

Machine Learning Approaches to

Detect Browser-Based Cryptomining

MSc Internship

MSc in Cyber Security

Sherwin Norman Xavier

Student ID: 19126662

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

National College of Ireland

Project Submission Sheet

School of Computing

Student Name: Sherwin Norman Xavier

Student ID: 19126662

Programme: MSc in Cyber Security

Year: 2020

Module: MSc Internship

Supervisor: Prof. Vikas Sahni

Submission Due Date: 17/08/2020

Project Title: Machine Learning Approaches to Detect Browser-Based

Cryptomining

Word Count: 5656

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:
Attach a completed copy of this sheet to each project (including multiple copies).
Attach a Moodle submission receipt of the online project submission, to each

project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Machine Learning Approaches to Detect Browser-

Based Cryptomining

Sherwin Norman Xavier

19126662

Abstract
Modern browsers provide support to multiple APIs that make use of JavaScript leading to an
increase in developing useful web applications but also malicious activities. One such malicious
activity is browser-based cryptomining. Browser-based cryptomining activities are a way to
hijack a user’s system without any permission from the end-user. This is a result of a rise in the
popularity of cryptocurrencies that support mining activities requiring a CPU. This study
proposes two approaches, static analysis and dynamic analysis to detect browser-based
cryptomining activities. The static analysis uses the complexity features of a JavaScript code to
design, implement and evaluate three unsupervised machine learning models while the
dynamic analysis uses the different performance parameters of a system to design, implement
and evaluate three supervised machine learning models. Ultimately, One-Class SVM anomaly
detection model performed well for the static analysis with an accuracy of 78.9% while KNN
classification model performed well for the dynamic analysis with an accuracy of 98.8%.
Matthew’s Correlation Coefficient statistical test results supported the results of this study.

Keywords – Cryptojacking, Browser, Machine Learning, Static Analysis, Dynamic Analysis.

1 Introduction

In recent times the popularity of cryptocurrencies has risen enormously leading
to a significant rise in the demand for mining. This demand keeps rising as it is the basis
for the cryptocurrency to stay in position. The increasing number of cryptocurrencies
have led to several financial crimes where criminals misuse cryptocurrency for ransom
[1]. The demand for mining has also given rise to a new form of malicious activity called
cryptojacking wherein the cybercriminal mines cryptocurrency using a victim’s system
resources. To date, cryptojacking has been reported in the form of botnets [2,3] as well as
in cloud infrastructures.

For an individual to begin the mining process they would have to invest in both
hardware as well as in cooling equipment. The individual would also have to incur high
electricity costs for the hardware to run smoothly. Thus, to avoid these extra costs to mine
cryptocurrency the attackers made unauthorised use of another’s system resources
which could either be a computer or mobile phone. This could even lead to the victim
suffering financial impact due to the high electricity costs and possible damage to the
system’s hardware if mining is done on an unsuitable device.

There have been technologies developed to detect such cryptomining activities.
But as time progressed attackers developed ways to avoid these detection techniques,
one of which is for the attacker to stop using the victim’s system while the victim uses it.1

1 https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-
Whitepaper.pdf

2

Another method is to make use of only valid processes of the operating system for the
mining process.

Figure 1: CoinImp providing mining JavaScript

Another worrying factor is services like CoinImp and Crypto-Loot provide
cryptocurrency mining by distributing the JavaScript code for mining purposes to add in
a web page. This helps the website to make a profit by mining cryptocurrency using their
visitors’ system resources. The aforementioned reasons make it necessary to develop up-
to-date methods to detect unauthorised cryptomining activities.
Research Question

i. Can machine learning help to detect browser-based cryptomining activities?

➢ To test different supervised and unsupervised machine learning models to achieve

accurate results in detecting such attacks.

ii. Can JavaScript complexity features help in detecting cryptojacking script?

➢ To test the dynamic characteristics of a malicious JavaScript instead of the static

characteristics which is generally taken into consideration for detecting a

cryptojacking script but this method cannot detect a cryptojacking script if it is

obfuscated.

iii. Do the performances of memory, processes and filesystems help in detecting

cryptomining activities?

➢ Usually, only the CPU usage of a system is considered while determining if the

system is cryptomining but in recent times the attackers have begun using scripts

that allow them to reduce the throttle level to avoid such detection systems.

The remainder of this report is organised as follows: Section 2 describes the

background for this study. Section 3 describes a critical review of similar works related
to the study. Section 4 describes the methodology adopted for this study along with the

features used to design the models for the two different approaches. Section 5 describes
the framework followed for the two approaches. Section 6 gives a brief description of the

tools and methods used for the two approaches. Section 7 describes the evaluation of the
various models used for the two approaches along with a critical review of the

experiments carried out. The conclusions for the study and future work are described in

Section 8.

