

User experience evaluation can provide an
early warning system to identify and treat

potential security issues in software
development.

MSc Internship
MSc. Cyber Security (Evening)

Raymond O’Brien
Student ID: 17110971

School of Computing
National College of Ireland

Supervisor: Ross Spelman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Raymond O’Brien

Student ID:

17110971

Programme:

MSc. Cyber Security (Evening)

Year:

2017-2020

Module:

MSc. Internship

Supervisor:

Ross Spelman

Submission Due
Date:

17 August 2020

Project Title:

User experience evaluation can provide an early warning system to
identify and treat potential security issues in software development

Word Count:

Page Count:

6875

33

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

14 August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

User experience evaluation can provide an early
warning system to identify and treat potential security

issues in software development.

Raymond O’Brien
17110971

Abstract
Human error is considered one of the most difficult threats to detect. In 2020, 62% of

insider facilitated incidents were the result of human error. This research project explores
the gaps in traditional software development methodologies to identity areas of the
processes where human error can be better treated to mitigate potential security risks. The
Human-Centred Design “heuristic testing” method will be evaluated to identify and treat
potential cyber security vulnerabilities and weaknesses in early stages of software
development by evaluating the the user's experience before any coding begins.

1 Introduction

In cyber security, a vulnerability is a weakness that can be exploited to gain unauthorised access
to, or perform unauthorised actions against a computer system causing unintended results or
outcomes. Vulnerabilities can allow unauthorised code to run, access a system's memory,
install malware and steal, destroy, or modify sensitive data; with intent or without (Tunggal,
2020). Vulnerabilities in systems can come in many forms but are largely due to the result of
complexity and exploitable bugs left in code; often because of poor coding practice such as not
utilising secure coding standards or otherwise by an over convoluted design. It is known that
complex systems are hard to predict and can lead to unexpected outcomes with a high certainty
they will contain vulnerabilities (Pompon, 2017).

Cyber security is consistently seen as a technical problem to be solved by expensive,
complex and complicated technical solutions. Albert Einstein said, “If you can’t explain it
simply, you don’t understand it well enough” (Beaver, 2013). To not understand a problem
allows for unnecessary complexity and causes vulnerability when developing a solution or a
product designed to solve a problem. Allowing vulnerabilities to exist opens the opportunity
for a potential security incident to be caused. But what is cyber security?

Security can be defined as “the state of feeling happy and safe from danger or worry”
(Oxford University Press, 2020). A sense of security is to feel safe from an attack or
wrongdoing. Paying consideration to security in software development, therefore is paying
attention to the requirement of ensuring an emotional sense of security of an end-user; or logical
understanding of security when applied to an organisation. The end-user’s sense of security is
the emotional response when using a product; while the sense of security is managed by an
organisation using “risk management” (Warsinske et al., p17-30, 2019)

Warsinske et al., (2019) describes an amendment to the traditional software
development life cycle (SDLC), a commonly used methodology and workflow for developing
software solutions, is to include security as a requirement throughout the process. Known as
the Secure Software Development Life Cycle (S-SDLC). The S-SDLC concentrates on

2

incorporating security from a technical and process perspective; e.g. secure coding,
configuration standards, security awareness, security testing, threat modelling. However, apart
from functional usability testing in the later stages of development, it does not empathetically
consider the end-user and their experience from the initial design stages.

Consider a software product as a solution to a “user’s” problem. Why then do we feel a
need to exclude the end-user from much of the process? Especially when common end-users
or “insiders” are reported as the cause of the most expensive data breaches (Verizon, 2019). It
is a widely held opinion that insiders are the biggest threat to an organisation's security. This
has been confirmed in the following research by surveying a group of 102 participants across
multiple industry verticals. However, it is acknowledged in Verizon (2020) reports that there
has been a large increase in the number of incidents caused by human error.

Human error is a fundamental problem that should be addressed continuously in the
design and development of systems. Without addressing human error in system design, it is the
opinion here that a system cannot claim to be secure by design (Andrews, 2017).

Security by Design is a concept employed to ensure any system or solution is designed
from the beginning with security in mind, to reduce the potential risk of an incident or
exploitation of a vulnerability. The principles that govern Security by Design primarily concern
themselves with employing technical or process-based solutions (Mailloux et al., 2018). This
opens the question; how do we focus on the human element while employing Security by
Design and ensure the user and the problem are considered from the beginning? Is there a
process we can employ to evaluate the human element in solution design while adhering to a
secure by design outcome?

By evaluating the user experience, it is possible to solve fundamental problems, instead
of treating symptoms of a problem (Norman, 2018). By only treating the symptoms, we run the
risk of producing unsuitable products which may unintentionally increase security risk. This
concept frames the governing theme for the research conducted here.

Vulnerabilities are a symptom of poor design that greatly impacts security and at best,
are often patched or reworked with other complex technical solutions without addressing the
fundamental problem (Tsipenyuk, 2005). If we can improve the design process to fix the
fundamental problem, we can reduce the symptoms and in turn reduce risk.

Given the issues introduced above, it is intended to explore the Human-Centred Design
process as a solution to validate a “usable” product, while reducing the security problem, in
turn lowering or mitigating risk.

“User experience evaluation can provide an early warning system to identify and treat

potential security issues in software development”

2 Related Work

2.1 Tackling the problem at the source

Software solution design has largely remained a specialism that does not usually consider the
end user's true requirements during operation. It is typically based on a primary set of functional
and non-functional requirements to allow a user complete a task. The software developer
continues to design and develop in how they perceive a user should complete a task using
traditional approaches, such as Waterfall; with rapid requirement analysis which are not overly
suited to solving/addressing repetitive problems that require an innovative solution (Blosch et
al., 2017). The developer is seen as a “superhuman taking care of design, coding, updating

3

digital products, and also solving all server-related issues” (Oślizło, 2019). With poorly
resourced teams and testing primarily evaluated during a single phase in the development
lifecycle (towards the end, after coding and prior to release) it is difficult to anticipate and treat
coding or design errors that may lead to a security risk. With roughly half of all security defects
introduced at the source code level, Tsipenyuk (2005) denotes coding errors as a critical
problem in software security.

