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Machine Learning Approaches to Detect Browser-

Based Cryptomining 

Sherwin Norman Xavier 

19126662 

Abstract 
Modern browsers provide support to multiple APIs that make use of JavaScript leading to an 
increase in developing useful web applications but also malicious activities. One such malicious 
activity is browser-based cryptomining. Browser-based cryptomining activities are a way to 
hijack a user’s system without any permission from the end-user. This is a result of a rise in the 
popularity of cryptocurrencies that support mining activities requiring a CPU. This study 
proposes two approaches, static analysis and dynamic analysis to detect browser-based 
cryptomining activities. The static analysis uses the complexity features of a JavaScript code to 
design, implement and evaluate three unsupervised machine learning models while the 
dynamic analysis uses the different performance parameters of a system to design, implement 
and evaluate three supervised machine learning models. Ultimately, One-Class SVM anomaly 
detection model performed well for the static analysis with an accuracy of 78.9% while KNN 
classification model performed well for the dynamic analysis with an accuracy of 98.8%. 
Matthew’s Correlation Coefficient statistical test results supported the results of this study. 

Keywords – Cryptojacking, Browser, Machine Learning, Static Analysis, Dynamic Analysis.   

1 Introduction 

In recent times the popularity of cryptocurrencies has risen enormously leading 
to a significant rise in the demand for mining. This demand keeps rising as it is the basis 
for the cryptocurrency to stay in position. The increasing number of cryptocurrencies 
have led to several financial crimes where criminals misuse cryptocurrency for ransom 
[1]. The demand for mining has also given rise to a new form of malicious activity called 
cryptojacking wherein the cybercriminal mines cryptocurrency using a victim’s system 
resources. To date, cryptojacking has been reported in the form of botnets [2,3] as well as 
in cloud infrastructures.  

For an individual to begin the mining process they would have to invest in both 
hardware as well as in cooling equipment. The individual would also have to incur high 
electricity costs for the hardware to run smoothly. Thus, to avoid these extra costs to mine 
cryptocurrency the attackers made unauthorised use of another’s system resources 
which could either be a computer or mobile phone. This could even lead to the victim 
suffering financial impact due to the high electricity costs and possible damage to the 
system’s hardware if mining is done on an unsuitable device. 

There have been technologies developed to detect such cryptomining activities. 
But as time progressed attackers developed ways to avoid these detection techniques, 
one of which is for the attacker to stop using the victim’s system while the victim uses it.1 

 
1 https://www.cyberthreatalliance.org/wp-content/uploads/2018/09/CTA-Illicit-CryptoMining-
Whitepaper.pdf 
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Another method is to make use of only valid processes of the operating system for the 
mining process. 

 
Figure 1: CoinImp providing mining JavaScript 

Another worrying factor is services like CoinImp and Crypto-Loot provide 
cryptocurrency mining by distributing the JavaScript code for mining purposes to add in 
a web page. This helps the website to make a profit by mining cryptocurrency using their 
visitors’ system resources. The aforementioned reasons make it necessary to develop up-
to-date methods to detect unauthorised cryptomining activities.  
Research Question 

i. Can machine learning help to detect browser-based cryptomining activities? 

➢ To test different supervised and unsupervised machine learning models to achieve 

accurate results in detecting such attacks.  

ii. Can JavaScript complexity features help in detecting cryptojacking script? 

➢ To test the dynamic characteristics of a malicious JavaScript instead of the static 

characteristics which is generally taken into consideration for detecting a 

cryptojacking script but this method cannot detect a cryptojacking script if it is 

obfuscated.  

iii. Do the performances of memory, processes and filesystems help in detecting 

cryptomining activities?  

➢ Usually, only the CPU usage of a system is considered while determining if the 

system is cryptomining but in recent times the attackers have begun using scripts 

that allow them to reduce the throttle level to avoid such detection systems. 

The remainder of this report is organised as follows: Section 2 describes the 

background for this study. Section 3 describes a critical review of similar works related 
to the study. Section 4 describes the methodology adopted for this study along with the 

features used to design the models for the two different approaches. Section 5 describes 
the framework followed for the two approaches. Section 6 gives a brief description of the 

tools and methods used for the two approaches. Section 7 describes the evaluation of the 
various models used for the two approaches along with a critical review of the 

experiments carried out. The conclusions for the study and future work are described in 

Section 8. 
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2 Background 

This section reviews the basis for this research by also including an introduction about 
cryptojacking, the mining process in browsers and its legality. 

2.1 Cryptojacking 

In cryptojacking, the attackers make use of two methods to mine cryptocurrency for 
gaining unapproved use of the target system. One method involves loading the 
cryptomining code as a stand-alone binary on the target machine with access to the 
machines operating system and hardware. The focus of this study is on another method 
of cryptojacking which occurs when a user loads onto an infected website through their 
browser, allowing the website to execute the malicious cryptomining script onto the 
system. In both cases, the target continues using the machine unaware of the mining code 
working in the background.  