3

2 Background

This section reviews the basis for this research by also including an introduction about
cryptojacking, the mining process in browsers and its legality.

2.1 Cryptojacking

In cryptojacking, the attackers make use of two methods to mine cryptocurrency for
gaining unapproved use of the target system. One method involves loading the
cryptomining code as a stand-alone binary on the target machine with access to the
machines operating system and hardware. The focus of this study is on another method
of cryptojacking which occurs when a user loads onto an infected website through their
browser, allowing the website to execute the malicious cryptomining script onto the
system. In both cases, the target continues using the machine unaware of the mining code
working in the background.

Continuous hashing due to mining leads to abuse of the machine. Reduced computing
resources for other tasks is a clear indication of system abuse. A minimal rise in electricity

bills due to the processor using greater power is also an indication of continuous mining.
The cooling expense also increases due to the excess heat generated by the processor.

Constant mining-induced stress lowers the life span of the target machine. Hence, early
detection of cryptojacking becomes imperative.

2.2 Browser-based Mining

A JavaScript code injected into a web page allows access to a target device, enabling
the abuse of device resources to mine cryptocurrency. Browser-based mining occurs
when the JavaScript code runs via an infected website open on a browser. This makes
browser-based mining platform-independent, as web pages can run on any JavaScript-
enabled browser and is accessible on most host devices such as mobile phones, tablets,
computers, etc. due to JavaScript’s popularity as a default language on common web
browsers. In-browser cryptomining reduces the use of custom hardware required
initially for mining purposes as all users accessing the infected website automatically
become targets of cryptomining contributing to the ideal processing power required.

2.3 Cryptojacking Workflow

Figure 2: Cryptojacking workflow [4]

4

Cryptonight a new proof-of-work algorithm reduced drastically the merits of

custom hardware. Cryptonight is a memory-bound protocol which depends on random
access to slow memory, with every new block depending on the outcome of the previous

block. This development created cryptojacking, helping mine cryptocurrency. The
cryptojacking workflow shown in Figure 2. involves several elements. Cryptojacking

websites loaded on a user’s JavaScript-enabled web browser run the cryptojacking
JavaScript code either because of a design error or an attacker injected malicious script.

The cryptojacking code done on a domain similar to the original website will be delivered
from a delivery server.

Mining jobs are received once the cryptojacking code connects to the mining pool

proxy on execution. There is a proxy server deployed between the mining pool and
miners to divide the mining jobs that are allotted by the mining pools and to restrict

connections up to a certain number. Every miner will already have an account setup with
the mining pool to receive payments. The mining pool will assign an account determiner

to the account holder to correctly identify mining output from a particular account,
communicating with it. The mining pool monitors the blockchain and accordingly assigns

miners mining jobs connected to the blockchain. The jobs are a lower version of actual

proof-of-work, making it easier to record and reward gradual mining. Completion of a

single job results in a block that is added to the blockchain granting revenue for that

mining activity. Part of the resultant award will then be distributed among the mining
accounts based on the number of jobs done by the miner, while part will be kept by the
mining pool as fee [4].

2.4 Ethics and Legality

Ethically vague laws around cryptojacking keep it in the grey. Without gaining permission

or informing a user can be determined as stealing of the user’s resources, making

cryptomining ethically wrong. Researchers found that most users are not aware of the

details of their agreed upon consent. There are few legal cases brought up since the

discovery of cryptojacking. Tidbit, a company based on in-browser mining faced a lawsuit

in 2015, eventually having to shut down. The Attorney General of New Jersey ruling

expressed “No website should tap into a person’s computer processing power without

clearly notifying the person and giving them the chance to opt out”1. This decision sets a

precedent for future lawsuits.

3 Related Work

This section reviews significant research works that have been carried out previously to

detect, analyse and prevent cryptojacking.

3.1 Cryptojacking

Bertino and Nayeem studied the worms in IoT devices which were responsible for

carrying out covert mining on a system [5]. Krishnan et al. investigated the computer

malware such as HKTL BITCOINMINE and TrojanRansom.Win32.Linkup which carried

out covert mining activities on a computer system [6]. In the form of browser extensions,

there are a couple of solutions present to avoid cryptojacking such as NoMiner which is a

1 https://nj.gov/oag/newsreleases15/pr20150526b.html.

5

popular option in this context. The No Coin web extension was studied by Ruth et al. [7]

to check the rise of cryptojacking by analysing sites that were blacklisted by the extension.

These add-ons found almost 1,491 suspected cryptomining websites after scanning the

huge list of websites made available by Alexa’s Top 1M list. Both these add-ons offer

protection to a certain extent, but an attacker could easily avoid their algorithms using

simple obfuscation methods using URL matching techniques.

