
Dynamic Replica Management in Fog-
enabled IoT using Enhanced Data Mining

Technique

MSc Research Project

Cloud Computing

Rahul Sudhakar Dhande
Student ID:18182852

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rahul Sudhakar Dhande

Student ID: 18182852

Programme: Programme Name

Year: 2020

Module: MSc Research Project

Supervisor: Prof. Vikas Sahni

Submission Due Date: 23/08/2020

Project Title: Dynamic Replica Management in Fog- enabled IoT using En-
hanced Data Mining Technique (Configuration Manual)

Word Count: 2059

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Dynamic Replica Management in Fog- enabled IoT
using Enhanced Data Mining Technique

(Configuration Manual)

Rahul Sudhakar Dhande
18182852

1 Introduction

The significant step of this research paper is the configuration manual. It is shown
the installation and execution scenario of the synthetic dataset, implementation and
simulation as well as the java code (final output) that is replica placement in Fog-IoT
environment. Also, it includes a detailed description of experimental tools and setup for
the research project.

1.1 Purpose

The purpose the configuration manual is to understand step by step all procedure for in-
stallation and execution scenario of the synthetic dataset, implementation and simulation
as well as the java code (final output) that is replica placement in Fog-IoT environment.
It acts as a manual guide. It aims to indicates the information.Also, it helps to analyze
the effectiveness of the outlined replica placement in fog-IoT environment.

2 Prerequisites: System Configurations

To evaluate this experiment, require the following tools and setup.

1. Software prerequisites

• Java development kit (JDK) version 8 1

• Eclipse IDE for Java Developers Version: Oxygen.3a Release (4.7.3a) 2

• Benchmarking tool: iFogSim Simulator 3

• OS: Windows 10 Home Single Language

2. Hardware prerequisites

• Processor: Intel (R) Core(TM) i5-8250U CPU 3.4 GHz

• Specs: 8GB Memory,1 TB HDD and 256GB SSD

• System Type: 64-bit OS,x-64 based processor
1https://www.oracle.com/in/java/technologies/javase/javase-jdk8-downloads.html
2https://www.eclipse.org/downloads/
3https://github.com/Cloudslab/iFogSimTutorials

1

https://www.oracle.com/in/java/technologies/javase/javase-jdk8-downloads.html
https://www.eclipse.org/downloads/
https://github.com/Cloudslab/iFogSimTutorials


2.1 Installation of iFogSim

Once download iFogSim from Cloudslab (1) unzip the ifogsim-master into any drive and
start Eclipse IDE. Also,followed steps to import ifogsim 4.

1. Click on New to create a new Java Project and give the project name. e.g. ifog-
simTestSource.

2. Untick default location and click on browse to select the ifogsim-master from the
extracted file drive.

3. Click on finish.

Figure 1: iFogSim in Eclipse IDE

The red highlighted portion figure 1 is shown the ifogSim with packages and classes
imported under the Eclipse IDE 5.

Additionally, to build physical network topology, used FogGUI.java under the
org.fog.gui.example package.The GUI developed by Gupta et al. (2016)

Figure 2: GUI of ifogSim with replica placement network topology

4https://youtu.be/uqg7TcOQS5Q
5https://www.cloudsimtutorials.online/ifogsim-project-structure-a-beginners-guide/

2

https://youtu.be/uqg7TcOQS5Q
https://www.cloudsimtutorials.online/ifogsim-project-structure-a-beginners-guide/


3 Maximal frequent pattern mining Algorithm

The Hamrouni et al. (2016) introduced data mining techniques for dynamic replication.
It includes maximal frequent pattern mining algorithm used for replica placement in
data grids environment and simulation using OptorSim. Additionally, the Mansouri
et al. (2019) used the same algorithm in a cloud environment and examined results using
CloudSim. The algorithm considers data mining techniques such as frequent pattern,
correlation measure and frequent correlated pattern. So it is referred to as a data mining
algorithm. There are some limitations in the results observed and improved in this
approach (EDMDR). Also,evaluated and generated results of latency, response time and
network usage by using the same algorithm (MFCPM) in fog enabled IoT environment
using iFogSim.

The MFCPM is base the on SPMF(Opensource data mining library). Downloaded
SPMF 6 and Unzip into iFogsim src folder for integration to the iFogSim. Right-click
on ifogsimTestSource project and Click on Refresh. It is shown SPMF packages and Al-
goFPMax java code under the ca.pfv.spmf.algorithms.frequentpatterns.fpgrowth package.

