task. This could
be achieved by using a newer architecture with multiple bots installed using Queue-based
algorithms.

Moreover, the world is plunging towards a global recession due to the chaos created by
the Coronavirus pandemic (Leiva-Leon et al.; 2020). Global recession would eventually
accelerate Intelligent Automation adoption (Ingalls; 2020). As the World economy goes
further into the recession, most of the companies would look to intelligent automation to
reduce unnecessary operation costs and thus survive themselves in a highly competitive
market. This makes the need of hybrid RPA solutions even more relevant and proper
research in this field could seed to brilliant start-up ideas for adventurous entrepreneurs.

2



Figure 1: RPA in a nutshell

This paper discusses on how to exploit Cloud capabilities in the field of RPA thus
analyzing the research work done on cloud robotic models and its resource allocation
methodologies in various containers.

1.3 Research Question & Objectives

Can Robotic Process Automation(RPA) be improved by using Container-related meth-
odologies?

How can orchestrating containers or its Resource allocation techniques be implemen-
ted in RPA to provide better performance and scalability?

The main objective is to improve RPA by combining it with virtualization techniques
and container-related allocation techniques to offer higher scalability and better perform-
ance for the overall solution. The secondary objective is how RPA can be used to solve
a real-world problem arising due to the present pandemic.

1.4 Limitations

Blue Prism being a licensed RPA tool hasn’t been led to much explorations in contrast to
the other open-source tools like UiPath, Robocorp, etc. Hence, the process of deploying
multiple robots for a single process requires multiple licences thus increasing the cost of
the proposed RPA architecture. Implementation of Blue Prism in this project was carried
out under trial licenses which had some restrictions.

1.5 Structure of the report

The next section gives a literature review about the use of Robotic Models in both Hard
and Soft Automation along with scheduling allocation techniques. Section 3 talks about
the methodology used while Section 4 discusses the design specifications and architecture.
Section 5 gives a description about the implementation aspects followed by Section 6
which gives a detailed evaluation of results. The final section gives the overall conclusion
along with scope for future work.

3



2 Related Work

This section along with identifying a desired set of criteria to deploy RPA, mainly dis-
cusses about the different frameworks involved in Robotic automation. It also analyzes
different container scheduling algorithms and its architectures which can be deployed in
the frameworks to gain better scalability and performance.

2.1 RPA challenges

This section discusses the challenges involved in implementing RPA and encompasses a
list of desired criteria which could help the Robotic Process Automation to work more
efficiently.

RPA being the new horizon in the market, is ideal for applications(Leshob et al.;
2018) which require high level of i) process standardization, ii) transaction volume, iii)
process maturity, and iv) business rules. However, it has some limitations which needs
to be improved. Though front-end integration of RPA with applications can enhance
its flexibility along with the speed, its back-end integration is not suitable for machine-
to-machine communication. Aleksandre Asatiani Asatiani and Penttinen (2016) explains
that RPA presents a temporal solution which can fill in the void for some manual processes
based on legacy IT system and the ones running on fully automated systems. While
outsourcing have its own disadvantages, its practice have a proved record with a variety
of business needs and applications. RPA, however, is missing out on these needs thus
posing quite a dilemma to its potential customers.

Hence, potential customers needs a proven business case to collaborate with the RPA
providers. Combining the papers of (Fung; 2014) and (Slaby; 2012), a set of criteria has
been identified where RPA can be deployed as displayed in Fig.2.

Figure 2: Criteria for RPA

4



It paved out a way for Cloud Robotics which is nothing else but a combination of cloud
and robotics that made a breakthrough in the Robotics domain. Using the auto-scaling
feature of the Cloud, RPA processes can effectively meet customer’s varying demands and
workloads with very less latency. The different strategies that are used and its details
are discussed in the next section.

2.2 Smart Cloud Robotic System

This section identifies different strategies used in the field of Cloud and Robotics identi-
fying the gaps and suggesting improvements in the same. It helps to identify the key
applications along with some of the architecture practices followed in Hard Automation
which can be realized in Soft Automation using RPA tools.

