

 Configuration Manual

 MSc Internship

 MSc Cybersecurity

 Sangameshwaran P.L

Student ID: x18174965

 School of Computing

National College of Ireland

 Supervisor: Mr.Imran Khan

2

National College of Ireland

Project Submission Sheet – 2019/2020

Student Name: Sangameshwaran P. L

Student ID: X18174965

Programme: MSc Cybersecurity Year: 2019-2020

Module: MSc Internship

Lecturer: Mr. Imran Khan

Submission

DueDate:

August 17

Project Title: A Lightweight 1-D CNN Model To Detect Android Malware On The Mobile Phone

Word Count: 1167 Page Count: 9

I hereby certify that the information contained in this (my submission) is information pertaining to

research I conducted for this project. All information other than my own contribution will be fully

referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the references section. Students are encouraged to use

the Harvard Referencing Standard supplied by the Library. To use other author's written or

electronic work is illegal (plagiarism) and may result in disciplinary action. Students may be required

to undergo a viva (oral examination) if there is suspicion about the validity of their submitted work.

Signature: Sangameshwaran P. L

Date: 17.08.2020

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).

2. Projects should be submitted to your Programme Coordinator.

3. You must ensure that you retain a HARD COPY of ALL projects, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer. Please do not bind projects or place in covers unless specifically requested.

4. You must ensure that all projects are submitted to your Programme Coordinator on or

before the required submission date. Late submissions will incur penalties.

5. All projects must be submitted and passed in order to successfully complete the year.

Any project/assignment not submitted will be marked as a fail.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

3

 Configuration Manual

Sangameshwaran P.L

 x18174965

1. Introduction

The configuration manual gives the step by step procedure required to be followed to pre-process

the dataset downloaded from the Drebin portal and Appbrain Statistics so that it can be applied

by the proposed lightweight 1-dimensional convolution neural network (1D-CNN) and the other

machine learning and deep learning models considered in our experiments.

2. Prerequisite

2.1 System Requirements

The minimum requirement required to replicate the proposed work is explained below:

 Operating System (os): Windows 10, Linux, Ubuntu or MAC (preferably windows 10

system).

 Minimum storage: 25 gigabytes (GB).

 Minimum RAM: 8 GB

2.2 Software Requirements

The implementation was done in Anaconda’s Jupyter notebook 6.0.3 (Python 3.7.6) where the

following packages are installed in a Jupyter note to support machine learning or deep learning,

various file operation and visualize the results of the model run on the generated datasets:

 Pandas

 Numpy

 Keras

 Matplotlib

 Math

 Sklearn.metrics

 Scikitplot

 Os

 Glob

 Scipy

 Kutools for excel

 shutil

4

3. Data processing

3.1: Feature extraction and merging

 The zip file downloaded from the Drebin dataset portal had a file named feature_vector when

extracted and the file contained all the malware and benign application stored in it in .file

format. The file name was their hash values name.

 To separate the malware from benign files so we can create the final balance dataset with

5560 malware and 5560 benign application we downloaded another file from the portal that

had the malware hash values in .csv format file with their family.

 With the help of python, we filter the malware files and benign files in the feature_vector file

and store them in 2 separate files.

 Figure 1. The separating of malware files Figure 2. Copying files to a different location

 We copy 5560 files from the benign samples renamed with hash value and ‘_bw’ and

combine it with malware 5560 samples in a new folder and convert all the files to .txt format

using the python.

 Figure 3. Renaming of the benign files

 After the files are converted the contents in the file are in key-value pair separated by ‘::’

symbol and all the contents 11,120 malware and benign files contents are copied to a single

.csv file.

 With the help of CSV inbuilt functions, we remove the duplicates and separate the key and

value with the help of data separator to extract the manifest properties and API calls.

 The manifest properties (permissions, real_permission, intent, features) and Api_calls value

are generated with filter option and stored in 2 separate files.

5

3.2: Dataset conversion to feature matrix

 The filenames of malicious and benign applications are got using the kutools1 downloaded

for excel with their “import and export” option for the filename list.

 The filenames are set as rows and extracted values above are set as a column by transposing

it and 2 new columns application category and target is added for mocking and labeling

purpose.

 If the column name is present in the particular sample a 1 is inserted to a particular column or

a 0 is inserted and if the name of the file is with a ‘_bw ‘ a 1 is inserted to the target column

denoting it has benign or else a 0 is inserted denoting it as a malware. The 49 application

category is given integer value from 1 to 49 and is randomly inserted in the application

category column with the rand function of python to mock the dataset.