Figure 3: AlgoFPMax in iFogSim

The red highlighted in the figure 3 indicated the AlgoFPMAx.java under the fpgrowth
package, and Orange highlighted shown the actual algorithm in Eclipse IDE GUI. The
main function of this algorithm is runalgorithm() in figure 4 takes three inputs such
as dataset, output and minsupport value.

Figure 4: runalgorthm() function of AlgoFPMax

6http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php

3

http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php


Additionally,downloaded one sample dataset to test AlgoFPMax algorithm from SPMF
sample datasets called Chess.7Also, add java class called FPMaxDemo and write an API
invocation function to called the runalgorithm() from the package. Moreover , created
two individual folders into drive and put this dataset into dataset folder and output folder
for outcomes. Finally, give both paths into the program with minsupport value 0.7

Figure 5: Output of FPMaxDemo using Chess dataset(Sample dataset)

The above figure 5 is shown the FPMax Java code with output of sample dataset
called Chess. It includes the total transactions, memory usage, maximal frequent itemset
count and time.

Figure 6: frequent itemsets from FPMaxDemo with support value

The maximal frequent itemset count referred to as repeated values from chess dataset
and support value in the above 6 generated output file.

4 Synthetic dataset

For the evaluation of results, created and used a synthesized dataset that is historical
real-time traces (access pattern data) of IoT use case to make replica decisions on fog
nodes frequently. It aims to make replica placement. It includes candidate nodes as
per physical network topology figure 2. The candidate nodes contain cloud node, fog
gateway 1, fog gateway 2, fog device 1, fog device 2. In a dynamic replication algorithm,
the candidate nodes referred to as

7http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

4

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php


1. Cloud

2. Fog gateway 1

3. Fog gateway 2

4. Fog device 1

5. Fog device 2

Figure 7: Synthesized dataset for EDMDR Simulation

Also, to make replica decisions, used Cleveland health disease training information
of healthcare application created by Andras Janosi (M.D.) at the Gottsegen Hungarian
Institute of Cardiology, Hungary.8 The Cleveland dataset contains heart disease patients
information, including 7 columns wherein diagnosis column 0 indicates no heart disease
and -9 indicates heart disease present. Overall, considered both datasets to make proper
replica placement in fog enabled IoT environment.

Figure 8: Celeveland information for replica decisions

8https://archive.ics.uci.edu/ml/datasets/heart+Disease

5

https://archive.ics.uci.edu/ml/datasets/heart+Disease


5 Enhanced data mining dynamic replication algorithm

This section includes the implementation of enhancing data mining dynamic replication
algorithm (EDMDR) aims to make replica placement based on replica decisions(frequency
threshold). The AlgoFPMax algorithm in section 3 invoked using Java API and used
SPMF libraries to make proper replica placement.The primary function of this algorithm
is runDMDRalgorithm() takes four inputs that include hash network, replica frequency
threshold, historical trace and support value, as shown in the figure 10. The replica
frequency contains Cleveland training information and historical trace contain synthetic
dataset.Also, we provided minsupport value 0.4

Figure 9: Fog Network: Nodes.Java

For physical network topology, considered another class Node.java and integrated
into EDMDR algorithm. It calculates total number nodes length, no of fog nodes and
no of fog controller nodes. Also, It indicated a description of all fog network used for
dynamic replication.

Figure 10: Implementation of EDMDR algorithm

6



Figure 11: Dynamic replica placement of fog nodes

The final output of this algorithm in figure 11 is shown the replica placement as per
candidate nodes replica decisions and support value. The replica placement contains the
removal of duplicates values. In that, five indicates fog node 2 with support value 145
and 4 contains fog node 1 with support value 148. The support value generates as per
repeated values in the historical trace. Also, the description of IoT use case (Historical
trace), candidates nodes, transaction count, memory usage, total frequent itemset and
total time. To recapitulate, if keeping a replica in the cloud, the latency higher than the
other nodes as well as in fog gateway latency more and performance is less. As compared
to, in fog device latency is less, and performance is high.

6 Simulation of EDMDR

6.1 Structure of fog network nodes environment

Figure 12: Network typology nodes configuration in TestApplication Class

7



To work in this replica placement strategy in Fog enabled IoT environment, implemen-
ted three-tier hierarchical order physical network topology in the final TestApplication (2)
and iFogSim GUI as per section 2.1. Mahmud and Buyya (2018) As shown in the figure
12, we created fog devices (fog nodes) that are connected to IoT actuators and sensors as
well as fog gateway controllers are connected to a cloud data centre with different links
for the execution of replica placement.