Figure 1: Waterfall Software Development Methodology

With Agile (an iterative rapid development methodology based on shortening time
between requirements gathering, feature definition and delivery), “Programmers want to start
programming day one, even before we know what we want to build” (Norman, 2019). This can
offer an explanation for a large portion of issues experienced by end-users. Not understanding
the users and how they will interact with a solution to “their problem” makes it very difficult
to anticipate how a system may be misused or abandoned altogether. Agile, as per its 2001
manifesto, is designed to be a flexible improvement on Waterfall, however the adoption of
Agile has many issues, including stakeholder buy-in (Miller, 2013), lack of cross-functional
teams and the focus placed on technical requirements (Chervenkova, 2019). These processes
do not appear compatible with empathetically evaluating and treating user experience issues.
This may lead to the inability to identify security vulnerabilities early in the design process
derived from human error. Table 1 shows a list of software development models discussed here
(Singh, 2020).

4

 Table 1:SDLC's Pro's and Con's1

2.2 Insider Threats – increase in data breaches due to human error

Insider threat is traditionally associated with malicious employees expressing an agenda to
exploit and cause harm (Ponemon Institute, 2018). They often work in collaboration with others
to exploit or take advantage of direct flaws or weaknesses in systems to access data for profit,
or personal gain. Non-malicious insiders are negligent subjects that can unintentionally cause
security incidents due to lack of security awareness or the inability to complete a work
instruction safely. These instances can result in an equally high risk of a security breach as the
malicious insider (Fortinet, 2019).

Since 2015, security breaches due to human error have seen a consistent increase
(Verizon, 2020). Insider threat is an increasing problem with the number of insider-caused
cyber security incidents rising by 47% since 2018. As shown in figure 2, negligent actors are
the most common category of insider, accounting for 62% of all insider incidents, with an
average cost of just over $307,000 per incident. The average cost of these incidents rose by
31% for the same two years (Ponemon Institute, 2020).

Figure 2: Frequency of incidents between different Insider Threat Profiles – (Ponemon
Institute, 2020)

Human error is one of the most difficult risks to mitigate when designing a solution or
planning security controls. It is one of the single largest attack surfaces reported (Alashe, 2020)
yet solution designers and software developers are often siloed from security experts, user

1 https://hackr.io/blog/sdlc-methodologies

SDLC Method Pro's Con's
Agile Flexible to changes in requirements Difficult to determine effort required

Fast development and testing High-risk due to flexible requirements
Cost and time effective Less emphasis on design and documentation

Iterative Allows developers to test earlier in the process Not all requirements are gathered at beginning - risk of design issues
Flexible to scope/requirements change Iterations are rigid
Easy to manage not suitable for small projects
Less time for documentation more time for design requires highly skilled resources

Waterfall All development issues are defined in design phase Longer time to delivery compared
Each phase is well defined - easy to manage Not flexible to requirements change

Test scenarios are easy specified
Difficult to conceptualise client needs in terms of a functional specification
during the requirements phase

62%14%

23% Employee of Contractor
Negligence

Criminal of Malicious
Insider

Credential Theft

5

experience (UX) professionals and the end-user(s) by various agendas, inappropriate processes
and a pseudo understanding. Bird (2018) recommends functions should work in unison and
operate as a cross-functional team with aligned processes. Neither UX design nor security
should be afterthoughts to the development process and should be merged to pertain a holistic
approach to solving problems.

2.3 Integrating Security into the SDLC

The rise in awareness of cyber security has faced many challenges across multiple domains
and struggles to be adopted. The software development lifecycle (SDLC) holds most attention
regarding the adoption of security practices (Nguyen et al., 2019). The SDLC is a framework
that guides phases of a software development project from inception to implementation.
Security engineering teams engage earlier in the SDLC to mitigate security issues which
increases efficiency and reduces risk (Warsinske et al., p620, 2019). While this collaboration
is improving through various process integrations, there is still a gap between user experience
(UX) designers and the software and security engineers. The result of this is “trade-off’s”
between function, security and usability (Nguyen, 2019). Also, not recognised, is the potential
for UX designers to reduce the security overhead during the product lifecycle by addressing
potential issues in the earlier design phases. The research of Human Computer Interaction
(HCI) and Human-Centred Design processes contribute best practices to evaluate the user
experience of a product by iteratively evaluating and evolving the usability design, which is
often seen as a contradiction to the goals of cyber security; a discipline to restrict interaction.

The proposal to introduce security earlier in the SDLC is to address the issue of
traditionally having security engagements at the end of the cycle. This is seen as too late, as
the major architectural and design decisions had already been made. If a security issue is found
at the end of the cycle, there is less scope or appetite to have it treated before go-live (Nguyen
et al., 2019). If a security bug is found, it will be patched at a later stage. This repositioning of
security and embedding it within the SDLC has formed the Secure Software Development
Lifecycle (S-SDLC) with a simple objective: to design security into the system, not add it later
(Warsinske et al., p620, 2019).

2.4 Security Testing

Security professionals are coming to realise the delusion of the test and patch model that was
popular in information security during the 1990’s and is still common today (OWASP 2020).
Known as the “patch-and-penetrate model”, it involves fixing issues once reported, but without
proper investigation of the root cause (McGraw, 1998). When an issue is detected early within
the SDLC it can be mitigated faster and at a lower cost. To make this possible, development
and QA teams should be made more aware of common security issues and the methods to
detect and prevent them. There are various tools and methodologies used for security testing
applications. Table 2 shows four common security testing methods.

6

Table 2: Pros and Cons of Security testing methods

There are pros and cons to using recommended security testing methods like mentioned
in table 2 (Goslin, 2020). However, the inability to determine “business logic flaws” with the
exception of penetration testing presents a common trait. According to OWASP, business logic
vulnerabilities are weaknesses that can be exploited by using the legitimate processing flow of
the application to result in a negative consequence (OWASP, 2020).

Another technique used is use case modelling. Misuse and abuse cases describe
unintended and malicious scenarios of an application, commonly using Unified Model
Language (UML). The goal is to describe all possible, or the most critical scenarios where a
bad actor can misuse or abuse an application (OWASP, 2020). This may be the closest method
comparable to the methods used in user experience testing. However, these are based on
descriptive scenarios and do not involve observing or evaluating an actor in person or receiving
feedback from a subject. Abuse and misuse cases are a hypothetical approach of modelling
negative requirements, i.e. behaviours that should not occur in a system. They can be used to
model attacks on a system, as well as document the security mechanisms needed to mitigate
them. Abuse and misuse cases informally describe requirements at a high-level. This means
that, while they can be easy to understand, they do not lend themselves to evaluative testing or
analysis (Whittle et al., 2008).