“Cloud Robotics” (Kehoe et al.; 2015) can be defined as any robot or automation
system that depends on different data from a network to support its undertakings, i.e.
where not all computation, sensing and memory is incorporated into a single standalone
system. DAvinCi (Dyumin et al.; 2015) is one of the best examples of a cloud robotics
software architecture built out of Robot Operating System(ROS) and Hadoop to provide
scalability and parallelism for different service bots. Duan Yong Duan and Yu (2016)
has discussed the architecture of multi robot system using cloud-robot framework. It
consists of various layers such as physical resource layer, resource pool layer, intermediate
manage layer, service-oriented architecture and robot client layer. Functions like parallel
processing, load balancing, fault tolerance were realized by using the cloud computing
model. By using multiple robots, the overall accuracy and real-time performance was
significantly improved. However, the architecture is designed for Hard Automation thus
failing to address process-oriented tools for Soft Automation.

Lujia Wang et al. Wang et al. (2013) have proposed a game theory based auction
for allocation of resources in a multi-robot environment. Due to multiple robots being
deployed, a large amount of data was considerably generated resulting into bottlenecks in
bandwidth. To address the limited bandwidth and other challenges like CPU occupancy
for parallel computation, limited number of proxy hosts, etc they used game theory with a
joint-surveillance experiment scenario. Game theory has been one of the best state-of-the-
art algorithms in decision making. It includes the mechanism of market-based negotiation
which is applied in grid resource management and sequential bargaining mechanism.
Although sequential bargaining can generate optimal solutions Sim and An (2009), it
requires more communication and computation requirements in distributed paradigms.
However, a well-defined Wang et al. (2013) set of Quality of Service(QoS) can greatly
help in improving the quality of a resource allocation mechanism. It also included a
dynamic priority scheduling method which were implemented by logic programming.
The experimental results improved the CPU usage, thereby reducing the bottleneck and
computational complexity.

Another strategy for maximizing bandwidth in multi-robots system was developed
by Julio and Bastos Julio and Bastos (2015) with Dynamic Bandwidth Management
Library(DBML). It was developed in ROS to segregate functionalities into independent
modules for code reuse. The system prioritizes communication channels with respect to
each environment event thus offering greater bandwidth for important channels. In ROS,
multiple nodes are combined together into a graph using RPC and Parameter Server. The
package architecture was divided into two libraries of Publisher and Subscriber along with
a default optimizer node. They effectively carried out an experiment on Tele-operating

5



system using DBML and the proposed algorithm. However, bandwidth rate was assumed
to be fixed while running the library. This can degrade the system performance in real-
time environment where bandwidth of the wireless links depends upon the proximity of
nodes location and number of obstructions present. However this problem was successfully
managed by Wen et al. (2016) where they proposed a cloud platform, micROS-cloud,
which supports the direct deployment of ROS software packages. With the container-
based isolation and on-demand instantiation, the packages can be automatically converted
into Internet-accessible services.

Multiple robots can thus access a service simultaneously even if the corresponding ROS
package is designed initially to serve a single bot. This Hard Automation-based “Multi-
Robot” inspires the architecture for our Soft Automation which would be carried out
using RPA tools. Instead of deploying multiple robots for multiple processes, deploying
multiple robots for a single process would help in achieving greater performance and
flexibility.

“Cloudroid”, another cloud robotic framework (Hu et al.; 2017) has a more transparent
and QoS-aware software framework where quality of service(QoS) such as timeliness has
been considered which is very critical to robot’s behaviour. Along with the packages
for direct deployment of existing software packages, it includes automatically generated
service stubs which helps the robotic applications to outsource their computation without
any modification in code. One of the famous “Monte Carlo sampling process” (Kehoe
et al.; 2014) in robot grasp planning is parallelized to cope with uncertainty by the
cloud computing clusters. However, its solution is specific task-related and it cannot
be generalized to other tasks. Hence, Hu et al. (2017) have provided a general solution
on the infrastructure level. They have also tried to address the gap between the ROS
package model and the cloud service model which supports ubiquitous access and rapid
elasticity with multiple clients.

To bridge the gap between them, Cloudroid have introduced four mechanisms:
1. Self-contained VM encapsulation
2. Cloud Bridging
3. On-demand Servant Instantiation and Multiplex
4. Service Stub Automatic Generation
Thus a comprehensive study of Cloud Robotics was conducted which includes most

of the strategies for Hard Automation whose cloud methodologies could be realized with
some more improvement in Soft Automation.

2.3 Scalability and Scheduling in Container Orchestrations

This section analyzes about the various scheduling policies in Container Orchestrations
and different architectures that have been followed to gain maximum scalability and
performance. It also identifies the research gaps and suggests future scope for its im-
provement.