Figure 13: Implementation of IoT application model for EDMDR

Additionally, to simulate different scenarios of EDMDR implemented an IoT applic-
ation model as shown in figure 13. It includes various logical components such as IoT
sensors, actuators, ClientModule, MainModule placed in fog devices and StorageModule
placed in the cloud data centre to reduce end to end latency. Also, used and invoked
AppEdge, AppModule and AppLoop classes from org.fog.application in TestApplica-
tion.The IoT sensors and actuators include rawdata,resultdata and Storedata for data
transmission between logical components. Also, used tuple class for data stream com-
munication between various fog entities as per physical network topology. Mahmud and
Buyya (2018) and Gupta et al. (2016)

For the simulation and evaluation of EDMDR in iFogSim, considered different classes
from existing packages significantly. Moreover, add enhancements in some java classes like
MyApplication, MyActuator, MySensor, and MyFogDevice and MyPlacement is some-
what similar to Application, Actuator, Sensor, FogDevice and ModulePlacement. For
the implementation of application placement logic in iFogSim, the two major classes
are considered that is ModulePlacement and Controller.Gupta et al. (2016) In EDMDR
simulation, applied replica placement logic in MyModulePlacement and MyController.

Subsequently, added EDMDR and Nodes classes in the final testing package (org.fog.test.perfeval)
for integration with iFogSim. Finally, the major for testing EDMDR approach create an
TestApplication where all the above classes are added through API invocation explicitly.
Overall, implemented a physical network topology of EDMDR in FogGUI and TestAp-
plication class.

8



iFogSim Packages Java Classes
org.fog.application MyApplication

org.fog.entities MyActuator,MySensor and MyFogDevice
org.fog.placement MyController,MyModulePlacement,MyPlacement

org.fog.test.perfeval TestApplication,EDMDR,Nodes
org.fog.gui.example FogGUI

Table 1: Structure of classes in iFogSim Simulation

Class Description
TestApplication Test dynamic replica placement (EDMDR).

MySensor It encapsulated the functionality of a physical sensor
MyPlacement It is used for placement of application.

MyModulePlacement It is used to have placement of modules
MyFogDevice It holded capabilities of storage and processing.
MyController It coordinated the functions of the simulation.

MyApplication Encapsulated the IoT application is deployed in a fog environment.
MyActuator Actuator functionality.
AlgoFPMax It is used for generation of Maximal Frequent Itemsets count.

EDMDR Replica placement decisions .
Nodes Physical network topology components.

Table 2: Description of classes used in iFogSim Simulation

The detailed description of classes used for simulation of EDMDR indicated in the
table 2. These all classes are invoked in TestApplication used for the final simulation.Also,
for the evaluation of various experiments, specifically used some existing classes of iFog-
Sim in the table 3.

Figure 14: Simulation of EDMDR(TestApplication.java)

As shown in the figure 14, left side highlighted packages used in EDMDR for simu-
lation. Subsequently, right side, the main simulation function used for the execution of
EDMDR approach. Moreover,used historical trace, for replication frequency threshold
Cleveland file (for replica decisions) and min.support value 0.4 as an input.In the main
function, invoked EDMDR algorithm for replica placement.

9



The final replica placement decisions with support value using candidate nodes (real-
time historical traces) in different text files as per physical network topology 2 are shown
in the figure 15 . Also, it shown total transactions count, frequent itemset count, memory
usage and total time(ms) with a description of candidate nodes for IoT.

Figure 15: Final EDMDR Simulation Result 1

Figure 16: Final EDMDR Simulation Result 1.1

The figure 16 is shown the evaluation metrics results include execution time, applic-
ation loop delays, tuple execution delay, cloud energy consumption, cost of execution in
fog and total network usage. The results are generated based on different java classes
directly invoked in TestApplication.java. Also, the source code for the above metrics is
shown in experiments section 7.

10



7 Experiments

This section contains implemented source codes for calculation of various experiments of
EDMDR in fog enabled IoT.

Class Description
TimeKeeper Calculation of total execution delay

Calender Calculation of execution time
NetworkUsageMonitor Calculation of total network usage.

PowerDatacenter Calculation of Energy Consumption.
MemeoryLogger Calculation of Storage usage.

Table 3: Description of existing classes used in experiments

7.1 Exp1: Execution delay

Figure 17: Implementation of Overall latency of EDMDR(MyController.java)

To calculate overall latency of EDMDR in fog enabled IoT, primarily used Time-
Keeper class from org.fog.utils and MyController from org.fog.placement invoked in Test-
Application.java The TimeKepper class already available in iFogSim. For this experi-
ment,implemented logic in Mycontroller class. As show in the figure 17, the getInstance()
function invoked from TimeKeeper class for average CPU time calculation.

