

COMPACK – A Network Based RunPE for

Software Piracy Prevention

M.Sc. Internship

Cybersecurity

Saptarshi Laha

Student ID: x18170081

School of Computing

National College of Ireland

Supervisor: Michael Pantridge

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Saptarshi Laha

……. ………

Student ID:

x18170081
………..……

Programme:

M.Sc. Cybersecurity
………………………………………………………………

Year:

2020
…………………………..

Module:

M.Sc. Internship

…….………

Supervisor:

Michael Pantridge

…….………
Submission

Due Date:

17/08/2020

…….………

Project Title:

COMPACK – A Network Based RunPE for Software Piracy Prevention

…….………

Word Count:

……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the
National College of Ireland’s Institutional Repository for consultation.

Signature:

Saptarshi Laha
……

Date:

17/08/2020
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

COMPACK – A Network Based RunPE for Software

Piracy Prevention

Saptarshi Laha

X8170081

Abstract

Software piracy is a significant concern in today’s world. Software developers and

software development companies aspire to prevent piracy of their products by

incorporating various software licensing mechanisms into it. Additionally, the software

is delivered to the customers in a packed state to make reverse-engineering of the same

exceptionally complicated and laborious, thereby preventing individuals from accessing

the underlying software licensing mechanism and executable code. This paper proposes

a mechanism of code delivery which aims to be a strong contender for both traditional

and modern packing techniques at providing the desirable amount of security. The

discussed method involves handcrafting a portable executable which enforces reliable

protection due to its same section entropy, zero performance overhead, same file size,

the self-modifying behaviour of the resulting executable file. These properties allow the

constructed portable executable to be competent at subverting reverse-engineering tools

targeted at unpacking packed executables, while also making manual inspection of the

same an arduous toil. It further helps preserve the integrity and confidentiality of the

software by retaining the logic of the software licensing mechanism and executable code

present underneath, while keeping it away from the prying eyes of the analyst.

1 Introduction

Piracy of software has massively risen over the past decade. This rise has led most
developers and development companies to use software licensing solutions and packing of

software code, to prevent analysis and subversion of the same by an analyst. The incorporation of
such software protection mechanisms in the software, however, has not dampened the spirit of the

exceptionally inquisitive members of the technical community, including security researchers and
black-hat hackers. They attempt to crack the newly implemented secure packing methods, taking

it as a challenge to further their knowledge in understanding of the technology, or rendering the

protection mechanism and licensing solution set in place useless, and distribute software for fame
and profit, respectively. Thus, there arises a need for the development of new packing and code

delivery algorithms from time to time that provides temporary security to the software products
and their underlying software licensing mechanisms.

Before understanding the internals and working of the proposed code delivery mechanism,

it is essential to have a brief idea regarding the general unpacking process of a packer to
understand why it fails to provide sufficient security in today’s evolving software piracy scene.

This knowledge will enable an analyst to write an automatic unpacker or allow them to unpack

the code concealed underneath for manual analysis. The most common mechanism of unpacking
an executable in Windows starts with the saving of the register context at the entry point usually

with a PUSHA instruction. Reserving of a portion of heap memory equivalent to the size of the

unpacked Portable Executable (PE) sections or higher than it using one or a combination of

functions such as VirtualAlloc or VirtualAllocEx follows if a previously reserved section does
not exist in the section table of the PE file. The access protection flags of the reserved portion of

the memory or reserved section that maps to the memory in case of a previously reserved section

in the PE file, are then changed to Read, Write and Execute using one or a combination of

2

functions such as VirtualProtect or VirtualProtectEx. The next step includes decryption and

decompression of the code and data sections of the actual executable into the reserved memory,

loading and linking of the libraries that the original executable imported, and restoration of the
register context saved at the entry point using a POPA instruction. A jump instruction to the

original entry point of the unpacked executable succeeds, executing the unpacked PE file as it

would if it was executed without the unpacker performing the previous operations [1].