Continuous hashing due to mining leads to abuse of the machine. Reduced computing 
resources for other tasks is a clear indication of system abuse. A minimal rise in electricity 

bills due to the processor using greater power is also an indication of continuous mining. 
The cooling expense also increases due to the excess heat generated by the processor. 

Constant mining-induced stress lowers the life span of the target machine. Hence, early 
detection of cryptojacking becomes imperative.  

2.2 Browser-based Mining 

A JavaScript code injected into a web page allows access to a target device, enabling 
the abuse of device resources to mine cryptocurrency. Browser-based mining occurs 
when the JavaScript code runs via an infected website open on a browser. This makes 
browser-based mining platform-independent, as web pages can run on any JavaScript-
enabled browser and is accessible on most host devices such as mobile phones, tablets, 
computers, etc. due to JavaScript’s popularity as a default language on common web 
browsers. In-browser cryptomining reduces the use of custom hardware required 
initially for mining purposes as all users accessing the infected website automatically 
become targets of cryptomining contributing to the ideal processing power required. 

2.3 Cryptojacking Workflow 

 

Figure 2: Cryptojacking workflow [4] 
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Cryptonight a new proof-of-work algorithm reduced drastically the merits of 

custom hardware. Cryptonight is a memory-bound protocol which depends on random 
access to slow memory, with every new block depending on the outcome of the previous 

block. This development created cryptojacking, helping mine cryptocurrency. The 
cryptojacking workflow shown in Figure 2. involves several elements. Cryptojacking 

websites loaded on a user’s JavaScript-enabled web browser run the cryptojacking 
JavaScript code either because of a design error or an attacker injected malicious script. 

The cryptojacking code done on a domain similar to the original website will be delivered 
from a delivery server. 

Mining jobs are received once the cryptojacking code connects to the mining pool 

proxy on execution. There is a proxy server deployed between the mining pool and 
miners to divide the mining jobs that are allotted by the mining pools and to restrict 

connections up to a certain number. Every miner will already have an account setup with 
the mining pool to receive payments. The mining pool will assign an account determiner 

to the account holder to correctly identify mining output from a particular account, 
communicating with it. The mining pool monitors the blockchain and accordingly assigns 

miners mining jobs connected to the blockchain. The jobs are a lower version of actual 

proof-of-work, making it easier to record and reward gradual mining. Completion of a 

single job results in a block that is added to the blockchain granting revenue for that 

mining activity.  Part of the resultant award will then be distributed among the mining 
accounts based on the number of jobs done by the miner, while part will be kept by the 
mining pool as fee [4]. 

2.4 Ethics and Legality 

Ethically vague laws around cryptojacking keep it in the grey. Without gaining permission 

or informing a user can be determined as stealing of the user’s resources, making 

cryptomining ethically wrong. Researchers found that most users are not aware of the 

details of their agreed upon consent. There are few legal cases brought up since the 

discovery of cryptojacking. Tidbit, a company based on in-browser mining faced a lawsuit 

in 2015, eventually having to shut down. The Attorney General of New Jersey ruling 

expressed “No website should tap into a person’s computer processing power without 

clearly notifying the person and giving them the chance to opt out”1. This decision sets a 

precedent for future lawsuits. 

3 Related Work 

This section reviews significant research works that have been carried out previously to 

detect, analyse and prevent cryptojacking.  

3.1 Cryptojacking 

Bertino and Nayeem studied the worms in IoT devices which were responsible for 

carrying out covert mining on a system [5]. Krishnan et al. investigated the computer 

malware such as HKTL BITCOINMINE and TrojanRansom.Win32.Linkup which carried 

out covert mining activities on a computer system [6]. In the form of browser extensions, 

there are a couple of solutions present to avoid cryptojacking such as NoMiner which is a 

 
1 https://nj.gov/oag/newsreleases15/pr20150526b.html. 



5 

popular option in this context. The No Coin web extension was studied by Ruth et al. [7] 

to check the rise of cryptojacking by analysing sites that were blacklisted by the extension. 

These add-ons found almost 1,491 suspected cryptomining websites after scanning the 

huge list of websites made available by Alexa’s Top 1M list. Both these add-ons offer 

protection to a certain extent, but an attacker could easily avoid their algorithms using 

simple obfuscation methods using URL matching techniques. 

The popularity of cryptojacking was also studied by Eskandari et al. [8] by looking into 

the vast use of Coinhive. However, to study the illegal mining activities in detail this study 

did not conduct any static or dynamic analysis of cryptojacking scripts.  

Vierthaler et al.  developed WebEye that collects harmful HTTP traffic automatically [9]. 

They used sources such as Alexa Top 1M websites, MalwareDomainList and Openphish to 

get their URLs and input them in their web-crawler based on Selenium. Along with the 

metadata acquired from GeoIP and Whois, WebEye also extracts 58 other features from 
web applications.  