The popularity of cryptojacking was also studied by Eskandari et al. [8] by looking into

the vast use of Coinhive. However, to study the illegal mining activities in detail this study

did not conduct any static or dynamic analysis of cryptojacking scripts.

Vierthaler et al. developed WebEye that collects harmful HTTP traffic automatically [9].

They used sources such as Alexa Top 1M websites, MalwareDomainList and Openphish to

get their URLs and input them in their web-crawler based on Selenium. Along with the

metadata acquired from GeoIP and Whois, WebEye also extracts 58 other features from
web applications.

Jayasinghe et. al. in their study [10] analysed 11 forms of cryptojacking attacks on cloud

infrastructures. They have studied the different features of every attack and compared it
with detection systems to find limitations in them.

3.2 Static Analysis

The impact by a malignant JavaScript code on browsers and machines have also been

studied. Browser-based cryptojacking was studied in detail by Hong et al. [11]. CMTracker

a machine-learning tool was developed to prevent cryptojacking by Hong et al. which

carried out static analysis on 2,770 cryptomining websites.

A code-based analysis was carried out on 13 cryptojacking platforms by Konoth et al. [12]

to provide solutions against cryptojacking by studying the different details in a JavaScript

code. Based on this they were able to create MineSweeper to detect scripts seeking the

use of L1 and L3 cache of the CPU and features of cryptomining in WebAssembly.

SEISMIC (Secure In-lined Script Monitors for Interrupting CryptoJacks) was created by

Wang et al. using semantic features instead of syntactic to detect web browser

cryptomining [13]. The authors monitored cryptomining scripts that contain

WebAssembly (Wasm) to run in the browser that performs similar to non-malicious code

to distinguish between mining and non-mining behaviour. The authors accepted that

their method is good against syntactic obfuscation but to avoid detection semantic

obfuscation could be used with compromise on performance.

Subsequently, Outguard was developed as a cryptojacking detection tool by Kharraz et al.

[4] making use of the SVM classifier algorithm to detect secret cryptomining activities

with an accuracy rate of ≈97%. They utilized 6,302 websites to retrieve seven features to

train their SVM model. Although, dynamic analysis to examine the effects of cryptomining

scripts on a victim’s device was not carried out. Moreover, as accepted by Kharraz et al.,

to create Outguard a huge drawback was the use of a supervised learning model.

Cova et.al. also used machine learning methods to find any malignant JavaScript code in

web pages that download the malware on the target system in the background to spread

[14]. They extracted features related to four different aspects namely, redirection, de-

obfuscation, environmental context and exploitation. Their method also identified

obfuscated code and created signatures that could be detected for signature-based
systems.

6

Zozzle, a JavaScript malware detection tool developed by Curtsinger et al. identified

benign and malicious code by extracting features related to the abstract syntax tree using

the Bayesian classification [15]. It extracts these features by hooking calls to the eval

function using the library Detours instrumentation to identify JavaScript de-obfuscation
in Internet Explorer.

3.3 Dynamic Analysis

Tahir et al. [16] a tool MineGuard was created to identify secret mining activities on the

cloud in real-time. For detection, MineGuard developed discernible signatures for mining

algorithms by using hardware-assisted profiling. A browser extension was developed by

utilizing minute micro-architectural impressions for identifying cryptojacking to expand
their analysis to browser-based cryptojacking.

BMDetector developed by Liu et al. was a framework that hooks JavaScript in the kernel

source of Chrome Webkit and analyses the features of the data structures gained from the

browser heap snapshot and stack data to detect web browser cryptomining activities

[17]. Before carrying out performance extraction we need to avoid obfuscation and

encryption hence this framework captures the data at the parser level of the browser.

Using these features the BMDetector carries out detection built on Recurrent Neural
Networks (RNN).

RAPID, was developed to use resource and API-based detection technique to identify in-

browser cryptomining by Parra Rodriguez et al [18]. It was able to classify mining with

an accuracy of 96%. Similarly, Carlin et al. proposed that analysis of dynamic opcodes

could detect a cryptomining activity on web pages [19]. This helped in distinguishing

between benign websites and cryptomining websites using the random forest method to

classify tasks with higher accuracy.

CoinSpy, an in-browser tool was built using deep learning techniques to identify in-

browser cryptomining by Kelton et. al. [20]. This tool makes use of compute signatures,

memory signatures and network signature to achieve an accuracy rate of 97% to detect

cryptomining activities.