Efficient resource utilization offers container scalability, for instance, response time of
web requests created on PAS algorithm includes proportional-integral-derivative control-
ler(PID). de Abranches and Solis (2016) have conducted these experiments using Docker
container, HAproxy load balancer and Redis database with varying workloads. They
emphasized on improving the PID parameters to scale containers. Though the imple-
mentation is built on the control theory scalability, they failed to prove better results on
elasticity through existing methodologies. Another instance of evaluation of container

6



performance was conducted by Fr Jaison Paul & team (Preeth et al.; 2015) with Bon-
nie++ bench-marking tool and metrics like CPU utilization and memory usage with
psutil. Comparison between Docker containers and host machine on disk usage, memory
usage and network I/O was made to realize that containers outperformed host system on
resource utilization.

Kandan et al. (2019) has argued that Default scheduling algorithm selects the resource
based on the current trend of resource utilization. Their proposed scheduling algorithm
differs from the default scheduling algorithm which is based on the identification of future
utilization of resources. Once request manager validates the container request, it checks
for the feasibility of deploying the requested containers. The proposed solution analyzes
the future utilization on the targeted resource before it is deployed to reduce the migration
of resource and ensure smooth functioning across all the containers. Here the solution is
only for the experienced users who has the upfront information which fails in the case of
new users. They are assumed to give correct initial placement of containers which poses
a big risk on their proposed algorithm.

Container application deployment has helped in the advancement of microservice ar-
chitecture. This architecture is a well defined Docker container management which offers
insight on core and container scalability Inagaki et al. (2016). It can easily identify the
bottlenecks of both the core and container scalability that could affect the performance
of container orchestration. It also helps in the mitigation of operation issues by analysing
different layers more efficiently. This would help in achieving higher scalability and avail-
ability. However, Containers lack stability for windows-based applications. They fail to
provide features for terminal session which is very essential for their deployment. Other
possibility would be the combination of VMs and containers which is again not a good
option as Mavridis and Karatza (2019) explains that their combination can affect the
performance of virtualization due to increased overheads.

Use of Virtual machines alone can achieve convincing results as far as windows applic-
ations are concerned. However, to keep all the machines in sync for a given task is bit of a
challenge. Zhang et al. (2013) presents a queue-based lock algorithm for shared-memory
multiprocessors whose clients accesses multiple containers. Their methodology is based
on a non-blocking queue which acts like a scalable lock algorithm for multi-systems ar-
chitecture. Instead of deploying separate locks for each resource, this queue acts as a
centralized manager. It has achieved better results since FIFO nature implies fair acquis-
ition of locks. Due to lower access overhead, it has better scalability thus increasing the
performance of the task computation.

2.4 Conclusion

Thus, a collaborative study of various implementations of Cloud Robotics along with
different scheduling policies and resource allocation methods in Container Orchestrations
were reviewed and the gaps were identified. Though there have been many robotic frame-
works designed for Hard Automation to gain better performance, the same is not true for
Soft Automation(RPA). Lack of appropriate architectures in RPA has led this research
to propose a new efficient architecture based on the Multi-Robot framework. Using vir-
tualization and resource locking techniques, the scalability and performance of RPA can
be improved significantly.

7



3 Methodology

This section details the various steps taken while approaching the research project. It
also includes information regarding the equipment used and the preparation of data along
with their measurements.

3.1 Steps taken

The first and foremost step taken was to select the appropriate RPA tool. Different RPA
tools were considered like UiPath, Appium, Blue Prism, etc out of which Blue Prism was
eventually selected because of its business agility.

Since this research was intended to solve a real-world problem arising due to pandemic,
the domain of Health Insurance was carefully chosen. It was reported that many health
insurance companies had a surge of applicants due to Covid-19. 1

The architecture was inspired by the“Multi-Robot” (Wen et al.; 2016) framework as
discussed in the literature review subsection 2.2

It was also planned to use Dockers as Orchestrating Containers, however Blue Prism
being a Windows-based application needed a terminal session which was not supported
by containers. Hence, it was more appropriate to use VMs (Mavridis and Karatza; 2019)
for operating multiple bots through Blue prism clients.

Locking algorithms of containers Zhang et al. (2013) were used to formulate a new
algorithm named “Queue-based bot locking algorithm” exclusively for RPA framework
to handle multiple bots simultaneously.