Jayasinghe et. al. in their study [10] analysed 11 forms of cryptojacking attacks on cloud 

infrastructures. They have studied the different features of every attack and compared it 
with detection systems to find limitations in them.     

3.2 Static Analysis 

The impact by a malignant JavaScript code on browsers and machines have also been 

studied. Browser-based cryptojacking was studied in detail by Hong et al. [11]. CMTracker 

a machine-learning tool was developed to prevent cryptojacking by Hong et al. which 

carried out static analysis on 2,770 cryptomining websites.  

A code-based analysis was carried out on 13 cryptojacking platforms by Konoth et al. [12] 

to provide solutions against cryptojacking by studying the different details in a JavaScript 

code. Based on this they were able to create MineSweeper to detect scripts seeking the 

use of L1 and L3 cache of the CPU and features of cryptomining in WebAssembly. 

SEISMIC (Secure In-lined Script Monitors for Interrupting CryptoJacks) was created by 

Wang et al. using semantic features instead of syntactic to detect web browser 

cryptomining [13]. The authors monitored cryptomining scripts that contain 

WebAssembly (Wasm) to run in the browser that performs similar to non-malicious code 

to distinguish between mining and non-mining behaviour. The authors accepted that 

their method is good against syntactic obfuscation but to avoid detection semantic 

obfuscation could be used with compromise on performance. 

Subsequently, Outguard was developed as a cryptojacking detection tool by Kharraz et al. 

[4] making use of the SVM classifier algorithm to detect secret cryptomining activities 

with an accuracy rate of ≈97%. They utilized 6,302 websites to retrieve seven features to 

train their SVM model. Although, dynamic analysis to examine the effects of cryptomining 

scripts on a victim’s device was not carried out. Moreover, as accepted by Kharraz et al., 

to create Outguard a huge drawback was the use of a supervised learning model.  

Cova et.al. also used machine learning methods to find any malignant JavaScript code in 

web pages that download the malware on the target system in the background to spread 

[14]. They extracted features related to four different aspects namely, redirection, de-

obfuscation, environmental context and exploitation. Their method also identified 

obfuscated code and created signatures that could be detected for signature-based 
systems.  
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Zozzle, a JavaScript malware detection tool developed by Curtsinger et al. identified 

benign and malicious code by extracting features related to the abstract syntax tree using 

the Bayesian classification [15]. It extracts these features by hooking calls to the eval 

function using the library Detours instrumentation to identify JavaScript de-obfuscation 
in Internet Explorer. 

3.3 Dynamic Analysis 

Tahir et al. [16] a tool MineGuard was created to identify secret mining activities on the 

cloud in real-time. For detection, MineGuard developed discernible signatures for mining 

algorithms by using hardware-assisted profiling. A browser extension was developed by 

utilizing minute micro-architectural impressions for identifying cryptojacking to expand 
their analysis to browser-based cryptojacking. 

BMDetector developed by Liu et al. was a framework that hooks JavaScript in the kernel 

source of Chrome Webkit and analyses the features of the data structures gained from the 

browser heap snapshot and stack data to detect web browser cryptomining activities 

[17]. Before carrying out performance extraction we need to avoid obfuscation and 

encryption hence this framework captures the data at the parser level of the browser. 

Using these features the BMDetector carries out detection built on Recurrent Neural 
Networks (RNN). 

RAPID, was developed to use resource and API-based detection technique to identify in-

browser cryptomining by Parra Rodriguez et al [18]. It was able to classify mining with 

an accuracy of 96%. Similarly, Carlin et al. proposed that analysis of dynamic opcodes 

could detect a cryptomining activity on web pages [19]. This helped in distinguishing 

between benign websites and cryptomining websites using the random forest method to 

classify tasks with higher accuracy. 

CoinSpy, an in-browser tool was built using deep learning techniques to identify in-

browser cryptomining by Kelton et. al. [20]. This tool makes use of compute signatures, 

memory signatures and network signature to achieve an accuracy rate of 97% to detect 

cryptomining activities.  

The study done by Barbhuiya et al. [21] analyse network traffic and CPU utilization to 
detect DDoS and cryptojacking attacks respectively in cloud infrastructures. Through 
their study, they were able to detect the two attacks but failed to distinguish between a 
DDoS attack and a cryptojacking attack. Also, the datasets used to create their classification 
models have not been separated. 
This study closely resembles the work by Saad et al. [22] who have carried out static 

analysis based on the complexity features of a JavaScript code and applied a clustering 

algorithm to identify cryptojoacking scripts and dynamic analysis by observing changes 

in the CPU usage. Web Socket packet sizes and the rate of power consumption. While they 

have made use of only four features to design the clustering model, this study has taken 

more features from the dataset to improve its accuracy and have made use of 

unsupervised anomaly detection algorithms. Also, for the dynamic analysis, this study 

made use of not just the CPU usage but also considered the usage of memory, processes 

and filesystems for preparing a supervised machine learning model to detect covert 

cryptomining. 
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4 Methodology 

4.1 Process Flow 

 Figure 3 shows the step-by-step process taken to implement the two methods to meet 
the final objective of the study.  