The study done by Barbhuiya et al. [21] analyse network traffic and CPU utilization to
detect DDoS and cryptojacking attacks respectively in cloud infrastructures. Through
their study, they were able to detect the two attacks but failed to distinguish between a
DDoS attack and a cryptojacking attack. Also, the datasets used to create their classification
models have not been separated.
This study closely resembles the work by Saad et al. [22] who have carried out static

analysis based on the complexity features of a JavaScript code and applied a clustering

algorithm to identify cryptojoacking scripts and dynamic analysis by observing changes

in the CPU usage. Web Socket packet sizes and the rate of power consumption. While they

have made use of only four features to design the clustering model, this study has taken

more features from the dataset to improve its accuracy and have made use of

unsupervised anomaly detection algorithms. Also, for the dynamic analysis, this study

made use of not just the CPU usage but also considered the usage of memory, processes

and filesystems for preparing a supervised machine learning model to detect covert

cryptomining.

7

4 Methodology

4.1 Process Flow

 Figure 3 shows the step-by-step process taken to implement the two methods to meet
the final objective of the study.

Figure 3: Step-by-Step Process

4.2 Data Collection and Preparation

For the static analysis, this study collected the cryptomining scripts from the dataset

made available by Queen’s University, Belfast [23]. There were scripts of 8 unique
cryptomining families i.e. Coinhive, CoinImp, CryptoLoot, deepMiner, JSECoin, Papoto,

ProjectPoi and WebMinePool. To avoid having an imbalanced dataset, an equal number

of benign scripts had to be considered to design the unsupervised model. For the benign

JavaScript, this study extracted the code from non-cryptojacking websites 1 using an
online extracting tool. In total, the study uses 8 cryptojacking scripts along with 11 benign
scripts to form the dataset.

For the dynamic analysis, the dataset used for this study was made available by

Jayasinghe [24] where a server instance’s performance was analysed during a crypto-
mining attack.

4.3 Feature Extraction and Selection

For the static analysis, this study made use of a JavaScript code complexity tool, Plato.

By running Plato, the different features related to the complexity of a JavaScript code
were recorded [25]. The features are as follows:

a. Source Lines of Code

Source Line of Code (SLOC) is the calculation of the total lines of code excluding the
white spaces. This helps identify how productive and maintainable the program is.
b. Cyclomatic Complexity (M)

Cyclomatic Complexity is a metric that tells how many paths the code takes on

execution. The higher the number of paths, the higher the complexity of the code. This
is calculated using the Control Flow Graph. This is calculated as M=E+2Q -N where E

1 https://www.creativebloq.com/web-design/examples-of-javascript-1233964

8

is the number of edges, Q is the number of connected components and N is the number
of nodes in the Control Flow Graph.
c. Cyclomatic Complexity Density (Md)

This is a measure of the Cyclomatic Complexity of the code. This helps identify any

obfuscated code even when an attacker increases the size of the code the complexity
stays the same. It is calculated as Md = E + 2Q – N/ ct where ct is the number of total

lines of code.

d. Halstead Complexity Metrics

These metrics are based on understanding the code as a series of tokens and classify
every operator as an operand or an operator. This is counted as the total number of

operators (N1), total number of operands (N2), number of unique operators (n1) and
number of unique operands (n2). With the help of these metrics, other measures such

as Volume (V), Effort (E), Bugs (B), Time (T), Difficulty (D) were derived and used in
the study.
e. Maintainability Score (Ms)

This score is calculated using total lines of code in the file (ct), Cyclomatic Complexity

(M) and Halstead’s Volume(V). Ms=171 – 5.2log(V) – 0.23M – 16.2log(ct)

For the dynamic analysis, the study has combined two datasets `final-normal-data-

set.csv` and `final-anormal-data-set.csv` and added a new column `target` that comprised
of binary values `0` for normal usage and `1` for abnormal usage of the system resources.

For the feature selection, this study has applied the Two-Tailed Z-test along with the
principle of multicollinearity to check the significance level of every feature from the

dataset. Due to this, the final dataset was narrowed down to 29 features. These features
are mentioned in Table 1.

Table 1: System Resource Features used in the dataset.

Sr. No. Feature Description

1 cpu_idle Percent of total CPU spent idle.

2

cpu_iowait

Percentage of total CPU spent waiting for I/O to

complete.

3

cpu_nice

Percentage of total CPU time spent in lowest-priority

user processes.

4

cpu_steal

Percentage of total CPU spent waiting for other OS

when running in a virtualized environment.

5 cpu_system Percentage of total CPU time spent in kernel mode.

6
cpu_total Total number of processors installed

7

cpu_user

Percent of total CPU time spent in normal user

processes

8 diskio_sda1_read_bytes Kbytes read per second by the disk sda1

9 diskio_sda1_write_bytes Kbytes written per second by the disk sda1

10 diskio_sda_read_bytes Kbytes read per second by the disk sda

11 fs_/_free Total kilobytes available to be used in the filesystem

12 fs_/_percent Percent of a filesystem

9

13 fs_/_used Total kilobytes of space used in the filesystem

14 load_cpucore Number of CPU cores on the system

15 load_min1 The average load over the last minute.

16 mem_active Recently accessed active memory.