2.5 Human-Centred Design and User Experience

To merge any discipline with another (i.e. S-SDLC) we need to understand its context. Gartner
promotes Human-Centred Design (HCD) as a creative approach to innovation that begins with
people and shapes ideas that can become practical and attractive propositions based on
understanding the user and its context (Blosch et al., 2017). HCD is a Design Thinking
methodology that places people at the centre of product design by involving end-users from
the very beginning of the process and continuously evaluating their experience by iteratively
testing and redesigning a product based on their interaction and feedback (Rizzo et al., 1996).
By observing and understanding the user's experience while interacting with a system,
developers and system designers are empowered with the knowledge and context of what is
“truly” required for a user to satisfyingly complete a task or solve a problem without error, or
frustration.

User experience research and design is focused on the understanding of effective design
choices, designing for usability, user behaviours, accessibility, motivations and frustrations.
The user experience designer specialises in the interaction between real human users and
everyday products and services; combining aspects of business, psychology, market research,
design and technology (White 2020). A user experience designer is responsible for the journey
that a user takes and how the product is structured to facilitate this journey (Babich, 2017).

Method Purpose Techniques Pro Con
Static Application Security
Testing(SAST)

Analyse application code and
design for security vulnerabilities

Technical Reviewes
Walk-throughs
Static Code Review

Works on any type of application
Can Detect Behavioural issues

Unable to find business logic flaws
Requires code

Dynamic Application Security
Testing(DAST)

Analyse applications by actively
exploiting them

Unit Testing
Integration Testing
System Testing

can run without access to source
code
High accuracy in detecting server
missconfiguration

Unable to find business logic flaws
Requires functional application
Time consuming
High False positive rate

Interactive Application Security
Testing (IAST)

Used in DevSecOps for continuous
security testing and monitoring

Monitors security using
an agent and integration
with the application
runtime.

Fast and accurate
Can detect behavioural issues

Unable to find business logic flaws
Requires the application to be
attacked

Penetration Testing To assess the architecture,
components, and code of the
application by simulating an
attack

Uses a human approach
to security tesing

Finds all forms of security issues
Finds business logic flaws

Time comsuming and Expensive
Requires functional applicatoin

7

There are a range of methods to research, evaluate and design, including user personas, user
flows, wireframes, prototyping, heuristic evaluation and conducting full scale user testing
(Farrell, 2017).

Most research combing user experience and security revolves around the evaluation and
design of security features or controls; methods of multi-factor authentication, password
policies and encryption (Nguyen et al., 2019). Pain points about the usability of these
controls lead to resistance of adoption (Dupuis et al., 2018). Security is an important feature
of any product. However, it can be restrictive or cumbersome for groups of users. The
balance of usability versus security often comes at the expense of one over the other. It is
difficult to achieve effective security while also maintaining usability (Magalhaes, 2018).

Although security controls might make it hard for users to interact with systems, user
experience as a process aims to provide positive experiences for the user and identify issues to
increase user adoption. User experience is generally excluded from the software design
process. Often felt unnecessary or impractical due to project constraints, like: time to market,
budget, resourcing (Norman, 2019). However, fixing usability issues is more expensive after a
product build or go-live due to many factors; most recognisably “retrofitting” or patching
solutions as the issues become known. This is referred to as UX Debt (Kaley, 2018). Kaley
(2018) describes UX Debt as the cost of having to address problems that result from usability
issues after launch is higher than addressing them in the first place. Coding a user interface
correctly in the first instance is much more efficient for developers than having to change
shipped code.

2.6 Summary

In almost all cases, user interfaces should be designed iteratively because it is virtually
impossible to design an interface without usability issues from the start. Iterative
development involves refinement of the design based on evaluation and feedback analysis.
This has some similarities with Agile methods. However, instead of building and then testing,
UX methodologies allow for evaluating low cost, low fidelity prototypes and paper mock-
ups. UX can be very effective in producing good quality in a rapid environment, but given its
low-cost user centric methods it can be a very powerful tool to discover creative solutions to
problems that may not be obvious until much later in the development process and become
too costly to mitigate.

3 Research Methodology

This chapter outlines the deductive and inductive research methodology used to test and
evaluate the theory: User experience evaluation can provide an early warning system to identify
and treat potential security issues in software development. Figure 3 shows a high-level process
derived from Human-Centred Design. It also shows the security assessment approach that will
be used to validate the reduction or mitigation of risk through the Human-Centred design
process.

8

Figure 3: High Level Overview of Process Flow

3.1 Research Strategy

Heuristic tests will be conducted following the Human-Centred Design process and evaluated
to address the research question. A cloud-based file transfer application was chosen as a
baseline interface for evaluation2. Participants chosen, range in demographics. Such variety of
perspectives should help gain a broader view of potential user experience issues in conjunction
with security threats. A series of user personas will be generated to ensure the anonymity of
the participants performing the human evaluation.

3.2 Qualitative Research

Science has a considerable reliance on quantitative and experimental methods. However, there
are complex, socially based observations in Human-Centred Design that cannot be easily
quantified. Qualitative research is preferred, as the emphasis is not on measuring and producing
metrics but instead, understanding qualities of a particular solution and how people think and
feel about their experience interacting with it. This method combines systematic levels of
abstraction to produce theories grounded in multiple types of data gathered, categorised and

2 Any application requiring user interaction could be used.

9

coded during the research. This is known as grounded theory (Vassilakaki, Johnson, 2015).
Grounded theory supports iterative development, allowing for different, detailed perceptions
to be sampled and analysed quickly.

3.3 Quantitative Research

To reduce the possibility of bias within the qualitative research, a series of quantitative outputs
from the evaluations will be analysed. This is to code quantitative representations to the
qualitative feedback for correlating and trending between the usability and security risk factors.

3.4 Rapid Prototyping

An industry standard high-fidelity prototyping tool, Adobe XD3 will be used. XD provides a
platform/workflow for the design and build of interactive prototypes. This will serve the
purpose for replicating a sample application interface for the heuristic evaluation and to rapidly
apply user participant feedback into redesigns for further evaluation.

Adobe XD allows for collaboration and handover of prototype designs to development
teams. This is in the form of artifact files, i.e. artboard components, HTML/CSS information,
design notes, and interactive walkthroughs.