 

 

Figure 3: Step-by-Step Process 

4.2 Data Collection and Preparation 

For the static analysis, this study collected the cryptomining scripts from the dataset 

made available by Queen’s University, Belfast [23]. There were scripts of 8 unique 
cryptomining families i.e. Coinhive, CoinImp, CryptoLoot, deepMiner, JSECoin, Papoto, 

ProjectPoi and WebMinePool. To avoid having an imbalanced dataset, an equal number 

of benign scripts had to be considered to design the unsupervised model. For the benign 

JavaScript, this study extracted the code from non-cryptojacking websites 1 using an 
online extracting tool. In total, the study uses 8 cryptojacking scripts along with 11 benign 
scripts to form the dataset.  

For the dynamic analysis, the dataset used for this study was made available by 

Jayasinghe [24] where a server instance’s performance was analysed during a crypto-
mining attack.  

4.3 Feature Extraction and Selection 

For the static analysis, this study made use of a JavaScript code complexity tool, Plato. 

By running Plato, the different features related to the complexity of a JavaScript code 
were recorded [25]. The features are as follows: 

a. Source Lines of Code 

Source Line of Code (SLOC) is the calculation of the total lines of code excluding the 
white spaces. This helps identify how productive and maintainable the program is.  
b. Cyclomatic Complexity (M) 

Cyclomatic Complexity is a metric that tells how many paths the code takes on 

execution. The higher the number of paths, the higher the complexity of the code. This 
is calculated using the Control Flow Graph. This is calculated as M=E+2Q -N where E 

 
1 https://www.creativebloq.com/web-design/examples-of-javascript-1233964 
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is the number of edges, Q is the number of connected components and N is the number 
of nodes in the Control Flow Graph. 
c. Cyclomatic Complexity Density (Md) 

This is a measure of the Cyclomatic Complexity of the code. This helps identify any 

obfuscated code even when an attacker increases the size of the code the complexity 
stays the same. It is calculated as Md = E + 2Q – N/ ct where ct is the number of total 

lines of code.  

d. Halstead Complexity Metrics 

These metrics are based on understanding the code as a series of tokens and classify 
every operator as an operand or an operator. This is counted as the total number of 

operators (N1), total number of operands (N2), number of unique operators (n1) and 
number of unique operands (n2). With the help of these metrics, other measures such 

as Volume (V), Effort (E), Bugs (B), Time (T), Difficulty (D) were derived and used in 
the study. 
e. Maintainability Score (Ms) 

This score is calculated using total lines of code in the file (ct), Cyclomatic Complexity 

(M) and Halstead’s Volume(V). Ms=171 – 5.2log(V) – 0.23M – 16.2log(ct) 

For the dynamic analysis, the study has combined two datasets `final-normal-data-

set.csv` and `final-anormal-data-set.csv` and added a new column `target` that comprised 
of binary values `0` for normal usage and `1` for abnormal usage of the system resources. 

For the feature selection, this study has applied the Two-Tailed Z-test along with the 
principle of multicollinearity to check the significance level of every feature from the 

dataset. Due to this, the final dataset was narrowed down to 29 features. These features 
are mentioned in Table 1.  

Table 1: System Resource Features used in the dataset. 

Sr. No. Feature Description 

1 cpu_idle Percent of total CPU spent idle. 

2 

cpu_iowait 

Percentage of total CPU spent waiting for I/O to 

complete. 

3 

cpu_nice 

Percentage of total CPU time spent in lowest-priority 

user processes. 

4 

cpu_steal 

Percentage of total CPU spent waiting for other OS 

when running in a virtualized environment. 

5 cpu_system Percentage of total CPU time spent in kernel mode. 

6 
cpu_total Total number of processors installed 

7 

cpu_user 

Percent of total CPU time spent in normal user 

processes 

8 diskio_sda1_read_bytes Kbytes read per second by the disk sda1  

9 diskio_sda1_write_bytes Kbytes written per second by the disk sda1 

10 diskio_sda_read_bytes Kbytes read per second by the disk sda 

11 fs_/_free Total kilobytes available to be used in the filesystem 

12 fs_/_percent Percent of a filesystem 
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13 fs_/_used Total kilobytes of space used in the filesystem 

14 load_cpucore Number of CPU cores on the system 

15 load_min1 The average load over the last minute. 

16 mem_active Recently accessed active memory. 

17 mem_available The amount of memory that is available. 

18 mem_buffers Temporary storage used for raw disk blocks. 

19 mem_inactive Inactive memory that has not been accessed yet. 

20 mem_shared Total memory shared. 