17 mem_available The amount of memory that is available.

18 mem_buffers Temporary storage used for raw disk blocks.

19 mem_inactive Inactive memory that has not been accessed yet.

20 mem_shared Total memory shared.

21 mem_total Total usable RAM

22 mem_used Total RAM used at present

23 memswap_used Total used swap space for RAM

24

percpu_0_iowait

Total idle time of CPU when there was an

outstanding task

25 percpu_0_softirq Total interrupt requests on a cpu

26 percpu_0_system CPU Performance of the system

27

processcount_running

Total number of processes at present running on the

system

28 processcount_thread Total number of threads used by the processes

29 processcount_total Total number of processes

4.4 Data Cleaning and Scaling

In the dynamic analysis, the dataset had varying values in all the features which

made it necessary to normalize the data across all the features. Hence, the values of all
features have been transformed to within the range of 0 and 1. This transformation has

been done by performing the min-max scaling to keep distributions between variables
the same. The final dataset was highly imbalanced but there was no sampling carried out

on this dataset as the intention of this study is to correctly detect abnormal usage of a
system from when normally used which is generally the case.

4.5 Machine Learning Model Building

For the static analysis, the study makes use of unsupervised machine learning
models namely Isolation Forest, Local Outlier Factor and One-Class SVM. The data has
been split into Inliers which are normal data and outliers which are abnormal data.

For the dynamic analysis, the study makes use of the supervised machine learning

classification algorithms K-Nearest Neighbours, Support Vector Machines and Naive

Bayes. The data has been split into 75% as training data while 25% as test data. The
training features help the model to detect abnormal usage. The necessary packages and
libraries required for both the models are installed and activated.

4.6 Results and Evaluation

The results for both processes indicate that some of the models used in this study
were able to identify covert cryptomining behaviour on the system easily with a high

accuracy rate. The confusion matrix showed the number of false negative and false
positive cases the models made. The final results are supported by the Matthew’s

10

Correlation Coefficient statistical test score and visualised with the help of Microsoft Excel

to show these results.

5 Design Specification

This section gives a summary of the steps taken to carry out the two processes to
identify cryptomining activity through a browser. These steps are illustrated in Figure 4.

For both the processes, similar steps were involved except for the models that have been
applied to get a result. These steps involve importing the respective datasets in the Python

environment and carrying out pre-processing on it. It is then followed up with the feature
extraction process to determine the steps for training the models to check for any

abnormality in the data that has been fed. This is then followed by building the models
and training them. For the static analysis, the unsupervised learning models Isolation

Forest, Local Outlier Factor and One-Class SVM are used while for the dynamic analysis

the supervised learning models K-Nearest Neighbours (KNN), Support Vector Machines
(SVM) and Naive Bayes Classification. The final results then generated by the trained
models are visually represented.

Figure 4: Framework for Different Approaches for In-Browser Cryptomining Detection

6 Implementation

This section describes the tools and functions used to setup the proposed models.

Hardware Specifications: For the successful implementation of this project, the study

has been carried out on an 8th Gen Intel Core i5 Processor Laptop with 12 GB Ram.

Software Specification: The operating system on the laptop was Windows 10 Home 64-
bit. Given below is a list of software used for the implementation of this project.

• Python 3.8.1 – Python is a programming language that is quite popular and is

supported on various IDEs. It is easy to learn and use, making it the main reasons

why Python was chosen to build the proposed study models.

11

• Jupyter Notebook – This is an open-source web application that helps us in

carrying out various functions. Additionally, it also supports Python which was the

basis of the execution of the proposed models.

• Python Packages – Multiple packages of Python were used to implement the

models for this study. These packages helped in performing various activities such

as pre-processing on the dataset and applying the machine learning models. A list

of these packages along with their versions is given in the Configuration Manual.

• Node.js 12.18.2 – This is an open-source tool that helps execute JavaScript outside

the browser. This was used to run the Plato tool to create the dataset for the static

analysis.

• Plato – This tool is used to get the different features of the complexity of a

JavaScript code. This tool was used to create the dataset used in the static analysis.

This required Node.js as a prerequisite.

Two-tailed Z-Test: It is a statistical test used to carry out testing on a large dataset. This
test has been used in the dynamic analysis of this research to determine significant

features to make the machine learning models better. The test has been carried out on

data of normal system usage and has tried to find a significant difference between the
data of abnormal usage and normal usage

Hypothesis: H0: No difference between features

 H1: There is a difference between the features

Population Data: Normal use of the resources

Sample Data: Abnormal use of the resources

Level of Significance: 0.01

Corresponding Critical Value: 2.58

Z-Score Formula:

Matthew’s Correlation Coefficient (MCC): This test is used as a performance evaluation
metric for machine learning models when there is a case of unbalanced data. This test is

useful in both binary classification as well as multiclass classification [26]. Hence, this
study takes into consideration the Matthew’s Correlation Coefficient (MCC) value to

support the results obtained by this study. The MCC value lies between -1 and +1 where
the value +1 represents the model as perfect, while -1 represents the model as not good.