7.2 Exp2: Response Time

Figure 18: Implementation of Response time of EDMDR(MyController.java)

To calculate the average response time of EDMDR in fog environment, used Cal-
endar class from java.util and Timer class from org.fog.utils and MyController from
org.fog.placement invoked in TestApplication.java. The Calendar and Timer class are
already present in iFogSim. For this experiment, implemented logic in Mycontroller
class. As shown in the figure 18, the getTimeInMillis() function from invoked from the
calendar for timezone and getSimulationStartTime() function invoked from TimeKeeper
class to return simulation time.

11



7.3 Exp3: Network Usage

Figure 19: Implementation of Network Usage of EDMDR(MyController.java)

To evaluate the effective network usage of EDMDR in fog environment, used Net-
workUsageMonitor class and Config class from org.fog.utils and MyController from org.fog.placement
invoked in TestApplication.java. The NetworkUsageMonitor class and Config class are
already present in iFogSim. For this experiment, implemented logic in Mycontroller class.
As shown in the figure 19, the sendingTuple() function invoked from the NetworkUsage-
Monitor for network usage and set MAXSIMULATIONTIME=1000 invoked from Config
class.

7.4 Exp4: Storage Usage

Figure 20: Implementation of Storage Usage of EDMDR (MyController.java)

To evaluate the total RAM consumption or Memory Usage of EDMDR in fog environ-
ment,used MemoryLogger class from ca.pfv.spmf.tool and MyController from org.fog.placement
invoked in TestApplication.java. The MemoryLogger are already present in SPMF lib-
raries and extended in iFogSim. For this experiment, implemented logic in MyController
class. As shown in the figure 20, getMaxMemory() function invoked from the Memory-
Logger class to indicate exact RAM consumption of EDMDR. For the memory consump-
tion calculation the HeapMemory was used, it shown the total memory consumption in
megabytes.

7.5 Exp5: Energy Consumption

Figure 21: Implementation of Energy Consumption of EDMDR(MyController.java)

12



To calculate the total energy consumption of cloud of EDMDR in fog environment,
used PowerDatacenter class from org.cloudbus.cloudsim.power and MyFogDevice class
from org.fog.entities and MyController from org.fog.placement invoked in TestApplica-
tion.java. The PowerDatacenter class are already present in iFogSim. For this experi-
ment,implemented logic in MyFogDevice and MyController class. As shown in the figure
21, thegetEnergyConsumption() function invoked from the MyFogDevice which extends
PowerDatacenter class to show exact energy consumption of data centre.

8 Discussion

In this manual,successfully implemented simulation and examined results of various eval-
uation metrics such as Total latency, Response time, Network Usage, Storage Usage and
Energy Consumption. Also, created fog devices,fog gateways and cloud datacenter to
reduce overall latency of IoT sensors and actuators using EDMDR model. For the evalu-
ation, used number of files and size of files contains candidate nodes (synthetic dataset)
as an input. The figure 22 is shown the graphical visualization of the final results in
Eclipse Console using iFogSim.

(a) Latency (b) Response Time

(c) Network and Energy Consumption (d) Storage Usage

Figure 22: Evaluation Metrics results of EDMDR

13



References

Gupta, H., Dastjerdi, A., Ghosh, S. and Buyya, R. (2016). ifogsim: A toolkit for mod-
eling and simulation of resource management techniques in internet of things, edge
and fog computing environments, Software: Practice and Experience . JCR Impact
Factor:1.931:(2017).

Hamrouni, T., Slimani, S. and Charrada, F. B. (2016). A survey of dynamic replication
and replica selection strategies based on data mining techniques in data grids, Eng.
Appl. Artif. Intell. 48: 140–158. JCR Impact Factor:2.819:(2016).
URL: https://doi.org/10.1016/j.engappai.2015.11.002

Mahmud, M. and Buyya, R. (2018). Modelling and Simulation of Fog and Edge Comput-
ing Environments using iFogSim Toolkit.

Mansouri, N., Javidi, M. and Mohammad Hasani Zade, B. (2019). Using data mining
techniques to improve replica management in cloud environment, Soft Computing .
JCR Impact Factor:2.237:(2019).

14


	Introduction
	Purpose

	Prerequisites: System Configurations
	Installation of iFogSim

	Maximal frequent pattern mining Algorithm 
	Synthetic dataset
	Enhanced data mining dynamic replication algorithm
	Simulation of EDMDR
	Structure of fog network nodes environment

	Experiments
	Exp1: Execution delay
	Exp2: Response Time
	Exp3: Network Usage
	Exp4: Storage Usage
	Exp5: Energy Consumption

	Discussion