21 mem_total Total usable RAM 

22 mem_used Total RAM used at present 

23 memswap_used Total used swap space for RAM  

24 

percpu_0_iowait 

Total idle time of CPU when there was an 

outstanding task  

25 percpu_0_softirq Total interrupt requests on a cpu 

26 percpu_0_system CPU Performance of the system 

27 

processcount_running 

Total number of processes at present running on the 

system 

28 processcount_thread Total number of threads used by the processes 

29 processcount_total Total number of processes 

4.4 Data Cleaning and Scaling 

In the dynamic analysis, the dataset had varying values in all the features which 

made it necessary to normalize the data across all the features. Hence, the values of all 
features have been transformed to within the range of 0 and 1. This transformation has 

been done by performing the min-max scaling to keep distributions between variables 
the same. The final dataset was highly imbalanced but there was no sampling carried out 

on this dataset as the intention of this study is to correctly detect abnormal usage of a 
system from when normally used which is generally the case. 

4.5 Machine Learning Model Building  

For the static analysis, the study makes use of unsupervised machine learning 
models namely Isolation Forest, Local Outlier Factor and One-Class SVM. The data has 
been split into Inliers which are normal data and outliers which are abnormal data.  

For the dynamic analysis, the study makes use of the supervised machine learning 

classification algorithms K-Nearest Neighbours, Support Vector Machines and Naive 

Bayes. The data has been split into 75% as training data while 25% as test data. The 
training features help the model to detect abnormal usage. The necessary packages and 
libraries required for both the models are installed and activated.  

4.6 Results and Evaluation  

The results for both processes indicate that some of the models used in this study 
were able to identify covert cryptomining behaviour on the system easily with a high 

accuracy rate. The confusion matrix showed the number of false negative and false 
positive cases the models made. The final results are supported by the Matthew’s 
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Correlation Coefficient statistical test score and visualised with the help of Microsoft Excel 

to show these results.   

5 Design Specification 

This section gives a summary of the steps taken to carry out the two processes to 
identify cryptomining activity through a browser. These steps are illustrated in Figure 4.  

For both the processes, similar steps were involved except for the models that have been 
applied to get a result. These steps involve importing the respective datasets in the Python 

environment and carrying out pre-processing on it. It is then followed up with the feature 
extraction process to determine the steps for training the models to check for any 

abnormality in the data that has been fed. This is then followed by building the models 
and training them. For the static analysis, the unsupervised learning models Isolation 

Forest, Local Outlier Factor and One-Class SVM are used while for the dynamic analysis 

the supervised learning models K-Nearest Neighbours (KNN), Support Vector Machines 
(SVM) and Naive Bayes Classification. The final results then generated by the trained 
models are visually represented.  

 

Figure 4: Framework for Different Approaches for In-Browser Cryptomining Detection 

6 Implementation 

This section describes the tools and functions used to setup the proposed models. 

Hardware Specifications: For the successful implementation of this project, the study 

has been carried out on an 8th Gen Intel Core i5 Processor Laptop with 12 GB Ram.  

Software Specification: The operating system on the laptop was Windows 10 Home 64-
bit. Given below is a list of software used for the implementation of this project. 

• Python 3.8.1 – Python is a programming language that is quite popular and is 

supported on various IDEs. It is easy to learn and use, making it the main reasons 

why Python was chosen to build the proposed study models.   
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• Jupyter Notebook – This is an open-source web application that helps us in 

carrying out various functions. Additionally, it also supports Python which was the 

basis of the execution of the proposed models.  

• Python Packages – Multiple packages of Python were used to implement the 

models for this study. These packages helped in performing various activities such 

as pre-processing on the dataset and applying the machine learning models. A list 

of these packages along with their versions is given in the Configuration Manual. 

• Node.js 12.18.2 – This is an open-source tool that helps execute JavaScript outside 

the browser. This was used to run the Plato tool to create the dataset for the static 

analysis. 

• Plato – This tool is used to get the different features of the complexity of a 

JavaScript code. This tool was used to create the dataset used in the static analysis. 

This required Node.js as a prerequisite.  

Two-tailed Z-Test: It is a statistical test used to carry out testing on a large dataset. This 
test has been used in the dynamic analysis of this research to determine significant 

features to make the machine learning models better. The test has been carried out on 

data of normal system usage and has tried to find a significant difference between the 
data of abnormal usage and normal usage 

Hypothesis: H0: No difference between features  

              H1: There is a difference between the features 

Population Data: Normal use of the resources  

Sample Data: Abnormal use of the resources  

Level of Significance: 0.01 

Corresponding Critical Value: 2.58 

Z-Score Formula:   

 

Matthew’s Correlation Coefficient (MCC): This test is used as a performance evaluation 
metric for machine learning models when there is a case of unbalanced data. This test is 

useful in both binary classification as well as multiclass classification [26]. Hence, this 
study takes into consideration the Matthew’s Correlation Coefficient (MCC) value to 

support the results obtained by this study. The MCC value lies between -1 and +1 where 
the value +1 represents the model as perfect, while -1 represents the model as not good.  