Different external libraries were created as Blue Prism objects which were mapped to
the corresponding processes accurately.

The Blue Prism control room was used for the execution of various processes by the
different bots in a synchronized manner.

The Blue prism log manager provided the status of execution for each bot and the
individual and total time taken to complete the task.

3.2 Equipment used & set-up techniques

Blue Prism was used as the RPA tool for deploying the proposed architecture. Though
Blue Prism was a licensed tool, it was preferred over the other open-source RPA tools
like UiPath because of its client-server architecture. Also it has tremendous speed and
proven business agility. Multiple virtual machines were added as Blue prism clients which
were included to provide scalability and increase performance. These were connected to
the global database to maintain consistency.

Different user roles were identified and each role was configured with a set of opera-
tions. Only the admin had the sole right for all operations at once. Earlier security group
was created along with the group membership for appropriate domain users as shown in
the below figure. The input file which was passed to the process studio across different
bots was shared through a common network drive.

1Health Insurance surge: https://www.prnewswire.co.uk/news-releases/

health-insurance-broker-experiences-surge-in-coronavirus-related-enquiries-858566783.

html

8

https://www.prnewswire.co.uk/news-releases/health-insurance-broker-experiences-surge-in-coronavirus-related-enquiries-858566783.html
https://www.prnewswire.co.uk/news-releases/health-insurance-broker-experiences-surge-in-coronavirus-related-enquiries-858566783.html
https://www.prnewswire.co.uk/news-releases/health-insurance-broker-experiences-surge-in-coronavirus-related-enquiries-858566783.html


Figure 3: Configuration of Blue Prism User roles

3.3 Data prepared

Since the task involved software bots carrying out operations in the web application, data
preparation included collection of input data needed for the bot to perform the specific
operation. Laya Travel Insurance(part of AIG), one of the leading Health Insurance
companies was taken into account for real-time application. Earlier the datasets were
passed through the Blue Prism process itself. Eventually the data was passed in through
an Excel file which included the travel dates and date of births of each individual. Travel
dates were taken as per the companies’ policies which cited that both the journey and
return dates should be within a month. The ages were considered for all groups, children,
youth and elders to check whether they give the insurance details correctly. Also the
listing column was synchronized with the queue manager in the Blue Prism application.

3.4 Measurements made

Measurements were made on different basis from process execution time to the consistency
of each bots performing the tasks. The control studio shows each different items from the
work queue along with the resource bot executing it. It gives the total number of time
taken by each resource and also gives information about the number of attempts made
while executing a particular task.

The calculation of time execution for this Multi-robot architecture were also made
against the traditional approach without any use of virtual machines to understand the
performance change. Incorrect data and null values were also passed in the input file to
see how the bots performed under Exception scenarios. The updation of the Excel file
was also done using a different lock mechanism so that there is no inconsistency during its
updation from different bots. Blue Prism also kept an interactive dashboard for graphical
analysis of different workforce availability and their process execution.

9



4 Design Specification

4.1 RPA Architecture

Following diagram depicts the architecture for the research work which follows a “Multi-
Robot” approach.

Figure 4: Blue Prism Multi-Robot Architecture

This architecture consists of Blue Prism as the main RPA tool. This “Multi-Robot”
approach follows a Client-Server design with Blue Prism client application(RPA bot)
being installed in both the host and the virtual machines. All these RPA bots are then
connected to the Blue Prism server.

The Blue Prism Server is connected using secure AES-256 encryption technique. This
server is also connected to the global database server. These Blue prism clients residing on
the host and virtual machines act as multiple bots to perform various tasks that has been
designed using Blue Prism process and object studio. All these bots simultaneously per-
form operations on the web application using a new Queue-based Bot locking algorithm
which was inspired by the resource locking algorithm of the containers. These bots work
synchronously with each other to get the data from the input Excel sheet shared to all
the machines using drive mapping through LAN.

Initially one of the bots acquires a lock to access the Input sheet from the mapped
drive and gathers the data into its collection dataset which is accessible by all the bots.
When other bots find that the lock has already been acquired, they directly proceed to
the task execution phase and retrieves data from the collection dataset. The common
repetitive set of activities is performed by different bots instead of one single bot thus
maximizing the performance of the task execution and increasing its speed considerably.
These bots after performing each round of task, marks it complete and then proceeds to
the next item in the work queue until the queue list is empty.