3.5 Data Collection

A digital form-based survey will be created and distributed through a crowdsourcing
marketplace. This should maximise diversity in participants to obtain a broad view. Results
will be collected and collated into a dataset. Analysis of the data received will be used to
compare with statistics regarding “Insider Threat” presented in the literature section.

An iterative heuristic evaluation will be performed using a low/high fidelity prototype
design where feedback is collected using a series of digital forms. Each participant will perform
a set of scenario-based tasks. The feedback will be compiled into a dataset. This dataset will
contain qualitative descriptive responses. Where possible, the responses will be categorised
using Nielsen’s heuristics (Nielsen, 1994). Severity ratings will also be requested to quantify
the level of feeling on a scale of 0 (no issue) to 4 (critical). This will allow for the measurement
of change between iterations of design.

A qualitative risk assessment will be performed using OWASP security risk ratings
applied to each iteration of the design. This risk data has been compiled based on research
conducted by OWASP4. OWASP provides a framework for assigning a theoretical risk score
to a security attack vector and/or vulnerability.

The aim of the risk assessment is to validate the reduction in risk indirectly resulting from
iterative usability design decisions. The risk assessment will be conducted in isolation as not
to directly influence the changes in design, i.e. the design decisions to address usability issues
should not be influenced by the risk ratings of each iteration. The design changes will be based
on user feedback in relation to the heuristics evaluated and a visual walk through of the
prototype.

3 https://www.adobe.com/ie/products/xd.html
4 https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_Details_About_Risk_Factors

10

3.6 Personas

Personas will assist in the use case and scenario design and provide a visual representation of
the end-user. A persona is not a description of a single person. Instead, it is an aggregate of a
range of interviews and other information from a specific group of users with similar goals and
backgrounds. The personas will be aggregated from information collected in the initial survey
and merged with observations made during the user testing.

3.7 Data mapping

As mentioned, Nielsen’s heuristics will be used to guide the user experience evaluation. A
mapping exercise will be attempted to correlate a sample of Nielsen’s heuristics with OWASP
security risks. To assist this mapping, categorisation will be influenced by the 7 Pernicious
Kingdoms (Tsipenyuk, 2005) 5 and where necessary the Common Weakness Enumeration
database by The Mitre Corporation6. Although the databases are concentrated on coding and
technical vulnerabilities, meaning will be inferred from the narrative of each to extend their
attribution.

3.8 Analysis

All data received from the initial survey will be collated and prepared in Microsoft Excel.
The data will be transfer to R-Studio for quick analysis and findings presented in section 6.

All feedback data received from the heuristic evaluation will be collated and prepared
in Microsoft Excel. A data model will be prepared for coding the raw data into a usable
format. The formatted data will be catagorised using the mapping in section 3.7. This will
allow for the review and analysis.

3.9 Limitations

This research is based on human participation and feedback. Some limitations have been
considered. Surveys and forms collect “point-in-time” responses. It is accepted that responses
may vary and may change due to increased cognition from repetitive use of sample interface.

The initial survey is limited to 102 participants. By using online surveys, there is a
moderate risk of abuse and receiving unusable data. To help minimise this, the survey is
structured to use a token to ensure a participant can only complete once. This token also ensures
the survey is completed fully before being committed.

The heuristic evaluation is limited to between 3 and 5 participants. It is recommended
that larger populations do not add value. “Testing with 5 people lets you find almost as many
usability problems as you’d find using many more test participants” (Nielsen, 2012).

Adobe XD is a digital interactive prototyping tool. It does not produce a fully functional
product. However, it will serve as a sound method for the purpose of this research.

5 https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8013/33104/1556543/1556543-table-1-
source-large.gif
6 https://cwe.mitre.org/

11

3.10 Ethical Approval

The methods considered in this research, by nature has a high reliance on human participation.
However, careful consideration has been taken to exclude recording of any personal data, or
the involvement of vulnerable and risky demographics. Responses were captured electronically
and anonymously. A disclaimer is to be provided to request consent, informing the participants
no personally identifiable information will be collected.

Where personas appear to contain identifiable information, this is inferred from the
anonymous data collected based on language, occupation and career position.

4 Design Specification

A sample mapping will be created of known standards and taxonomies for Secure Coding and
Human-Centred Design process as shown in figure 4 below: 7 Pernicious Kingdoms (4),
OWASP Top Ten Application Security Risks (6), Jakob Nielsen’s 10 Golden Usability
Heuristics (4).

As the secure coding taxonomies are reflective of coding techniques, technical
vulnerabilities and controls, where a direct mapping is not possible, attributes and suggestive
meaning derived from the descriptive narrative of each will be used. The goal is to create a
relationship between the taxonomies for communication purposes.

The purpose of mapping is to produce a hypothetical risk score for the security risk types
as found in the application interface through the evaluation of usability heuristics. For the
purpose of this research we will concentrate on Nielsen’s heuristics related to input, feedback
and handling errors.

Figure 4: Mapping of OWASP/ 7 Pernicious Kingdoms and Usability Heuristics
A web-based file transfer application will be used as a template. The basic requirements are to
allow a user share files by email and/or a URL. The application will be replicated using Adobe
XD with branding removed. This will be our prototype. An assumption will be made, that no
security controls have been applied to the application. The prototype will be evaluated using
the scenarios in table 3 that are commonly expected with a web-based file transfer application.
A spreadsheet will be used to collate the responses.

12

Table 3: Sample set of usability test scenarios

A risk assessment will be done of the application to produce a baseline risk score of the
interface for each reported usability issue by the participant.

Feedback will be redesigned into the prototype application using Adobe XD and be
prepared for the second round of heuristic testing.

For the purpose of theory demonstration only a sample of feedback will be incorporated
for each iteration. This is to demonstrate the variance in user experience and its effect on
potential risk where risk identified.

5 Implementation

The Human-Centred Design process discussed in literature and methodology sections, was
followed as this is the primary process being used to validate the research theory.

5.1 Participants

Four participants were recruited for the iterative evaluation of prototype interface. It was
important to maintain anonymity for the participants. To support this, the personas (see
Appendix C) outlined have been altered using data collected from an initial online survey
conducted. This method for personas provides a true, non-assumed depiction of some of the
prototype’s target-audience.

Each user participant walks through a set of scenarios and records feedback. Feedback
will be collected using a digital form (available in the Appendix A) automatically submitted to
the researcher for review. This process was iterated 3 times.