It is calculated using the confusion matrix of every model by using the following formula 
where TP = True Positive Cases, TN = True Negative Cases, FP = False Positive Cases, FN 
= False Negative Cases: 

 

Machine Learning Models: This study involves three machine learning models for both 
static and dynamic analysis respectively which are mentioned below. 

1. Static Analysis: Unsupervised machine learning models are used for this 

analysis to check its accuracy in identifying abnormality in the JavaScript code. 

• Isolation Forest – This is a newly developed technique that works on the 

principle of anomaly data points far from the normal data points. This results in 

the isolation of the anomaly data points.   
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• Local Outlier Factor – This is a technique to identify outliers in the data done by 

computing the density of deviation from the neighbouring data points of a single 

data point. If the density is lower of a data point compared to its neighbours it is 

considered as an anomaly.  

• One Class SVM – This model is fed only normal data for training and learns only 

normal transactions. When there is any data that does not resemble the normal 

data, it is considered as an outlier, while any data that resembles normal data will 

be considered as an inlier. 

2. Dynamic Analysis: Supervised machine learning models were applied to the 

dataset for this study to check for the accuracy in the classification of abnormal 

usage and normal usage of system resources.  

• K-Nearest Neighbours (KNN) – The KNN algorithm makes assumptions that 

similar data are close to each other. This algorithm works on the idea of calculating 

the distance between different points on a graph.  

• Naive Bayes Classification – The Naive Bayes classification algorithm is based on 

Bayes’ theorem. This model assumes that the features are independent of each 

other to give a result. 

• Support Vector Machines (SVM) – This model is used for the classification of two 

groups problems. It works based on a line being plotted on the graph to divide the 

two classes for identification. The best line is determined by the distance of the 

line from the nearest data point which is the largest.   

Output: The output consists of accuracy, precision, F-1 scores and confusion matrix 

which would be useful for evaluating the different models. 

7 Evaluation 

In this section, the results are shown for both the analysis carried out by applying 

different machine learning models for this project. The study has evaluated the models 
based on the test set for this report.  

7.1     Static Analysis 

           In table 2, the evaluation metrics for the different unsupervised machine learning 

models applied for the static analysis are given and visually represented in Figure 5. It 

must be noted that the One-Class SVM has performed better than both Isolation Forest 

and Local Outlier Factor. The accuracy in distinguishing between the benign scripts and 

cryptomining scripts of One-Class SVM is 78.9% which is far greater when compared to 

the accuracy rate of the other models. The confusion matrix for the three models is shown 

in Figure 6 where the True Positive, True Negative, False Positive and False Negative 

values can be seen. The results obtained by applying the machine learning models for this 

analysis have been supported by taking into consideration the Matthew’s Correlation 

Coefficient (MCC) values for them which are shown in Table 2. This value has been 
achieved by using each model’s respective confusion matrix 

 

 

 



13 

Table 2: Evaluation Metrics of the Static Analysis 

Model Accuracy Precision Recall F1-Score MCC 

Isolation Forest 0.526 0 0 0 -0.2 

Local Outlier Factor 0.632 1 0.125 0.222 0.28 

One-Class SVM 0.789 0.667 1 0.8 0.65 

 

 

Figure 5: Visual Representation of the Evaluation of Static Analysis 

 

 

Figure 6: Confusion Matrix of the Different Unsupervised Models  

7.2 Dynamic Analysis 

              In table 3, the evaluation metrics for the different supervised machine learning 

models applied for the dynamic analysis are given and visually represented in Figure 7. 

It can be noted that the KNN model has performed better than both SVM and Naive Bayes 

models. The accuracy in classification between the normal usage and abnormal usage of 

the system resources due to cryptomining scripts being run on the browser of the KNN 

model is 98.8% which is slightly better than the accuracy rate of the other two models. 

The confusion matrix for the three supervised models are shown in Figure 8 where the 

True Positive, True Negative, False Positive and False Negative values can be seen. These 

results have been supported by taking into consideration the Matthew’s Correlation 

Coefficient (MCC) values for the three different models using their respective confusion 
matrix which is shown in Table 3. 
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Table 3: Evaluation Metrics of the Dynamic Analysis 

Model Accuracy Precision Recall F1-Score MCC 

SVM 0.979 0.99 0.94 0.96 0.93 

KNN 0.988 0.98 0.98 0.98 0.96 

Naive Bayes 0.977 0.97 0.94 0.95 0.92 

 

 

Figure 7: Visual Representation of the Evaluation of Dynamic Analysis  

 

 
Figure 8: Confusion Matrix of the Different Supervised Models  

7.3 Discussion 

  For the static analysis, the results are acceptable to detect cryptomining scripts. 
The dataset used for the static analysis is limited and therefore prevents a complete 

understanding of how the research could work with a larger dataset. However, the 
reliability and validity of the research process used makes replicability for a larger 

dataset possible. For the initial research, it can be said that the One-Class SVM model is a 
good fit for the static analysis. It can also be seen that the accuracy rate of the anomaly 

detection models is not as good as the accuracy rate obtained by [16]. 

