~

N\ National
College
Ireland

Scaling WebRTC video broadcasting using
partial mesh model with location based
signalling

MSc Research Project
Cloud Computing

Adesh Rohan D’Silva
Student ID: x18176097

School of Computing
National College of Ireland

Supervisor: Manuel Tova-Izquierdo

National College of Ireland . National
Project Submission Sheet Cgllege of

School of Computing Ireland

Student Name:

Adesh Rohan D’Silva

Student ID: x18176097
Programme: Cloud Computing
Year: 2020

Module: MSc Research Project
Supervisor: Manuel Tova-Izquierdo

Submission Due Date:

17/08,/2020

Project Title:

Scaling WebRTC video broadcasting using partial mesh model
with location based signalling

Word Count:

879

Page Count:

&

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

I agree to an electronic copy of my thesis being made publicly available on TRAP the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date:

16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [J

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Scaling WebRTC video broadcasting using partial
mesh model with location based signalling

Adesh Rohan D’Silva
x18176097

1 Introduction

This User Manual gives detailed instructions on installation, configuration and execu-
tion/testing of the partial-mesh based WebRTC application artefact which is part of the
research project for this thesis. The instructions outlined here for testing the application
are provided for Amazon Web Services (AWS) but the same instructions can be followed
in any other cloud provider on any Virtual Machine (VM) but with the required soft-
ware installed. This guide assumes that the reader has knowledge in launching VMs on
cloud service providers like AWS or Microsoft Azure and is familiar with SSH and Linux
operating systems.

2 System Specification

2.1 Hardware requirements

The hardware requirements given here can be used to run at most 20 parallel sessions
(users) so if you want to run more than this number you may need more powerful hardware
or use multiple VMs with the same hardware.

Equivalent EC2 instance type t2.medium
No. of vCPU 2
Memory 4GB

2.2 Software requirements

The below software requirements are for both running WebRTC web application and the
test sessions. Apart from below requirements, to see the actual application, the user can
use any browser (Chrome preferred) on their computer.

e Ubuntu 18.04 LTS (latest recommended)
e Node.js
o Git

3 AWS EC2 environment setup

3.1 Launching EC2 instance

We will be launching a t2.medium instance with Ubuntu Server 18.04 LTS or the Amazon
Machine Image (AMI) ami-Obc556e0c¢71e1b467 using AWS EC2 launch instance wizard.

Resource Group:

1. Choose AMI

4.Add S Configure Sex

7. Revew

Step 1: Choose an Amazon Machine Image (AMI)

Cancel and Exit
An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI provided by AWS, our user community, or the AWS Marketplace; or you can select one of your own AMis.

X ubuntu

Search by Systems Mans
Quick Start (8) 1108 of 8 AMIs

My AMIs (1) ® Ubuntu Server 18.04 LTS (HVM), SSD Volume Type - ami-0bcc094591{354be2 (64-bit x86) / ami-0bc556e0¢711b467 (64-bit Arm)

Ubuntu Server 18,04 LTS (HVM) EBS General Purpase (SSD) Volume Type. Support available from Canorical (nip-Awubuntu. com/cloud/services)
AWS Marketplace (466) Free ter elghic " pese (55 e s o ! ® 64-bit (xB6)
Root device type:ebs Vituakzatn ype:hvm ENAEnabed: Y

64-bit (Arm)
Community AMIs (39039)
® Ubuntu Server 16.04 LTS (HVM), SSD Volume Type - ami-05¢16100b6f337dda (64-bit x86) /

(64-bit Arm)
Ubuntu Server 16.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (nttp:/iwww.ubuntu comycloud/services)

Free tier only (i

Free ter clghic

® 64-bit (x86)
O 64-bit (Am)

Root device type: ebs Viruakzation ype: v ENA Enabled: Yes

Deep Learning AMI (Ubuntu 18.04) Version 32.0 - ami-0dc2264cd927cadeb

MXNet-1.6.0, TensorFlow-2.3.0, 2.1.0 & 1.15.3, PyTorch-14.0 & 1.6.0, Neuron, & others. NVIDIA CUDA, cuDNN, NCCL, Intel MKL-DNN, Docker, NVIDIA-Docker & EFA support. For fully managed experience, check

64-bit (x86)
hitps:/laws amazon.com/sagemaker
Roo device type: ebs Vituaization ype: hwm ENA Enabled: Yes
® Deep Learning AMI (Ubuntu 16.04) Version 32.0 - ami-Oeeaa365fa25d692a

MXNet-1.6.0, TensorFlow-2.3.0, 2.1.0 & 1.15.3, PyTorch-1.4.0 & 1.6.0, EI, Neuron, & others. NVIDIA CUDA, cuDNN, NCCL, Intel MKL-DNN, Docker, NVIDIA-Docker & EFA. For fully managed experience, check: 6a-bit (x86)
hitps://aws.amazon.com/sagemaker

Root device type: ebs Viruakzation ype: v ENA Enabled: Yes

® Deep Learning Base AMI (Ubuntu 18.04) Version 27.0 - ami-0635dd49d5f046547 m
NVIDIA CUDA, cuDNN, NCCL, GPU Drivers, Intel MKL-DNN, Docker, NVIDIA-Docker & other system libraries to deploy your own custom deep learming environment. For a fully managed experience, check: 6bit (86)
hitps:l/aws amazon com/sagemaker
Root device type:cbs Vinualzation type:hum ENA Enabled: es

& Deep Learning Base AMI (Ubuntu 16.04) Version 27.0 - ami-0139620cbc36763c6

@ Feedback @ English (US)

Figure 1: Choosing AMI image

Select the highlighted instance as shown in Figure [1, then select t2.medium as the

instance type and then continue clicking ”Next” keeping all options as default until you
reach Configure Security Group

Step 6: Configure Security Group

Asecurity group is a set of firewall rules that control the trfic for your instance. O this page, you can add rules to allow specifc traffic to reach your instance. For example, if you want to set up a web server and allow Internet traffic to reach your instance, add rules that allow unrestricted access to the
HTTP and HTTPS ports. You can create a new security group or select from an existing one below. Learn more about Amazon EC2 security groups.