5.2 Researcher – Heuristic Testing

The researcher will introduce the project and provide instructions:

1. For accessing the prototype application to be tested
2. For accessing the digital form to record feedback
3. Guidelines for the participants to follow should any severe issues arise preventing the

user from completing a scenario other than the usability of the interface7.

5.3 Researcher – Design and prototype

7 Note: The researcher will attempt to limit interaction with the participants to a minimum.

Task Number: Scenario Description:
task 1 Make an assumption of what the function of the application is
task 2 Send a file from your desktop to the email recipient
task 3 Send a new file from your desktop to the email recipient ray.obrien@gmail.com
task 4 Send 3 files from your desktop to the email recipient - verify you have uploaded the correct files before sending
task 5 Send a password protected file to the email recipient - assume the file is highly sensitive
task 6 Send a file from your desktop to the email recipient - and set the expirery to 15 days
task 7 Send a file from your desktop to the email recipient - and set the expiry to 10 days
task 8 Send a file from abc@gmail.com using a custom link
task 9 Send a file from abc@gmail.com using a custom link + add special characters (e.g. *&<>?/) - you can use e.g. <script>alert("hello")</script> in the file name
task 10 Send a file from abc@gmail.com using a custom link you used in task 8

13

The researcher will prepare an interactive prototype using Adobe XD to replicate a chosen
interface for the purpose of the heuristic and security testing. The prototype will be suitable to
replicate most functions available and will be redesigned to interrupt feedback from the
heuristic testing.

5.4 Researcher – Security testing

The security researcher will apply a security context to the participant’s feedback, qualitatively
assessing and assigning security risk attributions where possible using recommended
conventions discussed previously.

5.5 Researcher – Analysing data

The researcher pools all data to be coded, manipulated and analysed using both R-Studio and
Microsoft Excel. Excel is preferred due to its usability and more appealing visualisation outputs
to be discussed in the evaluation section.

5.6 Design the prototype and test.

The interface was prototyped using Adobe XD and shared to the participants using a publicly
accessible URL hosted by Adobe Creative Cloud8. A high-fidelity prototype was used to allow
for interactions to simulate real-world user inputs and actions, as shown in figure 5.

Figure 5: Interaction Storyboard

The same process can be applied to low-fidelity prototypes using paper mock-ups and
wireframes. The decision is made based on a number of factors: time, budget, available
resources, technical ability.

8 https://www.adobe.com/ie/creativecloud.html

14

6 Evaluation and Results Analysis

6.1 User Error

A short analysis of the initial survey conducted on AmazonMTurk9 was completed to
complement a running theory expressed in the literature review. Respondents were primarily
from design industries, healthcare, finance and customer service. Of 102 participants, 86%
expressed their organisation considers users to be the highest security risk with majority as
depicted in figure 6, admitting to sourcing “other” solutions to gap functionality missing from
their business approved toolsets which may result in security risks, like Shadow IT10.

Figure 6: Use of other applications or services to gap missing functionality

When errors occur or the users experience is an issue, 66% claim the reason for the error
is not easy to understand with only 57% reporting errors to their I.T. department. This is
interesting when referring back to the 2020 Verizon report where negligent actors account for
62% of insider data breaches. Perhaps the 62% were not aware of the impact from the errors
they were making and failed to report to I.T. as a result.

Some of the information in this survey data was taken and inferred to generate the user
personas for the heuristic evaluation of the file sharing application commonly used across a
range of industries. 4 users represent the top industries presented. Please see Appendix C for
user personas.

6.2 Online web application – File sharing (MyApp)

Of the 4 participants, it was discovered that most issues reported were the result of error and/or
interrupted experience of completing the scenario. An aggregate of 51 issues were experienced
of which 64.7% were directly related to receiving an error or the participant not being able to
recover from the error. Other minor issues were discovered related to the general usability of
the interface represented in figure 7.

9 https://www.mturk.com
10 https://www.forcepoint.com/cyber-edu/shadow-it

1. Definitely Not

2. No3. Maybe4. Yes 5. Definitely Yes

15

Figure 7: Frequency of issues found by heuristic

6.3 Preventing Input/Injection vulnerabilities before coding begins

A comparative analysis was performed between the feedback received from each iteration. It
was determined, participants experienced most errors while trying to share a file using a custom
URL (Link). This is interesting as the custom link feature was designed to allow users to create
their own HTTP/URL string to share with a recipient.

It was found, the user enters the string into an input field that updates the URL “Preview”
field (also found to be editable based on the template application). By evaluating the feedback,
an input validation vulnerability was highlighted. The user was able to input dangerous special
characters or worse in the preview field, e.g. enter a cross site scripting (XSS) request string,
or a string that exceeds the safe HTTP/URL request size of the application and cause it to crash.

The consequence of allowing “code” injection11 can result in severe risks which may
impact confidentiality, availability and integrity12 depending on the attack scope. For example,
this may result in a format string attack, like buffer overflow. If this was discovered later in the
SDLC testing phase through standard security testing discussed in literature previously
reviewed, it would require implementation of controls, like input sanitisation or cause a break
in the development process to jump back and patch issues before proceeding. However, by
using design methods discussed, it was possible to reduce the risk by evaluating the
“experience” issues to redesign the interface feature and user journey. Figure 8 shows the
feature was redesigned to prevent users editing the URL preview field. It was felt unnecessary
to be able to edit both fields. A custom error was added to the design to inform the user. This
will be documented as a requirement for developers to implement in production.

11 https://owasp.org/www-community/attacks/Code_Injection
12 https://owasp.org/www-pdf-archive/OWASP_Application_Security_Verification_Standard_4.0-en.pdf

Aesthetic
and

minimalist
design

Help users recognize, diagnose,
and recover from errors

Preventing User Errors
Visibility of System

Status

Consistency
and

standards

Aesthetic and minimalist design

Help users recognize, diagnose,
and recover from errors

Preventing User Errors

Visibility of System Status

Consistency and standards

16

Figure 8: Input Sanitisation

6.4 Potential violation of privacy security features

A second prominent issue exposed the possibility for information disclosure and depending on
the content shared, could be another user’s sensitive information. Users discovered when trying
to create a custom URL, if the URL had been used before, they would receive a feedback error
message explicitly notifying them of this as shown in Figure 9.