For the dynamic analysis, all three models were able to identify any sudden rise in 
the usage of the system resources. Reducing the number of features with the help of Z-

test and by applying the principle of Multicollinearity aided in getting better results for 
this analysis. As the dataset was created from a Linux OS these results could be valid only 

for a Linux distro and may vary for other operating systems. High use of the system 
resources could be possible due to video editing programs and/or gaming which could 

need higher processing power. Hence, just based on high resource consumption one 

cannot say if there is covert cryptomining taking place on one’s system. These good 
results could also be a result of overfitting of data due to the highly imbalanced dataset. 
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But as this study focusses on detecting cryptomining during normal usage of a system the 

models must be able to detect abnormal activity during such times. Matthew’s Correlation 
Coefficient values for every model used in this study have supported the results obtained 

by them. 

8 Conclusion and Future Work 

This study presented two approaches to detect a cryptojacking attack on a system. 
It has used a statistical approach to identify the features for the dynamic analysis. The 

final unsupervised models implemented for the static analysis did not perform well with 
an average accuracy as compared to that of the previous work. On the contrary, the 

supervised models implemented for the dynamic analysis were highly successful in 
detecting a cryptojacking attack.  For static analysis, One-Class SVM has outperformed the 

other two unsupervised models while for dynamic analysis KNN has outperformed the 

other two supervised models in detecting cryptojacking. The results of this research help 
answer the main question that set this study in motion, ‘Whether machine learning can 

help to detect an in-browser cryptojacking attack?’.  Also, existing literature was studied 
for their techniques and limitations.  

The future work on this study would be to work with a larger dataset for the static 
analysis which was a limitation in this study. Also, for the dynamic analysis evaluation of 

multiple operating systems for their performance parameters during a cryptojacking 

attack would widen the scope of this kind of research. There could even be a browser 
extension developed using the two approaches mentioned in the study to detect 

abnormal activity on the system in real-time on a web page.  

References 

[1] P. H. Meland, Y. F. F. Bayoumy, and G. Sindre, “The Ransomware-as-a-Service economy 
within the darknet,” Computers & Security, vol. 92, p. 101762, May 2020, doi: 
10.1016/j.cose.2020.101762. 

[2] D. Y. Huang et al., “Botcoin: Monetizing Stolen Cycles,” in Proceedings 2014 Network 
and Distributed System Security Symposium, San Diego, CA, 2014, doi: 
10.14722/ndss.2014.23044. 

[3] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock (and Drop It): Stopping 
Ransomware Attacks on User Data,” in 2016 IEEE 36th International Conference on 
Distributed Computing Systems (ICDCS), Nara, Japan, 2016, pp. 303–312, doi: 
10.1109/ICDCS.2016.46. 

[4] A. Kharraz et al., “Outguard: Detecting In-Browser Covert Cryptocurrency Mining in 
the Wild,” in The World Wide Web Conference on - WWW ’19, San Francisco, CA, USA, 2019, 
pp. 840–852, doi: 10.1145/3308558.3313665. 

[5] E. Bertino and N. Islam, “Botnets and Internet of Things Security,” Computer, vol. 50, 
no. 2, pp. 76–79, Feb. 2017, doi: 10.1109/MC.2017.62. 

[6] H. Krishnan, S. Saketh, and V. Tej, “Cryptocurrency Mining – Transition to Cloud,” 
ijacsa, vol. 6, no. 9, pp. 115-124 2015, doi: 10.14569/IJACSA.2015.060915.  



16 

[7] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging into Browser-based 
Crypto Mining,” Proceedings of the Internet Measurement Conference 2018, pp. 70–76, Oct. 
2018, doi: 10.1145/3278532.3278539. 

[8] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A first look at browser-based 
Cryptojacking,” arXiv:1803.02887 [cs, econ], Mar. 2018 [Online]. Available: 
http://arxiv.org/abs/1803.02887. [Accessed: 09-Jul-2020] 

[9] J. Vierthaler, R. Kruszelnicki, and J. Schütte, “WebEye - Automated Collection of 
Malicious HTTP Traffic,” arXiv:1802.06012 [cs], Feb. 2018 [Online]. Available: 
http://arxiv.org/abs/1802.06012. [Accessed: 09-Jul-2020] 

[10] K. Jayasinghe and G. Poravi, “A Survey of Attack Instances of Cryptojacking Targeting 
Cloud Infrastructure,” in Proceedings of the 2020 2nd Asia Pacific Information Technology 
Conference, Bali Island Indonesia, 2020, pp. 100–107, doi: 10.1145/3379310.3379323. 