The information presented above helps an analyst devise their attack strategy against it. In

this case, the attack strategy happens to be extremely simple irrespective of the complexity
involved in packing the executable. The return value of the VirtualAlloc or VirtualAllocEx

functions is the first address of the newly allocated memory. Additionally, the first parameter of

the VirtualProtect and the second parameter of the VirtualProtectEx functions is the first
address of the memory section whose access protection flags require alteration, which happens to

be the same address as the one returned by VirtualAlloc or VirtualAllocEx functions if it exists
and precedes this function. Analysing the disassembly generated by the packed executable and

setting the appropriate breakpoints, an analyst can quickly unpack a packed executable for
analysis if it uses the unpacking strategy mentioned above, and, can eventually also develop a

custom toolkit to do so automatically, massively reducing the analysis time involved. The study

of this scenario poses a challenging yet crucial question regarding the possibility of changing the
source of code delivery so that the attacker cannot access the actual code underneath while the

execution of the code occurs as and when required such that manual or automatic unpacking is
not possible. The method of code delivery proposed by this paper attempts to answer this

question in the Research Methodology section of the document.

An insight into the Related Work section reveals that the methods currently used for
packing do not hold good against the current advances in packer detection and automatic or

manual unpacking of the same. Hence, there is a need to present a novel idea in PE file

executable code delivery which incorporates techniques from various advances in general
computing such as self-modification of code, code encryption, handcrafting of PE files to achieve

the desired security. This security achieved is practical only if it does not come bundled with its
fair share of performance overhead, and thus, ensuring the same with the utmost care is also an

addition to the initial proposal by the paper. It is essential to understand the working of currently
used packers and how the security enforced by them meets their demise at the hands of current

date unpackers, discussed in the Related Work section of the document, before proceeding with

the discussion entailing the proposition presented by this paper. This layout is the intended flow
of the document to ensure that the reader is at a better position to grasp and conceptualise the

techniques involved to gain an in-depth understanding of the subject matter. The understanding
gained is, in turn, is crucial in suggesting a new executable code delivery scheme and its

extensive analysis for potentially overlooked flaws outlined in the later sections of the document.
In addition to the content mentioned above, a few more critical topics are also present in the

Related Work section of the document which helps in the formulation of the proposed code
delivery method, while also serving as an informative read.

2 Related Work

This section includes discussions of various types of packers and their unpacking methods

followed by various automatic unpackers and their working. The first subsection dedicates itself

to making the reader wary of the types of packers present and their unpacking methods. In

contrast, the following subsections scrutinise the approach of detection of packing in a PE file,

identifying the type of packing present, and the methodology involved in unpacking the same,

done by different automatic unpackers. It further highlights the loopholes that each of these

implementations has, which then gets leveraged to present the proposal for a new code delivery

method. Practically, a security researcher would only be interested in sharing their findings in

3

case the packing of malware utilises a packer. Hence, most of the automated unpacking tools

mentioned here find its use in malware analysis; however, they can find their use for unpacking

commercial software as well, packed using that specific packer or packing method.

Later subsections discuss critical information regarding miscellaneous topics which find

their utilisation in the implementation of the proposed packing method. Generally, these topics do

not directly lead to the crafting of a new code delivery method, but aid in the process of refining

the same against current advances in unpacking and analysis methods by making them automatic

unpacking and analysis resistant. It also serves as an excellent primer for learning questionable

techniques that usually get exploited by black-hat hackers or security researchers in performing

non-conventional tasks that are extremely difficult or impossible to perform using regularly used

methods of development. Hence the reader must be wary of the techniques presented in these

subsections to evaluate the advantages and limitations that each of these fancy methods brings

along.

2.1 Types of Packers

This section discusses the different types of packers categorised based on their

complexities, as researched by Ugarte-Pedrero et al. [2]. This information is crucial to

understanding the discussion of the automatic unpacking methods that follow. The division of

packers based on its complexity results in six different types as described below:

1) Type 1 Packers – These types of packers perform a single layer of unpacking before

transferring the control flow to the unpacked code.