Figure 9: Privacy violation - This link is already in use

This could allow an attacker or curious individual, access a document(s) shared by another
user. Feedback suggested to change the error message to something less exposing. An
alternative message was proposed “You cannot use this URL, please try again”, however this
alternative was thought to offer a curious but less risky question, why can I not use this URL?!

Further analysis of feedback suggested to remove the feature. It was felt the application
should enforce users to generate a random URL by clicking on an icon shown in Figure 10.
This would remove the privacy concern, address the previous input errors discussed and also
simplify the process for the user.

Figure 10: Generate random URL

17

Discovering these errors during the heuristic evaluation and treating them as “user
experience” errors iteratively, quickly facilitated the rapid redesign of the interface to reduce
human error and other potential weaknesses, validating the positive increase in user experience
and consequently reducing risk before the developers start coding. Figure 11 visually represents
the success of treating all users feedback in design versus the rate of risk decreasing between
the iterations.

Figure 11: Total Risk Severity treatment over time

6.5 Present a hypothesis

Taking the reduction in heuristic severity represents an increase in user satisfaction, the
theory can be expressed as:

H0 where rx+1 < rx while ux+1 > ux

Where r = risk, u = user satisfaction, x = iteration

This can be demonstrated per user participant.

Shown in figure 12, User 2 suffered the worst experience and discovered the most

potential risks. This is due to the number of issues reported per scenario completed.

0

50

100

150

1 2 3

MyApp Risk Severity treatment over time

Heuristic Severity Risk severity

18

Figure 12: Participants risk versus heuristic severity

Figure 13 highlights a break down for User 2. The experience suggests there should be more
consideration for preventing user error.

Figure 13: User 2’s security risk versus heuristic severity

By treating the feedback presented from the user it was possible to improve its experience
and also treat the potential risk between iterations before moving from design to
implementation.

Figure 14: User 2 Reduction in risk vs Heuristic violation severity

Figure 14 demonstrates User 2’s 60% improvement in satisfaction (represented by the
decrease in heuristic severity) produced a 65% reduction of security risk between iteration 1

0

10

20

30

40

50

60

User 1 User 2 User 3 User 4

Heuristic Severity Risk

0
5

10
15
20
25
30
35

 Help users recognize,
diagnose, and

recover from errors

 Preventing User
Errors

 Visibility of System
Status

User 2: Heuristic Issues / Risk Severity / Issue Severity

Count of Coded Issue

Sum of Risk Severity

Sum of Usability Severity

0
10
20
30
40
50
60

1 2 3

User 2 - Verified Treatment of Risk

Change in Risk Change in Heuristic Severity

19

and iteration 2. Iteration 3 showed further improvement however the user has provided
subsequent feedback recording cosmetic severity (1) due to the removal of the custom link
feature.

Comparatively User 4 appeared to have demonstrated a more subtle improvement in
satisfaction between the iterations. However, analysing the data shows a 61% increase in
satisfaction with a 78% reduction in risk for the design.

Figure 15: User 4 Reduction in risk vs Heuristic violation severity

The residual risk of 22% shown in figure 15 reflects feedback not treated in the
redesign. For further comparisons please refer to Appendix B.

6.6 Discussion

As the evaluation and analysis have shown, it is evident an increase in positive user experience
reflected by the decrease in heuristic severity results from incorporating the user’s feedback
between each iteration of the process. It also demonstrates that by not incorporating feedback
leaves the user feeling negative to the experience. Listening to users works, the feedback may
not always be in the designer’s interest, however, the evaluation allows for an informed
decision to be made.

More interesting is the impact this improvement in experience reflected upon security.
The negative experience related to errors and error handling particularly exposed the potential
for bad design to flow downstream to development. Mitigating potential risk by design that
would otherwise not be detected until later in the process; depending on where security testing
and evaluation is integrated. Meaning it was possible to quickly validate the user’s response
after each design change while also verifying the risk posture. However, this did require a
stakeholder versed in security practices to substantiate.

The user experience researcher/designer alone, may not be in a position to assess the
security risk independently, despite being able to treat “risk” through alternative requirements.
However, if the user experience researcher/designer is upskilled to be sufficiently security
aware, this process and its inclusion in the S-SDLC proves to be a sound solution for identifying
potential risk before development in an efficient and effective manner given the rapid
prototyping and accessibility of evaluation methods. Alternatively, the previously mentioned
“cross-functional team” of user experience, security and software development will produce
the desired results thus improving security by design.

0

5

10

15

20

25

30

35

40

1 2 3

User 4 - Verified Treatment of Risk

Change in Risk Change in Heuristic Severity

20

Issues were found in creating the alignment in taxonomies rendering the activity difficult
and required some minor changes. The purpose was to create a mapping to build a relationship
between Nielsen’s heuristics and a theoretical vulnerability or risk. This was trivial for “input
validation” and “error handling”, however “Environment” and “Security Features” were less
successful due to ambiguity of interpretation. Although “all” are relatable to error conditions
and error handling in some form, the issue experienced was the attributes behind the categories
are very concerned with coding and security configuration from a technical perspective despite
Tsipenyuk’s (2005) attempt to build a flexible language open to adaptation. To overcome this,
a narrative meaning was interrupted from the categories descriptions.

For example, “Using components with known vulnerabilities”13. This narrative suggests
to remove unused dependencies, features and components. This was mapped to the heuristic
“Aesthetic and Minimalist Design”14 recommending interfaces should not contain elements
which are not relevant or necessary to the user. Tsipenyuk’s (2005) mapping of this risk and
also security misconfiguration to the category “environment” proved the best fit.

However, the impact of Broken Authentication15 as per OWASP is the compromise of
data that should be protected, suggesting to use strong authentication controls and password
systems. Feedback from the heuristic evaluation defined password protection and trust issues
against the heuristic Visibility of System Status16. The user was not very trustful of how
password protection features were operating and communicated within the interface. The
heuristic promotes the concept of providing visibility of all system status and states to the user
allowing a sense of trust while completing their tasks. Mapping visibility of system status to
the 7 Pernicious Kingdoms (Security Features) through broken authentication did not appear
confident, however served our purpose for this research objective and may benefit from further
work. As the risk score used in the evaluation was not defined by the mapping to “Security
Features” it was felt it did not directly affect the outcomes of the primary research goal.