[11] G. Hong et al., “How You Get Shot in the Back: A Systematical Study about 
Cryptojacking in the Real World,” in Proceedings of the 2018 ACM SIGSAC Conference on 
Computer and Communications Security, Toronto Canada, 2018, pp. 1701–1713, doi: 
10.1145/3243734.3243840. 

[12] R. K. Konoth et al., “MineSweeper: An In-depth Look into Drive-by Cryptocurrency 
Mining and Its Defense,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer 
and Communications Security, Toronto Canada, 2018, pp. 1714–1730, doi: 
10.1145/3243734.3243858. 

[13] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao, “SEISMIC: SEcure In-lined Script 
Monitors for Interrupting Cryptojacks,” in Computer Security, vol. 11099, J. Lopez, J. Zhou, 
and M. Soriano, Eds. Cham: Springer International Publishing, 2018, pp. 122–142 
[Online]. Available: http://link.springer.com/10.1007/978-3-319-98989-1_7. [Accessed: 
09-Jul-2020] 

[14] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download 
attacks and malicious JavaScript code,” in Proceedings of the 19th international conference 
on World wide web - WWW ’10, Raleigh, North Carolina, USA, 2010, p. 281, doi: 
10.1145/1772690.1772720. 

[15] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “ZOZZLE: Fast and precise in-
browser JavaScript malware detection,” in Proc. 20th USENIX Conference On Security 
2011, pp. 33-48 [Online]. Available: 
https://www.usenix.org/legacy/events/sec11/tech/full_papers/Curtsinger.pdf 
[Accessed: 09-Jul-2020].  

[16] R. Tahir et al., “Mining on Someone Else’s Dime: Mitigating Covert Mining Operations 
in Clouds and Enterprises,” in Research in Attacks, Intrusions, and Defenses, vol. 10453, 
Cham: Springer International Publishing, 2017, pp. 287–310. [Online]. Available: 
http://link.springer.com/10.1007/978-3-319-66332-6_13. [Accessed: 09-Jul-2020]. 

[17] J. Liu, Z. Zhao, X. Cui, Z. Wang, and Q. Liu, “A Novel Approach for Detecting Browser-
Based Silent Miner,” in 2018 IEEE Third International Conference on Data Science in 
Cyberspace (DSC), Guangzhou, 2018, pp. 490–497, doi: 10.1109/DSC.2018.00079. 



17 

[18] J. D. P. Rodriguez and J. Posegga, “RAPID: Resource and API-Based Detection Against 
In-Browser Miners,” in Proceedings of the 34th Annual Computer Security Applications 
Conference, San Juan PR USA, 2018, pp. 313–326, doi: 10.1145/3274694.3274735. 

[19] D. Carlin, P. OrKane, S. Sezer, and J. Burgess, “Detecting Cryptomining Using Dynamic 
Analysis,” in 2018 16th Annual Conference on Privacy, Security and Trust (PST), Belfast, 
2018, pp. 1–6, doi: 10.1109/PST.2018.8514167. 

[20] C. Kelton, A. Balasubramanian, R. Raghavendra, and M. Srivatsa, “Browser-Based 
Deep Behavioral Detection of Web Cryptomining with CoinSpy,” in Proceedings 2020 
Workshop on Measurements, Attacks, and Defenses for the Web, San Diego, CA, 2020, doi: 
10.14722/madweb.2020.23002. 

[21] S. Barbhuiya, Z. Papazachos, P. Kilpatrick, and D. S. Nikolopoulos, “RADS: Real-time 
Anomaly Detection System for Cloud Data Centres,” arXiv:1811.04481 [cs], Nov. 2018 
[Online]. Available: http://arxiv.org/abs/1811.04481. [Accessed: 09-Jul-2020] 

[22] M. Saad, A. Khormali, and A. Mohaisen, “Dine and Dash: Static, Dynamic, and 
Economic Analysis of In-Browser Cryptojacking,” in 2019 APWG Symposium on Electronic 
Crime Research (eCrime), Pittsburgh, PA, USA, 2019, pp. 1–12, doi: 
10.1109/eCrime47957.2019.9037576. 

[23] J. Burgess, “CryptoJacking Data (including raw HTML/JS files).” Queen’s University 
Belfast, 2020 [Online]. Available: https://pure.qub.ac.uk/en/datasets/cryptojacking-
data-including-raw-htmljs-files(ea782cda-b3ac-4fc3-b78b-c81324453280).html. 
[Accessed: 31-Jul-2020] 

[24] “Cryptojacking Attack Timeseries Dataset.” [Online]. Available: 

https://kaggle.com/keshanijayasinghe/cryptojacking-attack-timeseries-dataset. [Accessed: 31-

Jul-2020] 

[25] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love, “Measuring the 
Psychological Complexity of Software Maintenance Tasks with the Halstead and McCabe 
Metrics,” IIEEE Trans. Software Eng., vol. SE-5, no. 2, pp. 96–104, Mar. 1979, doi: 
10.1109/TSE.1979.234165. 

[26] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient 
(MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 
21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7. 