2) Type 2 Packers – These types of packers contain multiple unpacking layers. Each unpacking

layer is responsible for unpacking the subsequent unpacking routine. On the entire reconstruction

of the actual program, the control flow transfers to the unpacked code for execution.

3) Type 3 Packers – These types of packers are like the previous types of packers with the

exception being that the unpacking does not follow linearly but gets organised in a more complex

topology that includes loops. Due to this structure, the original packed code may not reside in the

last unpacking layer. Instead, the last layer generally contains various anti-debugging

mechanisms, integrity checks or part of the obfuscated code of the packer. A tail jump still exists

to separate the packer code from the actual program code.

4) Type 4 Packers – These types of packers are single-layered or multi-layered packers that have

a part of the packer code, which is not responsible for unpacking, interleaved with the execution

of the original program. There, however, exists a precise moment in time when the entire actual

program code gets unpacked in memory. The tail jump responsible for the transition from packer

code to program code can be challenging to locate.

5) Type 5 Packers – These types of packers have the unpacking code jumbled with the original

program code, such that the layer containing the original code has multiple frames, and the packer

unpacks them one at a time. Though these packers have a tail jump for the transition, only one

frame of code gets revealed, and thus, there is a requirement for a snapshot of the process

memory after the execution of the entire program for analysis of the original code.

6) Type 6 Packers – These types of packers are the most complex packers as they only unpack a

single fragment of the original program at any point of time.

The next few sections focus on different approaches to automatic unpacking and analysis of

code, as discussed by different researchers. These approaches play a crucial role in making the

reader understand the unpacking process carried out by different automatic unpackers to help

them comprehend the motivation behind the confident design choices that exist in the code

delivery method proposed by the paper, before introducing them to its nitty-gritty details.

4

2.2 PolyUnpack

This subsection discusses a common malware unpacking mechanism proposed by an

unpacker named PolyUnpack [3]. The method of unpacking used by Royal et al. in their

PolyUnpack project includes disassembling of the program to identify code and data in the first

step of the process. The executable instructions gathered in this process helps form a set of

original instructions of the program. Next, it executes an instruction in the program, saves the

current value of the instruction pointer and performs an in-memory disassembly starting from the

current value of the instruction pointer until it encounters a non-executing instruction. Finally, it

performs a check to verify if the instructions gathered in the previous phase are a subsequence of

the original instruction set. In case instructions gathered do not happen to be a subsequence of the

original instruction set, then the unpacked code starting from the current instruction pointer is

returned. Otherwise, this process continues until the last instruction of the executable is extracted.

The algorithm mentioned above is ingenious but fails to work in some instances including

if the executable detects that it is being executed by PolyUnpack, as it can alter its flow of action

thereby preventing automatic unpacking or leading to unpacking of unintended code. Hence, it is

vital to keep this property in mind when suggesting the design for the code delivery mechanism.

Apart from this, PolyUnpack also fails on step-by-step code execution as suggested by the future

work of this paper as it extracts unpacked code starting from the first instruction change and exits.

The algorithm can be slightly tweaked to run for the complete executable irrespective of an

instruction change for better results. However, this will result in the extraction of N unpacked

code, where N is the number of instruction changes that occur during the execution of the

executable file. One further optimisation is possible, which is, during the extraction of the N

unpacked code, the standard instruction subsequence undergoes omission and the changed

instructions stitched together to form the actual unpacked code. This modification will eliminate

the extraction of N unpacked code, and instead extract only once irrespective of the number of

instruction changes occurring during program execution. This modification is helpful against

packers which have multiple instruction changes during program execution. It is, however,

essential to note that these modifications are not present in the original implementation or

proposal of the same but are suggestions to cover up some of the flaws of the unpacker. Even in

this case, if the instruction subsequence completely changes, then the unpacker will output

garbage data that cannot undergo stitching to form a valid portable executable file.

The next subsection describes the working of another malware unpacker which serves as an

improvement over PolyUnpack in detecting and extracting packed code and incorporates some of

the functionalities suggested to make PolyUnpack better while taking an entirely different

approach algorithmically.