7 Conclusion and Future Work

As discussed in this research, human error is a problem that is not going away, with consistent
increase in human error threats and associated costs. Common software development
methodologies were evaluated to identify gaps in the process. 102 participants were surveyed
and 4 participants performed a usability test to further substantiate that user experience testing
in software design can be used to mitigate potential software security risks.

Understanding the end-user facilitates solution designers and software developers to
concentrate on what is truly required by the end-user to complete a task or function; reducing
the impact of unnecessary features, distractions or, interface elements that hinder a user’s
experience.

 The object of this research was to identify a gap in software development where design
can assist in reducing potential weaknesses or vulnerabilities.

This research has concluded that the Human-Centred Design methodology when applied,
assists in the design of a solution to reduce potential weaknesses or vulnerabilities in software.
It does this by mitigating, through the redesign of, or removal of elements from the interface
when proven not to add value to the user’s experience. It was observed that security risks can

13 https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-
Using_Components_with_Known_Vulnerabilities
14 https://www.nngroup.com/articles/ten-usability-heuristics/
15 https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-Broken_Authentication
16 https://www.nngroup.com/articles/visibility-system-status/

21

be uncovered and treated by evaluating the users experience and paying attention to the
feedback reported.

This research recommends organisations to employ Human-Centred Design in their
processes, particularly during the early stages of software solution development. It is not seen
as a replacement for other security testing methods. However, it will expose the potential for
human error early in the lifecycle which will be beneficial for mitigating these types of risks.

Its ease of use and accessibility clearly renders it a useful tool. This research should be
further explored to identify implications of onboarding the process in established practices.
This should involve the social economic and financial impacts. A starting point would be to
investigate an efficient communications method or a platform to automatically detect and
document common security issues in interface design while rapid prototyping and suggest
recommendations to improve the user experience.
A comprehensive taxonomy should be compiled to align Nielsen’s heuristics to common
scenarios, vulnerabilities and attack categories. This may require broadening categories as
defined by OWASP and other existing taxonomies; by introducing new terminologies to
facilitate this. Finding common meaning and narrative language would benefit the user
experience designer in communicating with a security audience.

References

Verizon (2019) 2019 Data breach investigations report. Available at:
https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-report.pdf
[Accessed 17 September 2019].

Verizon (2020) 2020 Data breach investigations report. Available at:
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
[Accessed 19 April 2020].

Andrews, G. (2017) ‘Better security by design’, Thoughtworks.com, 24 November. Available
at: https://www.thoughtworks.com/insights/blog/better-security-design? [Accessed 18 April
2019].

White, C. (2020) ‘What does a UX designer actually do?, Careerfoundry.com, 27 January.
Available at: https://careerfoundry.com/en/blog/ux-design/what-does-a-ux-designer-actually-
do/ [Accessed 18 May 2020].

Fortinet (2019) 2019 Insider Threat report. Available at
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/insider-threat-report.pdf
[Accessed 19 January 2020].

Singh, V. (2020) ‘Top 7 SDLC Methodologies’, Hackr.ie, 09 April. Available at:
https://hackr.io/blog/sdlc-methodologies [Accessed 15 May 2020].

Norman, D. (2018) Principals of Human-Centered Design (Don Norman). Available at:
https://www.youtube.com/watch?v=rmM0kRf8Dbk [Accessed 12 July 2019].

Rizzo, A., Parlangeli, O., Marchigiani, E. and Bagnara, S. (1996) ‘The Management of
human errors in user-centered design’, ACM SIGCHI Bulletin, 28 (3), pp. 114-118.

22

Vassilakaki, E. and Johnson, F. (2015) ‘The use of grounded theory in identifying the user
experience in search.’, Library and Information Science Library and Information Science
Research, 37(1), pp. 77-87.
Oxford University Press (2020) ‘Security’, Oxford Learner’ s Dictionaries. Available at:
https://www.oxfordlearnersdictionaries.com/definition/american_english/security [Accessed
27 June 2020].

Tunggal, A. (2020) ‘What is a vulnerability?’, UpGuard.com, 28 May. Available at:
https://www.upguard.com/blog/vulnerability [Accessed 29 May 2020].

Pompon, R. (2017) ‘Where do vulnerabilities come from?’, F5 Blog, 26, September.
Available at: https://www.f5.com/labs/articles/cisotociso/where-do-vulnerabilities-come-from
[Accessed 1 April 2019].

Beaver, K. (2013) ‘If you can’t explain it simply, you don’t understand it well enough’,
Rapid7 Blog, 15 July. Available at: https://blog.rapid7.com/2013/07/15/if-you-can-t-explain-
it-simply-you-don-t-understand-it-well-enough/ [Accessed 15 April 2020].

Blosch, M. and Burton, B. (2017) Take a Human-Centered Approach to Digital Design.
Available at: https://www.gartner.com/document/3614217 [Accessed 10 December 2019].

Norman, D. (2019) Observe, Test, Iterate, and Learn (Don Norman). Available at:
https://www.youtube.com/watch?time_continue=5&v=JgPppwsocRU&feature=emb_logo
[Accessed 10 December 2019].

Nguyen, J. and Dupuis, M. (2019) ‘Closing the Feedback Loop Between UX Design,
Software Development, Security Engineering, and Operations.’ In The 20th Annual
Conference on Information Technology Education (SIGITE ’19), pp. 93–98.

Syrossian, D. (2018) ‘Security by Design principles according to OWASP’,
Threatpost.com, 27 March. Available at: https://blog.threatpress.com/security-design-
principles-owasp/ [Accessed 23 January 2020].

Mailloux, L., Beach. P. and Span, M. (2018) ‘Examination of Security Design Principles
from NIST SP 800-160’, in 2018 Annual IEEE International Systems Conference
(SysCon), Vancouver, British Columbia, Canada, 24-26 April 2018, Available at:
https://www.researchgate.net/publication/325495586_Examination_of_security_design_p
rinciples_from_NIST_SP_800-160 [Accessed 24 January 2020].

Warsinske, J., Graff, M., Henry, K., Hoover, C., Malisow, B., Murphy, S., Oakes, C.,
Pajari, G., Parker, J., Seidl, D. and Vasquez, M., (2019) The Official (ISC)2 Guide to the
CISSP CBK Reference. 5th ed. New Jersey: Wiley.

M. Dupuis and F. Khan, "Effects of peer feedback on password strength," 2018 APWG
Symposium on Electronic Crime Research (eCrime), San Diego, CA, 15-17 May 2018, pp. 1-
9, doi: 10.1109.