 Figure 4. Generating of the feature matrix Figure 5. Rand function implementation

 Finally, the manifest properties and API calls dataset converted to feature matrix is combined

to give the third dataset which contains the application category and target column too.

4. Model implementation

The steps to implement the machine learning model (SVM, RF) and deep learning (1D-CNN,

MLP) are discussed in detail in this section. Before applying the model we need to read the file

that has the desired input for the model or dataset generated, (the steps for one dataset are shown

in detail below and the same as to be applied for the other two datasets). After which we need to

split the dataset for the test and training. In these experiments, we split the data for test and train

as 70% and 30 % for machine learning and 90% and 10 % for deep learning.

 Figure 6. Machine learning split Figure 7. Deep learning split

1 https://www.extendoffice.com/download/kutools-for-excel.html

https://www.extendoffice.com/download/kutools-for-excel.html

6

 Figure 8. Reading the file to be inputted to model

4.1 Support Vector Machine (SVM)

The Code for the SVM model to be applied to the read file and split dataset as above is given

below. The code does the training of the model and does the prediction with the test dataset

(30%) with which can give the performance evaluation metrics for the model.

 Figure 9. SVM model code for the training and testing

4.2 Random Forest (RF)

 The code of the RF model with various hyper tuning parameters is given below with training

and prediction done for the evaluation of the model according to the considered metrics.

 Figure 10. RF model code for the training and testing

4.3 Multilayer Perceptron (MLP)

The MLP is ran for 20 epochs with train and test datasets split as 90% and 10% respectively. The

model is subjected to a few hyperparameter tuning as shown below.

7

 Figure 11. MLP model code for the training and testing

4.4 1-dimensional Convolutional Neural Network (1D-CNN)

Finally, the 1D-CNN model is run for train and test dataset for 20 epochs. Hyperparameter

tuning is applied to the model and is evaluated by plotting confusion matrix, accuracy plot and

precision and recall curve for better visualization of the model performance as discussed in the

next section in detail.

 Figure 12. CNN model code for the training and testing

5. Metrics Calculation

The F1-Score, Accuracy, Precision and Recall is calculated for all the models discussed above

and we have plotted the confusion matrix, test vs train accuracy plot and precision-recall graph

for the 1D-CNN model as discussed below.

The metrics are calculated with the help of the “sklearn. metrics” package as follow for SVM,

RF and MLP and 1-D CNN (precision, recall and F1-Score) where the accuracy alone is

calculated using keras’s packages evaluate the function for 1D-CNN. The metrics snapshot of

one dataset (Api calls) with its output is :

8

1. Accuracy:

 Figure 13. Accuracy with sklearn Figure 14. Accuracy with Evalute

2. F1-Score

 Figure 15. F1-Score with sklearn

3. Precision and Recall

 Figure 16. Precision and Recall with sklearn

The confusion marix, test and train accuracy plot and precision and recall was plotted for 1-D

CNN as follow for the api_calls dataset and can be replicated for the rest two dataset.

 Figure 17. Confusion matrix code with output

9

 Figure 18. Test vs Train accuracy code with output

 Figure 19. Precision vs Recall curve code with output

After implementing all the experiments we convert the trained 1D-CNN model to tensorflow lite

using the tensorflow lite to get a file of 1.27 megabytes(MB) size suitable for deployment in a

mobile or IoT device.

6. Reference

 [1]R. Ahmed Sayyad, "How to Use Convolutional Neural Networks for Time Series

Classification", Medium, 2020. [Online]. Available:

https://medium.com/analytics-vidhya/how-to-use-convolutional-neural-networks-

for-time-series-classification-80575131a474. [Accessed: 13- Aug- 2020].

[2]A. Navlani, "(Tutorial) Support Vector Machines (SVM) in Scikit-

learn", DataCamp Community, 2020. [Online]. Available:

https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-

python. [Accessed: 13- Aug- 2020].

[3]A. Navlani, "Random Forests Classifiers in Python", DataCamp Community, 2020.

[Online]. Available: https://www.datacamp.com/community/tutorials/random-

forests-classifier-python. [Accessed: 13- Aug- 2020].

10

[4]A. Nair, A. Nair and A. Nair, "A Beginner’s Guide To Scikit-Learn’s

MLPClassifier", Analytics India Magazine, 2020. [Online]. Available:

https://analyticsindiamag.com/a-beginners-guide-to-scikit-learns-mlpclassifier/.

[Accessed: 13- Aug- 2020].

[5]"TensorFlow Lite guide", TensorFlow, 2020. [Online]. Available:

https://www.tensorflow.org/lite/guide. [Accessed: 13- Aug- 2020].