It is calculated using the confusion matrix of every model by using the following formula
where TP = True Positive Cases, TN = True Negative Cases, FP = False Positive Cases, FN
= False Negative Cases:

Machine Learning Models: This study involves three machine learning models for both
static and dynamic analysis respectively which are mentioned below.

1. Static Analysis: Unsupervised machine learning models are used for this

analysis to check its accuracy in identifying abnormality in the JavaScript code.

• Isolation Forest – This is a newly developed technique that works on the

principle of anomaly data points far from the normal data points. This results in

the isolation of the anomaly data points.

12

• Local Outlier Factor – This is a technique to identify outliers in the data done by

computing the density of deviation from the neighbouring data points of a single

data point. If the density is lower of a data point compared to its neighbours it is

considered as an anomaly.

• One Class SVM – This model is fed only normal data for training and learns only

normal transactions. When there is any data that does not resemble the normal

data, it is considered as an outlier, while any data that resembles normal data will

be considered as an inlier.

2. Dynamic Analysis: Supervised machine learning models were applied to the

dataset for this study to check for the accuracy in the classification of abnormal

usage and normal usage of system resources.

• K-Nearest Neighbours (KNN) – The KNN algorithm makes assumptions that

similar data are close to each other. This algorithm works on the idea of calculating

the distance between different points on a graph.

• Naive Bayes Classification – The Naive Bayes classification algorithm is based on

Bayes’ theorem. This model assumes that the features are independent of each

other to give a result.

• Support Vector Machines (SVM) – This model is used for the classification of two

groups problems. It works based on a line being plotted on the graph to divide the

two classes for identification. The best line is determined by the distance of the

line from the nearest data point which is the largest.

Output: The output consists of accuracy, precision, F-1 scores and confusion matrix

which would be useful for evaluating the different models.

7 Evaluation

In this section, the results are shown for both the analysis carried out by applying

different machine learning models for this project. The study has evaluated the models
based on the test set for this report.

7.1 Static Analysis

 In table 2, the evaluation metrics for the different unsupervised machine learning

models applied for the static analysis are given and visually represented in Figure 5. It

must be noted that the One-Class SVM has performed better than both Isolation Forest

and Local Outlier Factor. The accuracy in distinguishing between the benign scripts and

cryptomining scripts of One-Class SVM is 78.9% which is far greater when compared to

the accuracy rate of the other models. The confusion matrix for the three models is shown

in Figure 6 where the True Positive, True Negative, False Positive and False Negative

values can be seen. The results obtained by applying the machine learning models for this

analysis have been supported by taking into consideration the Matthew’s Correlation

Coefficient (MCC) values for them which are shown in Table 2. This value has been
achieved by using each model’s respective confusion matrix

13

Table 2: Evaluation Metrics of the Static Analysis

Model Accuracy Precision Recall F1-Score MCC

Isolation Forest 0.526 0 0 0 -0.2

Local Outlier Factor 0.632 1 0.125 0.222 0.28

One-Class SVM 0.789 0.667 1 0.8 0.65

Figure 5: Visual Representation of the Evaluation of Static Analysis

Figure 6: Confusion Matrix of the Different Unsupervised Models

7.2 Dynamic Analysis

 In table 3, the evaluation metrics for the different supervised machine learning

models applied for the dynamic analysis are given and visually represented in Figure 7.

It can be noted that the KNN model has performed better than both SVM and Naive Bayes

models. The accuracy in classification between the normal usage and abnormal usage of

the system resources due to cryptomining scripts being run on the browser of the KNN

model is 98.8% which is slightly better than the accuracy rate of the other two models.

The confusion matrix for the three supervised models are shown in Figure 8 where the

True Positive, True Negative, False Positive and False Negative values can be seen. These

results have been supported by taking into consideration the Matthew’s Correlation

Coefficient (MCC) values for the three different models using their respective confusion
matrix which is shown in Table 3.

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy Precision Recall F1-Score

Static Analysis

Isolation Forest Local Outlier Factor One-Class SVM

14

Table 3: Evaluation Metrics of the Dynamic Analysis

Model Accuracy Precision Recall F1-Score MCC

SVM 0.979 0.99 0.94 0.96 0.93

KNN 0.988 0.98 0.98 0.98 0.96

Naive Bayes 0.977 0.97 0.94 0.95 0.92

Figure 7: Visual Representation of the Evaluation of Dynamic Analysis

Figure 8: Confusion Matrix of the Different Supervised Models

7.3 Discussion

 For the static analysis, the results are acceptable to detect cryptomining scripts.
The dataset used for the static analysis is limited and therefore prevents a complete

understanding of how the research could work with a larger dataset. However, the
reliability and validity of the research process used makes replicability for a larger

dataset possible. For the initial research, it can be said that the One-Class SVM model is a
good fit for the static analysis. It can also be seen that the accuracy rate of the anomaly

detection models is not as good as the accuracy rate obtained by [16].