23

Goslin, H. (2020) ‘Weighing Pros and Cons to Select AppSec Testing Types’, Intro to
AppSec, 2 March. Available at: https://www.veracode.com/blog/intro-appsec/weighing-pros-
and-cons-select-appsec-testing-types [Accessed 10 April 2020].

Babich, N. (2017) What Does a UX Designer Actually Do?. Available at:
https://adobe.com/what-does-a-ux-designer-actually-do/ [Accessed 1 May 2019].
Kaley, A. (2018) ‘UX Debt: How to Identify, Prioritize, and Resolve’, Nielsen Norman
Group, 11 November. Available at: https://www.nngroup.com/articles/ux-debt/ [Accessed 7
November 2019].

Nielsen, J. (2012) ‘How Many Test Users in a Usability Study?’, Nielsen Norman Group, 3
June. Available at: https://www.nngroup.com/articles/how-many-test-users/ [Accessed 7
November 2019].

Kaley, A. (1994) ‘10 Usability Heuristics for User Interface Design’, Nielsen Norman Group,
24 April. Available at: https://www.nngroup.com/articles/ux-debt/ [Accessed 7 November
2019].

Magalhaes, M. (2018) ‘Security vs. usability: Does there have to be a compromise?’,
Techgenix.com, 20 December. Available at: http://techgenix.com/security-vs-usability/
[Accessed 7 April 2019].

Tsipenyuk, K., Chess, B. and McGraw, G. (2005) ‘Seven pernicious kingdoms: a taxonomy
of software security errors’, IEEE Security & Privacy, 3(6), pp. 81-84.

McGraw, G. (1998) ‘Testing for security during development: why we should scrap
penetrate-and-patch’, IEEE Aerospace and Electronic Systems Magazine, 13(4), pp. 13-15.

Bird, J. (2018) ‘Building truly cross-functional teams’, uxdesign.cc, 5 March. Available at:
https://uxdesign.cc/back-to-the-basics-cross-functional-teams-7fa12ba6f5ed [Accessed 20
November 2019].

Oślizło, D. (2019) 'What Is UX Design and What Are the Benefits for Your Business',
Netguru.com, July 16. Available at: https://www.netguru.com/blog/ux-is-not-just-about-user-
experience-popular-misconceptions-about-ux-design [Accessed 20 July 2019].

Miller, G. J. (2013) ‘Agile problems, challenges, & failures’, in PMI® Global Congress.
New Orleans, Louisiana, Available at:
https://www.researchgate.net/publication/335475075_Agile_problems_challenges_failures
[Accessed 22 November 2019].

Chervenkova, M. (2019) ‘When Does Agile Fail? Challenges, Problems, and Issues with
Agile’, Lean/Agile, December 4. Available at: https://kanbanize.com/blog/agile-challenges/
[Accessed 18 January 2020)].

Ponemon Institute (2020) 2020 Cost of Insider Threats Global Report. Available at:
https://www.observeit.com/ponemon-report-2020-cost-of-insider-threats-global-cyberwire/
[Accessed 30 July 2020].

24

Ponemon Institute (2018) 2018 Cost of Insider Threats Global Report. Available at:
https://www.observeit.com/ponemon-report-2018-cost-of-insider-threats-global-cyberwire/
[Accessed 30 July 2020].

Alashe, O. (2020) ‘Major data breaches are far too common, with human error often being a
cause’, Silicon Republic, 7 April. Available at:
https://www.siliconrepublic.com/companies/oz-alashe-cybsafe-data-breaches [Accessed 20
April 2020].

Farrell, S. (2017) ‘UX Research Cheat Sheet’, NNGroup.com, 12 February. Available at:
https://www.nngroup.com/articles/ux-research-cheat-sheet/ [Accessed 18 July 2019].

OWASP (2020) Business logic vulnerability. Available at: https://owasp.org/www-
community/vulnerabilities/Business_logic_vulnerability [Accessed 5 May 2020].

OWASP (2020) The OWASP Testing Project. Available at: https://owasp.org/www-project-
web-security-testing-guide/latest/2-Introduction/ [Accessed 10 July 2020].

Whittle, J., Wijesekera, D. and Hartong, M. (2008) ‘Executable misuse cases for modeling
security concerns’, in 2008 ACM/IEEE 30th International Conference on Software
Engineering, Leipzig, Germany, 10-18 May 2008, pp. 121-130, doi:
10.1145/1368088.1368106.

25

Appendix A – User/Participants feedback form

26

27

28

Appendix B – Evaluation graphs

0

2

4

6

8

10

12

14

 Help users
recognize, diagnose,

and recover from
errors

 Preventing User
Errors

 Visibility of System
Status

Consistency and
standards

User 1: Heuristic Issues / Risk Severity / Issue Severity

Count of Coded Issue

Sum of Risk Severity

Sum of Usability Severity

0

5

10

15

20

25

30

35

1 2 3

User 1 - Verified Treatment of Risk

Change in Risk Change in Heuristic Severity

29

0

5

10

15

20

25

30

35

 Help users recognize,
diagnose, and recover from

errors

 Preventing User Errors Visibility of System Status

User 2: Heuristic Issues / Risk Severity / Issue Severity

Count of Coded Issue

Sum of Risk Severity

Sum of Usability Severity

0

10

20

30

40

50

60

1 2 3

User 2 - Verified Treatment of Risk

Change in Risk Change in Heuristic Severity

30

0

2

4

6

8

10

12

14

16

 Help users recognize, diagnose, and
recover from errors

 Preventing User Errors

User 3: Heuristic Issues / Risk Severity / Issue Severity

Count of Coded Issue

Sum of Risk Severity

Sum of Usability Severity

0

5

10

15

20

25

1 2 3

User 3 - Verified Treatment of Risk

Change in Risk Change in Heuristic Severity

31

0

5

10

15

20

25

 Aesthetic and
minimalist design

 Preventing User
Errors

 Help users
recognize, diagnose,

and recover from
errors

 Help users
recognize, diagnose,

and recover from
errors 4.

User 4: Heuristic Issues / Risk Severity / Issue Severity

Count of Coded Issue

Sum of Risk Severity

Sum of Usability Severity

0

5

10

15

20

25

30

35

40

1 2 3

User 4 - Verified Treatment of Risk

Change in Risk Change in Heuristic Severity

32

Appendix C – User Personas

33