2.3 Renovo

This subsection discusses another automatic unpacking algorithm proposed by Kang et al.

and commonly known as Renovo [4]. Although the approach of Renovo is substantially different

from PolyUnpack discussed in the previous subsection, they do have their fair share of

similarities as well. Renovo works by generating a memory map whenever an executable gets

loaded onto memory. This generated memory map is labelled the clean state. On encountering a

memory write instruction by the executable, the corresponding memory region gets marked dirty.

If an instruction pointer jump occurs to any of these newly generated regions, it gets marked as

the original entry point for the unpacked code and extracts the code present in the memory region.

Renovo, however, adds functionalities to unpack multi-layered packing by analysing the code and

data sections in the newly unpacked code and recursively performing the previous operations

until the final unpacking occurs.

5

This approach takes into consideration the possibility of multi-layered packing to exist,

unlike PolyUnpack. However, Renovo, just like PolyUnpack also extracts N copies of data in

case of N different jumps to memory regions marked dirty in memory. Just like in the previous

case, this methodology of unpacking is rather inefficient against step-by-step code execution on

code delivery and also is ineffective against other anti-reversing methods implemented such as

code obfuscation and detection of Renovo unpacking the code by the executable and modifying

its behaviour accordingly to thwart analysis. Thus, even though Renovo is a significant upgrade

from PolyUnpack, it is still not the best or most efficient approach to unpacking hidden code.

The discussion of the next subsection entails the use of heuristics as well as a statistical

model to aid the unpacking process of the packed executable file. This method is far more

complicated than the currently reviewed methods to unpack packed executables while having a

lower performance overhead and executing faster than the previously discussed methods under

general circumstances. There, however, is another unpacking mechanism called OmniUnpack [5]

that deserves mentioning before proceeding with this transition. The reason why this mechanism

lacks a detailed explanation in the current text is that it is more focused on analysing malware

rather than being generalised to any packed executable, unlike the previously mentioned methods,

while following a similar methodology as Renovo in the background to help facilitate the analysis

of packed code during its unpacking stage. It is also important to mention that OmniUnpack is

more efficient than Renovo due to choices made by the authors that allow for lesser performance

overhead.

2.4 Eureka

This subsection dedicates to the analysis of another unpacking algorithm proposed by

Sharif et al. known as Eureka [6]. Eureka combines heuristics-based and statistical-based

unpacking to unpack hidden code from a packed executable during its runtime, along with child

process monitoring. The heuristics-based unpacking used by Eureka waits for the termination of

the running process by the interception of the NtTerminateProcess system call, for dumping a

snapshot of the program’s virtual memory address space. This approach assumes that since the

program has unpacked and executed, the unpacked instructions are present in the memory.

Besides, it also takes into consideration the creation of child processes by the executing process

to aid in its unpacking or perform execution of a crucial subroutine and thus also waits for the

interception of the NtCreateProcess system call to start monitoring the child process invoked

and apply the same heuristics principles for its analysis. The statistical-based unpacking involves

modelling the statistical properties of the unpacked code. This modelling bases itself on two

assumptions which are – specific opcodes, usage of registers and instruction sequences are more

prevalent than others in executables, and, the volume of code increases as the packed executable

unpacks itself. When a particular section of memory defies the first assumption or behaves

according to the second assumption, that memory section gets dumped.

Eureka is undoubtedly a much more complex unpacking algorithm compared to the

previously discussed ones. It additionally has a negligible performance overhead compared to

them as a result of the lack of continuous processing of the executing instructions of the program.

Instead, it depends upon the invocation of one of the two pre-defined system calls or an anomaly

in its statistical predictions, to extract the unpacked code from the memory region. Although

Eureka is far more advanced in its unpacked code analysis patterns, it still fails to hold up against

step-by-step execution of instructions or analysis of the execution environment by the packed

executable to modify its behaviour, as mentioned by the author. A simple modification involving

the interception of the VirtualAlloc, VirtualProtect and other calls with similar functionalities

can, however, make this unpacker much more potent than it is. However, this would add to the

performance overhead as these functions often invoked by non-packer based executables and

could result in erroneous results and findings due to the same reason.