Once all the tasks are executed, the results obtained are updated in the input file in
a timely fashion. The algorithm along with the flowchart is described in the subsection
4.3

10



4.2 Process and Object Studio interaction

Figure 5: Inside Blue prism client

• Process Studio: Based on the .Net framework, it is the area where the process is
developed. It includes all the actions, loops, exception handling, business logic, etc.
The different objects created in the object studio and the imported libraries are
called in process studio to define various functions.

• Object Studio: Object studio is ideally used to create the functionality of the task
so that it can be deployed by various processes. It helps to create Visual Business
Object(VBO) which helps in consistency and scalability. Bot maintenance becomes
much more easier because the system changes could be updated directly in the main
location instead for every process. Thus it helps in reducing bot development time
for subsequent processes.

• Control Room: Control room is used to execute the processes through various
resources(bots). It shows the account of the currently running sessions and gives the
status, time required and the process details information. It includes the work queue
which shows all the status of the items in queue along with their resource, attempt
and execution time details. It also includes the scheduler and data gateways.

• System Manager: The System manager includes the exposure, management, history
and environment variables of all the processes and the objects in the system. It
entails configuration settings for SOAP Web Services and its APIs. The encryption
scheme along with key details are stored in this manager. Various Users, user roles,
credentials and licensing details are also included here. It essentially stores all the
audit logs, process logs and object logs too.

11



4.3 New Queue-based locking algorithm

Algorithm 1 Queue-based Bot locking

init bots
init taskQueue, init maxLimit
check lockExists
if lockExists is empty then

acquire lock
create instance
get data as collection
add to queue
release lock
proceed taskQueue

else
proceed taskQueue
retrieve collection

end
while taskQueue 6= 0 do

while taskAttempt . maxLimit do
get next item
execute all actions
if action← Exception then

Mark action← Exception
get next item

else
add rows to collection
Mark as completed

end

end

end
write collection(Excel updation)

Thus Multiple bots can execute tasks simultaneously in a non-blocking manner.

Figure 6: Excel updation flowchart

12



5 Implementation

Using the “Multi-Robot” architecture, the Blue Prism was installed and configured in
the host machine as the tool comes with both server and client application respectively.
Virtual machine instances were created on which only the Blue prism client applications
were installed. All of these machines were connected with the Blue prism server using
secure AES-256 encryption technique.

After connecting the server to the database, it was ensured that the input Excel file
is shared through drive mapping for all the connected machines. The whole architecture
was implemented using Queue-based Bot locking algorithm for multiple bots so that they
can execute the task simultaneously without blocking any other bot. The final updation
of the Excel file was done using the algorithm as per fig. 6

The RPA execution can be done in multiple ways, i.e. it can be either done from
the process studio or from the control room. This research uses process studio execution
because it allows us to monitor each and every action of the complete process(fig.7) and
thus helping in the overall Testing of the solution to debug each and every exception.

Figure 7: Process Studio Implementation

Since RPA is mainly used for a set of repetitive tasks, the “Multi-Robot” architecture
was implemented on such a healthcare web application of Laya Travel Insurance wherein
different sets of insurances have to be calculated based on the travelling dates and ages
of the passengers. Instead of using one bot to carry out different sets of execution as in
the traditional approach, this novel approach used multiple bots to carry out different
sets simultaneously thus increasing the scalability of the RPA. Also the total execution
time was reduced significantly thereby bettering the RPA performance.

Tools and Technologies used:
RPA Tool: Blue Prism v6.8(Licensed)
Framework: .Net framework 4.7
Languages: XML, C#, Java
Database: Microsoft SQL Server
Other tools: Oracle VM Virtualbox, IBM SPSS v26

13



Activities carried under Blue Prism include:

• Creation of processes in process studio

• Creating various objects in the object studio

• Spying elements across the webpage using dynamic attributes

• Importing the input file and other necessary objects

• Resume Recover operation for exception handling

• Task queues implementation using Bot locking algorithm

• Queue management using key synchronization and flagging options

The Blue Prism version control helps us to keep a check of all the activities that are
carried out during the course of implementation.