For the dynamic analysis, all three models were able to identify any sudden rise in
the usage of the system resources. Reducing the number of features with the help of Z-

test and by applying the principle of Multicollinearity aided in getting better results for
this analysis. As the dataset was created from a Linux OS these results could be valid only

for a Linux distro and may vary for other operating systems. High use of the system
resources could be possible due to video editing programs and/or gaming which could

need higher processing power. Hence, just based on high resource consumption one

cannot say if there is covert cryptomining taking place on one’s system. These good
results could also be a result of overfitting of data due to the highly imbalanced dataset.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Accuracy Precision Recall F1-Score

Dynamic Analysis

SVM KNN Naïve Bayes

15

But as this study focusses on detecting cryptomining during normal usage of a system the

models must be able to detect abnormal activity during such times. Matthew’s Correlation
Coefficient values for every model used in this study have supported the results obtained

by them.

8 Conclusion and Future Work

This study presented two approaches to detect a cryptojacking attack on a system.
It has used a statistical approach to identify the features for the dynamic analysis. The

final unsupervised models implemented for the static analysis did not perform well with
an average accuracy as compared to that of the previous work. On the contrary, the

supervised models implemented for the dynamic analysis were highly successful in
detecting a cryptojacking attack. For static analysis, One-Class SVM has outperformed the

other two unsupervised models while for dynamic analysis KNN has outperformed the

other two supervised models in detecting cryptojacking. The results of this research help
answer the main question that set this study in motion, ‘Whether machine learning can

help to detect an in-browser cryptojacking attack?’. Also, existing literature was studied
for their techniques and limitations.

The future work on this study would be to work with a larger dataset for the static
analysis which was a limitation in this study. Also, for the dynamic analysis evaluation of

multiple operating systems for their performance parameters during a cryptojacking

attack would widen the scope of this kind of research. There could even be a browser
extension developed using the two approaches mentioned in the study to detect

abnormal activity on the system in real-time on a web page.

References

[1] P. H. Meland, Y. F. F. Bayoumy, and G. Sindre, “The Ransomware-as-a-Service economy
within the darknet,” Computers & Security, vol. 92, p. 101762, May 2020, doi:
10.1016/j.cose.2020.101762.

[2] D. Y. Huang et al., “Botcoin: Monetizing Stolen Cycles,” in Proceedings 2014 Network
and Distributed System Security Symposium, San Diego, CA, 2014, doi:
10.14722/ndss.2014.23044.

[3] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock (and Drop It): Stopping
Ransomware Attacks on User Data,” in 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), Nara, Japan, 2016, pp. 303–312, doi:
10.1109/ICDCS.2016.46.

[4] A. Kharraz et al., “Outguard: Detecting In-Browser Covert Cryptocurrency Mining in
the Wild,” in The World Wide Web Conference on - WWW ’19, San Francisco, CA, USA, 2019,
pp. 840–852, doi: 10.1145/3308558.3313665.

[5] E. Bertino and N. Islam, “Botnets and Internet of Things Security,” Computer, vol. 50,
no. 2, pp. 76–79, Feb. 2017, doi: 10.1109/MC.2017.62.

[6] H. Krishnan, S. Saketh, and V. Tej, “Cryptocurrency Mining – Transition to Cloud,”
ijacsa, vol. 6, no. 9, pp. 115-124 2015, doi: 10.14569/IJACSA.2015.060915.

16

[7] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging into Browser-based
Crypto Mining,” Proceedings of the Internet Measurement Conference 2018, pp. 70–76, Oct.
2018, doi: 10.1145/3278532.3278539.

[8] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A first look at browser-based
Cryptojacking,” arXiv:1803.02887 [cs, econ], Mar. 2018 [Online]. Available:
http://arxiv.org/abs/1803.02887. [Accessed: 09-Jul-2020]

[9] J. Vierthaler, R. Kruszelnicki, and J. Schütte, “WebEye - Automated Collection of
Malicious HTTP Traffic,” arXiv:1802.06012 [cs], Feb. 2018 [Online]. Available:
http://arxiv.org/abs/1802.06012. [Accessed: 09-Jul-2020]

[10] K. Jayasinghe and G. Poravi, “A Survey of Attack Instances of Cryptojacking Targeting
Cloud Infrastructure,” in Proceedings of the 2020 2nd Asia Pacific Information Technology
Conference, Bali Island Indonesia, 2020, pp. 100–107, doi: 10.1145/3379310.3379323.