6

In the next subsection, the assessment of another automatic unpacking mechanism that

utilises logging of every instruction executed and further parsing of the log to extract a partial

unpacked file occurs. Thus, the next subsection marks the onset of a new generation of automatic

unpacking algorithms, and hence these algorithms are more complicated compared to the

previously discussed ones, apart from being modular in design. This modularity means that the

algorithm depends on multiple tools at multiple points in the extraction process to assist with

extracting the final unpacked code. However, before proceeding to the next subsection, there is

another unpacking method that deserves special mention at this point, known as WaveAtlas [7].

This unpacker is however not discussed in much detail as this automatic unpacker works based on

two hypothesis – the executed instructions starting from the initial memory image till the second

to last memory image serve to protect the concealed program, and, the executed instructions in

the last memory image contain the actual program. These assumptions do not hold in case of step-

by-step execution of programs, and the paper also mentions the partial validation of the

hypothesis, which leads to an uninteresting read. Hence, the creation of a separate subsection for

the extensive analysis of the same did not seem worthwhile.

2.5 Mal-Xtract, Mal-XT and Mal-Flux

This subsection deals with the introduction of a rather complicated set of methods for

hidden code unpacking. The first unpacking method discussed is proposed by Lim et al. and

known as Mal-Xtract [8]. The methodology proposed utilises PANDA to execute the packed

executable while recording the entire system emulation in a log file. The recordings in the log file

get replayed to detect the memory addresses that got written to during the execution of the

program, and, the written memory addresses and their adjacent memory addresses are marked as

written. An empirical approach then gets used to determine the threshold value based on the

number of instructions written for consideration of the memory sections for being dumped.

Finally, Volatility is used on the physical memory dump to extract the sections that meet the

threshold value to try and reconstruct the unpacked executable code. Further, the extracted

section data gets parsed using IDA Pro, and their corresponding mnemonics gathered for

comparison with the original executable file using a diff tool. The similarity percentage and the

entropy then get used to determine the presence of packing in the executable.

Although this approach uses multiple toolkits and employs sophisticated methods for

carrying out partial unpacking and validation of the presence of packing in an executable file, it

still has its fair share of shortcomings. Before mentioning these shortcomings, it is crucial to

highlight the improved methods that this automatic unpacker employs including logging of the

entire emulated execution, which is very useful in analysing and extracting hidden data from

packed executables. However, there is no check performed to verify if the extracted instructions

at every stage get executed or not, leading to the generation of copious amounts of garbage data

which thwarts analysis. Besides, the empirical approach used for the calculation of the minimum,

and maximum threshold values also depend on the number of unpacked instructions at every

given instance. It does not take much effort to dupe this mechanism into working incorrectly by

merely extracting the same amount of code at any given instance of unpacking or code execution.

Finally, the reconstructed executable cannot execute directly due to the Import Address Table

(IAT) being damaged or missing, which further makes this automatic unpacker inept.

The following unpacking method of interest is an advancement from Mal-Xtract. Lim et al.

propose it, and it is known Mal-XT [9]. Mal-XT replicates the previously discussed method but

adds the functionality to track the execution of instructions. This addition further helps in

separation of executable code from garbage code and data. In other words, the extraction

procedure for hidden code only extracts the data from memory sections that undergoes execution.

Although this additional enhancement to the initially proposed algorithm of Mal-Xtract helps in

7

neglecting sections of code that do not get executed, it still does not take into account the

presence of logically opposite pairs of code or ambiguous code being present in the memory

section that executes. Besides, multiple executions of a program are required with different

parameters to follow all the branches and paths to derive the complete executable, unlike the

previously discussed method. Also, just like the previously discussed method, this method results

in the reconstruction of an unpacked executable file that cannot execute directly due to the IAT

being damaged or missing.