Figure 8: RPA Implementation on Insurance application

As shown in fig.11, multiple bots simultaneously perform operations on the Laya
Insurance application with greater efficiency. The insurance values generated from the
application are stored in the Excel sheet. If any of the bots fail in performing a particular
task due to application inconsistency, it retries until it reaches the maximum attempts
thereby improving scalability. As RPA itself is Robotic Automation, it is not prone to
any errors caused by human intervention thus increasing the accuracy and productivity
of the solution.

Thus the research question of whether RPA can be improved by using Container-
related methodologies has been successfully answered but in an unlikely fashion. The
resource allocation techniques of containers formed the basis on which Queue-based bot
locking algorithm was designed with the help of virtualization thus offering higher scalab-
ility and better performance.

The secondary objective of solving a real-world problem arising due to the pandemic
was also administered as this solution helps Insurance companies to solve the surging
requests at a faster rate with increased productivity and less labour.

14



6 Evaluation

The new “Multi-Robot” architecture has improved the task execution speed by 40% as
detailed in 6.1 and 6.2. Multiple bots have been distributed with different sets of a task
thus increasing the performance immensely. The Blue Prism application provides us with
an interactive dashboard which helps to understand the total automations and the ratio
of objects and processes in the database. And essentially, it helps us to understand the
status of queue volumes whether it is complete, deferred or still pending.

Figure 9: RPA Analytical Insights

6.1 Experiment 1

The task of repetitive sets of generating insurances from Laya Healthcare application were
distributed among multiple resources as shown in fig. 10. 3 sets of the task were allocated
among both the resources i.e. JAISON and HOSHEA. Each set of task is considered as
1 Queue item in the RPA terminology. As per the total work time displayed in the last
column, average execution time taken for each item is around 30-35 sec.

Figure 10: Control Room Queue Results

It was also noted that due to application inconsistency when the second resource failed
to execute the task in the first attempt, it automatically retried the queue item until it
executes it successfully. Maximum such tries were configured to three times after which
it would proceed with the next item in the queue.

Thus the overall execution time taken by both the resources(bots) to complete the
task falls under 85 sec whereas the same task if executed by only one bot would have
required 120 sec i.e. around 2 mins. It means here the efficiency is increased by 30% for
odd combination of task sets and bots.

The overall execution time(T) for a single bot can be calculated as follows:

15



T =
N∑

n=0

Qn ∗ A

where Q: time reqd. for single Queue Item
A: no. of attempts
N: total no. of queue items

While for multiple bots, the execution time is given by Tbots

Tbots =
N∑

n=0

(Qn ∗ A)maxBot

where maxBot: bot with the maximum time taken

As described in the second equation, here only the bot with the maximum time is taken
into account, thus overlapping with all the time taken by the other bots thereby reducing
execution time and increasing the performance. Hence, we can conclude that,

Tbots < T

6.2 Experiment 2

Figure 11: Multiple Regression - Histogram

Traditional RPA of single bot was evaluated against the Multi-Robot RPA using two
and three bots respectively. A further analysis was conducted using Multiple regression
which helped in understanding the normal distribution for execution time against both
the number of sets and bots. The Normal P-P plot shows all the points are oscillating
near the normal line and they are not much deviating from the line. It concludes that
the histogram generated is fine and normal and no peculiar observations are reported.

16



Figure 12: Traditional RPA vs Multi-Robot RPA

Here assumption is made that each bot takes an average of 30 sec to complete one set
of task. The blue line in the fig.12 represents the single-bot RPA which takes the longest
execution time as the number of sets increases. For instance, for 4 sets of execution,
when the red and green lines(multi-bots) takes only 60 sec, the blue line takes 120 sec to
complete the execution. Here the efficiency is increased by 50%.

Thus the higher the number of bots in the system, the lesser the total execution
time and greater the scalability of the system. Because Multi-robot system helps in the
provision of multiple bots thus distributing the task load amongst them thereby increasing
scalability and if needed, more VMs(bots) can be added to handle excess load.

Figure 13: CPU Resource Utilization

. Also, the CPU Resource Utilization was closely monitored since Blue Prism is a
Windows-based application. As the utilization stands at 40%, we can conclude that the
RPA tool has good CPU utilization rate and it doesn’t degrade the performance of the
CPU for other applications as well.

17



6.3 Discussion

The various experiments conducted helps us to determine how the performance of the
system is greatly improved by using “Multi-Robot” architecture. For odd combination
of sets and bots, multiple bots helped in achieving around 30% efficiency while for the
latter experiment which had even combinations, the efficiency achieved was around 50%
i.e. giving a mean performance increase of 40%. Thus for larger tasks, the higher the
number of bots in the system, the better is their overall performance.