Assign a security group: © Create a new security group

Select an existing security group

Security group name: [launch-wizard-7]
Description: [launch-wizard-7 created 2020-08-14T12:30:13 846+01:00]
Type (i Protocol (i Port Range (i source (i Description (i
SSH v TCP 22 [Custom] [0.0.0.00] SH for Admin Desktop [x]
[Custom TCP Fv] TCP o] [Custom __v] [0.0.0.000, :70] SSH for Admin Deskiop [x)
[AluDP] upP 0-65535 [Custom_+] [0.0.0.000 | for Admin Desktop [x)

Figure 2: Security rules

You need to add security rules as shown in Figure [2| so that the node application

can run and communicate in the network. After configuring the security group, you can
launch the instance.

3.2 Configuring EC2 instance

Connect to the launched EC2 instance with SSH using your private key file for the
launched instance. You can run below commands to configure and install all the require-
ments for running the test application.

Installing Node.js(Rahul; |2020) and test app:

1$ curl —sL https://deb.nodesource.com/setup_14.x | sudo —E bash —
2 $ sudo apt—get install —y nodejs

3 $ git clone https://github.com /adeshrd /webrtc—test

1 $ cd webrtc—test

5 $ npm install

4 Launching WebRTC Application

4.1 Installing pre-requisites

You will be running these commands from your computer with Ubuntu installed. This
will install Heroku CLI which is required for deploying the application

1 $ sudo snap install ——classic heroku

4.2 Running the application

We will be launching the application to Heroku E] platform as it offers SSL support by-
fefault which is required for WebRTC E] You can optionally launch the app in a AWS
VM but you need to ensure that the application is being served over https protocol.

Run application P}

1 $ git clone https://github.com/adeshrd /webrtc—scalable—broadcast
2 $ cd webrtc—scalable—broadcast

3 $ heroku login

1 $ heroku create

5 $ git push heroku master

These commands will first clone the code from the Github repository and initialize
the Node.js application in the Heroku platform.

"http://heroku.com/
Zhttps://groups.google.com/g/discuss-webrtc/c/sq5CVmY69sc?pli=1
3https://devcenter.heroku.com/articles/getting-started-with-nodejs?singlepage=true

Done: 23.6M
remote: > Launching...
remote: Released v3

remote: https://calm-reef-19703.herokuapp.com/ deployed to Heroku
remote:
remote: Verifying deploy... done.

Figure 3: Application deployment output

After running above commands, you will see that the application is deployed to Heroku
to an url as shown in Figure[3] You need to save this url somewhere as it will be required
later.

4.3 Verify application

We can verify if the deployment was successfull by opening the url which you saved pre-
viously in any web browser by going to ” /scale.html”.
For example in this case you will visit: https://calm-reef-19703.herokuapp.com/scale.html

You should see the below page (Figure |4)):

MyRoom || Open or Join Broadcast |

Figure 4: Application page

4.4 Launching broadcaster

We can now create a room and start the session as the broadcaster by clicking the button
”Open or Join Broadcast”. The Figure |5 shows the page when you create a room and
start broadcasting your video.

You (MyRoom) are now serving the broadcast.

|MyF{mm | Open or Join Broadcast

Figure 5: Broadcasting output

The video in image has been cropped so that only the relevant part of the application
is visible.

5 Test sessions and output

5.1 Launch test sessions

Connect to the launched EC2 instance with SSH and run the following commands to
start the test sessions using Pupeteer El to launch headless chrome browsers in parallel.

Launch parallel headless browsers:

1 $ cd webrtc—test
2 $./scale—par.sh N URL

In above command, replace N with the number of sessions you want to run in parallel
and replace URL with the deployment url that you saved previously in Section [4.2]

4https://github.com/puppeteer /puppeteer

5.2 Verify statistics/output

The WebRTC application page keeps collecting statistics during an ongoing session and
will display updated statistics every 10 seconds. Once you have launched the test sessions,
if you go back to the Chrome browser where the broadcasting page was opened, you will
see the statistics as shown in the below Figure [6] after a few seconds.

RTCPeerConnection bandwidth usage

500k

400k

w
o
o
-~

BytesSentPerSecond
- BytesRecievedPerSecond

Data in Bytes

[\
o
o
=

100k

BytesRecievedPerSecond

14:31:50 14:32:00 14:32:10

Figure 6: Broadcasting output

References

Rahul, W. b. (2020). How to install node.js on ubuntu 18.04 / 16.04 lts.
URL: https://tecadmin.net/install-latest-nodejs-npm-on-ubuntu,/

	Introduction
	System Specification
	Hardware requirements
	Software requirements

	AWS EC2 environment setup
	Launching EC2 instance
	Configuring EC2 instance

	Launching WebRTC Application
	Installing pre-requisites
	Running the application
	Verify application
	Launching broadcaster

	Test sessions and output
	Launch test sessions
	Verify statistics/output