[11] G. Hong et al., “How You Get Shot in the Back: A Systematical Study about
Cryptojacking in the Real World,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto Canada, 2018, pp. 1701–1713, doi:
10.1145/3243734.3243840.

[12] R. K. Konoth et al., “MineSweeper: An In-depth Look into Drive-by Cryptocurrency
Mining and Its Defense,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, Toronto Canada, 2018, pp. 1714–1730, doi:
10.1145/3243734.3243858.

[13] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao, “SEISMIC: SEcure In-lined Script
Monitors for Interrupting Cryptojacks,” in Computer Security, vol. 11099, J. Lopez, J. Zhou,
and M. Soriano, Eds. Cham: Springer International Publishing, 2018, pp. 122–142
[Online]. Available: http://link.springer.com/10.1007/978-3-319-98989-1_7. [Accessed:
09-Jul-2020]

[14] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download
attacks and malicious JavaScript code,” in Proceedings of the 19th international conference
on World wide web - WWW ’10, Raleigh, North Carolina, USA, 2010, p. 281, doi:
10.1145/1772690.1772720.

[15] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “ZOZZLE: Fast and precise in-
browser JavaScript malware detection,” in Proc. 20th USENIX Conference On Security
2011, pp. 33-48 [Online]. Available:
https://www.usenix.org/legacy/events/sec11/tech/full_papers/Curtsinger.pdf
[Accessed: 09-Jul-2020].

[16] R. Tahir et al., “Mining on Someone Else’s Dime: Mitigating Covert Mining Operations
in Clouds and Enterprises,” in Research in Attacks, Intrusions, and Defenses, vol. 10453,
Cham: Springer International Publishing, 2017, pp. 287–310. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-66332-6_13. [Accessed: 09-Jul-2020].

[17] J. Liu, Z. Zhao, X. Cui, Z. Wang, and Q. Liu, “A Novel Approach for Detecting Browser-
Based Silent Miner,” in 2018 IEEE Third International Conference on Data Science in
Cyberspace (DSC), Guangzhou, 2018, pp. 490–497, doi: 10.1109/DSC.2018.00079.

17

[18] J. D. P. Rodriguez and J. Posegga, “RAPID: Resource and API-Based Detection Against
In-Browser Miners,” in Proceedings of the 34th Annual Computer Security Applications
Conference, San Juan PR USA, 2018, pp. 313–326, doi: 10.1145/3274694.3274735.

[19] D. Carlin, P. OrKane, S. Sezer, and J. Burgess, “Detecting Cryptomining Using Dynamic
Analysis,” in 2018 16th Annual Conference on Privacy, Security and Trust (PST), Belfast,
2018, pp. 1–6, doi: 10.1109/PST.2018.8514167.

[20] C. Kelton, A. Balasubramanian, R. Raghavendra, and M. Srivatsa, “Browser-Based
Deep Behavioral Detection of Web Cryptomining with CoinSpy,” in Proceedings 2020
Workshop on Measurements, Attacks, and Defenses for the Web, San Diego, CA, 2020, doi:
10.14722/madweb.2020.23002.

[21] S. Barbhuiya, Z. Papazachos, P. Kilpatrick, and D. S. Nikolopoulos, “RADS: Real-time
Anomaly Detection System for Cloud Data Centres,” arXiv:1811.04481 [cs], Nov. 2018
[Online]. Available: http://arxiv.org/abs/1811.04481. [Accessed: 09-Jul-2020]

[22] M. Saad, A. Khormali, and A. Mohaisen, “Dine and Dash: Static, Dynamic, and
Economic Analysis of In-Browser Cryptojacking,” in 2019 APWG Symposium on Electronic
Crime Research (eCrime), Pittsburgh, PA, USA, 2019, pp. 1–12, doi:
10.1109/eCrime47957.2019.9037576.

[23] J. Burgess, “CryptoJacking Data (including raw HTML/JS files).” Queen’s University
Belfast, 2020 [Online]. Available: https://pure.qub.ac.uk/en/datasets/cryptojacking-
data-including-raw-htmljs-files(ea782cda-b3ac-4fc3-b78b-c81324453280).html.
[Accessed: 31-Jul-2020]

[24] “Cryptojacking Attack Timeseries Dataset.” [Online]. Available:

https://kaggle.com/keshanijayasinghe/cryptojacking-attack-timeseries-dataset. [Accessed: 31-

Jul-2020]

[25] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love, “Measuring the
Psychological Complexity of Software Maintenance Tasks with the Halstead and McCabe
Metrics,” IIEEE Trans. Software Eng., vol. SE-5, no. 2, pp. 96–104, Mar. 1979, doi:
10.1109/TSE.1979.234165.

[26] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol.
21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7.