However, more the number of bots means more licenses have to be acquired which
increases the cost of the system since Blue Prism is a licensed tool. Thus though the
performance of the system is improved greatly, their architecture deployment do comes
with an increased cost.

7 Conclusion and Future Work

The research work has successfully implemented a new architecture in the field of Robotic
Process Automation. The novel “Multi-Robot” architecture was realized in Soft Auto-
mation using Blue Prism as the RPA tool along with container-related methodologies.
Though virtual machines were preferred over containers for virtualization, this research
made use of containers’ resource allocation techniques to devise a new algorithm called
“Queue-based Bot Locking”. This algorithm was a breakthrough in achieving better
scalability and performance by a mean of whooping 40%. It was also successful in ad-
ministering a real-time problem arising due to pandemic by helping Insurance companies
to cope up with their surging requests with better performance at faster rate.

One of the hurdles faced in the research project was the acquisition of multiple licenses
since Blue Prism is not an open-source tool. As a result, it was also noted that, more the
number of licenses, more the number of bots in the system which could ultimately give a
better performance but with an increased cost due to its licensing factor. However, if we
consider the whole scenario, Robotic Process Automation is a much better choice because
it eliminates the additional human workforce thus reducing the overall costs apart from
its licensing costs.

Future work could include the combination of multiple RPA tools to realize the goal of
better task execution with lesser cost. Blue Prism can be combined with open-source RPA
tools like UiPath to execute a task where Blue Prism can be deployed for performing high-
end processes while UiPath can be used to perform the lower ones. Thus it can reduce
the number of bots require for Blue prism licensing thus reducing the overall cost of the
system. Also, different mechanisms of locking algorithms could be explored in such a
combined scenario.

References

Asatiani, A. and Penttinen, E. (2016). Turning robotic process automation into com-
mercial success–case opuscapita, Journal of Information Technology Teaching Cases
6(2): 67–74. JCR Impact Factor: 4.535.

Clair, C. L. (2018). The forrester waveTM: Robotic process automation, q2 2018, Technical
report. Number: 142662.

18



de Abranches, M. C. and Solis, P. (2016). An algorithm based on response time and traffic
demands to scale containers on a cloud computing system, 2016 IEEE 15th Interna-
tional Symposium on Network Computing and Applications (NCA), IEEE, Cambridge,
pp. 343–350. Core Ranking: A.

Duan, Y. and Yu, X. (2016). Multi-robot system based on cloud platform, 2016 IEEE
Chinese Guidance, Navigation and Control Conference (CGNCC), IEEE, Nanjing,
pp. 614–617. Number: 7819651.

Dyumin, A., Puzikov, L., Rovnyagin, M., Urvanov, G. and Chugunkov, I. (2015). Cloud
computing architectures for mobile robotics, 2015 IEEE NW Russia Young Research-
ers in Electrical and Electronic Engineering Conference (EIConRusNW), IEEE, St.
Petersburg, pp. 65–70. ISBN: 9781479973071.

Fung, H. P. (2014). Criteria, use cases and effects of information technology process
automation (itpa), Advances in Robotics & Automation 3. JCR Impact factor 3.573.

Hu, B., Wang, H., Zhang, P., Ding, B. and Che, H. (2017). Cloudroid: A cloud framework
for transparent and qos-aware robotic computation outsourcing, 2017 IEEE 10th In-
ternational Conference on Cloud Computing (CLOUD), IEEE, Honolulu, pp. 114–121.
CORE Ranking: B.

Inagaki, T., Ueda, Y. and Ohara, M. (2016). Container management as emerging work-
load for operating systems, 2016 IEEE International Symposium on Workload Char-
acterization (IISWC), IEEE, pp. 1–10. JCR Impact Factor: 2.89.

Ingalls, A. (2020). Kofax reveals top 10 intelligent auto-
mation predictions for 2020, https://www.businesswire.com/

Kofax-Reveals-Top-10-Intelligent-Automation-Predictions/. Accessed:
2020-03-25.

Issac, R., Muni, R. and Desai, K. (2018). Delineated analysis of robotic process auto-
mation tools, 2018 Second International Conference on Advances in Electronics, Com-
puters and Communications (ICAECC), IEEE, Bangalore, pp. 1–5.

Julio, R. E. and Bastos, G. S. (2015). Dynamic bandwidth management library for
multi-robot systems, 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, Hamburg, pp. 2585–2590. Core Ranking: A.

Kandan, R., Khalid, M. F., Ismail, B. I. and Hoe, O. H. (2019). Advanced resource
allocation and service level monitoring for container orchestration platform, 2019 IEEE
International Conference on Sensors and Nanotechnology, IEEE, Penang, pp. 1–4. Core
Ranking: B.

Kehoe, B., Patil, S., Abbeel, P. and Goldberg, K. (2015). A survey of research on cloud
robotics and automation, IEEE Transactions on automation science and engineering
12(2): 398–409. JCR Impact Factor: 3.667.

Kehoe, B., Warrier, D., Patil, S. and Goldberg, K. (2014). Cloud-based grasp analysis
and planning for toleranced parts using parallelized monte carlo sampling, IEEE Trans-
actions on Automation Science and Engineering 12(2): 455–470. JCR Impact Factor:
3.667.

19

https://www.businesswire.com/Kofax-Reveals-Top-10-Intelligent-Automation-Predictions/
https://www.businesswire.com/Kofax-Reveals-Top-10-Intelligent-Automation-Predictions/


Lacity, M. and Willcocks, L. (2015). Paper 15/07 robotic process automation: The next
transformation lever for shared services. URL: https://vdocuments.mx/paper-1507-
robotic-process-automation-the-next-capabilities-derek-toone.html.

Leiva-Leon, D., Pérez-Quirós, G. and Rots, E. (2020). Real-time weakness of the global
economy: A first assessment of the coronavirus crisis. ISBN: 978-92-899-4024-5.

Leshob, A., Bourgouin, A. and Renard, L. (2018). Towards a process analysis approach
to adopt robotic process automation, 2018 IEEE 15th International Conference on
e-Business Engineering (ICEBE), IEEE, Montreal, pp. 46–53. CORE Ranking: B.

Mavridis, I. and Karatza, H. (2019). Combining containers and virtual machines to
enhance isolation and extend functionality on cloud computing, Future Generation
Computer Systems 94: 674–696. JCR Impact Factor: 6.125.

Preeth, E., Mulerickal, F. J. P., Paul, B. and Sastri, Y. (2015). Evaluation of docker
containers based on hardware utilization, 2015 International Conference on Control
Communication & Computing India (ICCC), IEEE, Trivandrum, pp. 697–700. Core
Ranking: C.

Sim, K. M. and An, B. (2009). Evolving best-response strategies for market-driven agents
using aggregative fitness ga, IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 39(3): 284–298. JCR Impact Factor: 5.131.

Slaby, J. R. (2012). Robotic automation emerges as a threat to traditional low-cost
outsourcing, HfS Research Ltd 1(1): 3–3.

Wang, L., Liu, M. and Meng, M. Q.-H. (2013). An auction-based resource alloca-
tion strategy for joint-surveillance using networked multi-robot systems, 2013 IEEE
International Conference on Information and Automation (ICIA), IEEE, Yinchuan,
pp. 424–429. Core Ranking: C.

Wen, S., Ding, B., Wang, H., Hu, B., Liu, H. and Shi, P. (2016). Towards migrating
resource-consuming robotic software packages to cloud, 2016 IEEE International Con-
ference on Real-time Computing and Robotics (RCAR), IEEE, Angkor Wat, pp. 283–
288. Core Ranking: B.

Zhang, D., Lynch, B. and Dechev, D. (2013). Fast and scalable queue-based resource
allocation lock on shared-memory multiprocessors, International Conference On Prin-
ciples Of Distributed Systems, OPODIS, Nice, pp. 266–280. Core Ranking: B.

20


	Introduction
	Background
	Motivation
	Research Question & Objectives
	Limitations
	Structure of the report

	Related Work
	RPA challenges
	Smart Cloud Robotic System
	Scalability and Scheduling in Container Orchestrations
	Conclusion

	Methodology
	Steps taken
	Equipment used & set-up techniques
	Data prepared
	Measurements made

	Design Specification
	RPA Architecture
	Process and Object Studio interaction
	New Queue-based locking algorithm

	Implementation
	Evaluation
	Experiment 1
	Experiment 2
	Discussion

	Conclusion and Future Work