Next, the discussion of the unpacking method proposed by Lim et al. is known as Mal-Flux

[10] is considered. This method, just like Mal-XT, is an advancement from Mal-Xtract. It also

analyses the same memory addresses for being rewritten with code apart from monitoring new

memory or section writes and rewrites. This property makes it much more advanced than the

previously discussed automatic unpackers. This additional recorded information gets utilised in

the reconstruction of the executable file at the end of the process, although just like the previously

discussed unpacking methods, this method also results in the generation of an executable that

cannot execute directly due to the IAT being damaged or missing. Besides, the most impactful

disadvantage of Mal-Flux is the fact that it is hugely performance heavy, apart from not tracking

the execution of instructions to separate actual code from garbage code and data which is crucial

to the refining of the results.

It is of great interest to mention that all these automatic unpacking techniques mentioned

above use additional methods for activities such as analysis of malware or segregation of the

malware executables and the benign executables. However, as these methods do not aid the

formulation of the code delivery mechanism proposed in this paper, they are omitted.

Additionally, all the previous subsections were related to dynamic unpacking methods of packed

executable files. The next subsection deals with the static unpacking of packed executable files

which follows a different approach than the ones currently employed.

2.6 Static Unpacking

This subsection deals with the static unpacking of packed executables, as proposed by

Coogan et al. [11]. Unlike the previously discussed methods, this method of hidden code

unpacking does not depend on the execution of the packed executable but rather depends on

disassembly, static code analysis, alias analysis, possible transition point detection, static

unpacker extraction and static unpacker transformation to achieve the desired result. It starts by

generating a static disassembly of the code, followed by identification of basic blocks to construct

a control flow graph of the disassembled code. Next, it performs binary-level alias analysis to

identify the memory addresses where indirect memory operations occur. The results generated in

the previous step get used to determine potential transition points where the unpacked code gets

executed by the transferring of the control flow. The operations performed following any

individual path corresponding to any unique transition point is analysed to identify the memory

locations that may be modified apart from performing backwards static slicing to identify the

static unpacker. This static unpacker then gets analysed to perform various transformations such

as detection and removal of code protection mechanisms on it. Finally, the statically analysed and

modified code gets executed to result in the unpacking of the hidden code.

This method of unpacking attempts to render any defence mechanisms set in place in the

unpacker code useless and, further, execute the unpacker to extract the unpacked code. This

technique finds utilisation in single-level unpacking, but if the packing of code is present in

several layers, then each layer would only unpack the subsequent layer of code. Additionally, if

there is no code to analyse statically in the binary, then such methods fail to work practically due

to the lack of analysis parameters on which the static unpacking depends. Due to these

limitations, this type of automatic unpacker is not feasible for analysis of densely packed or

8

radically instrumented binaries. This subsection marks the end of the discussions of various

automatic unpacking techniques. In the following subsection, the discussion entails the

importance of entropy for detection of packed executables. This information will help the reader

understand the need behind keeping the entropy low, similar or the same in the resulting

executables proposed by the paper for code delivery.

2.7 Entropy-based Packer Detection

This subsection deals with introducing the reader to the concept of entropy and further

explains how it acts as a metric for packer detection. The entropy of a block of data describes the

amount of information it contains, and its calculation is as follows:

where p(i) is the probability of the ith unit of information in event x’s sequence of N symbols. For

packed program analysis, the unit of information is a byte value, N is 256, and an event is a block

of data from the packed program [12].

Compressed and encrypted code and data result in the calculation of high entropy values,

whereas the general code and data result is much lower entropy. Hence identification of packed

data is rather simple based on the calculation of its entropy value. Bat-Erdene et al. also propose a

method to utilise entropy analysis for detection of multi-layer packing in executables [13]. This

analysis calculates the entropy of all the unpacked sections recursively during to unpacking

process to determine if any of the unpacked sections further contain packed code. If the entropy

values for a section are above the threshold limit, the section is considered packed, and further

unpacking of the section follows.

The information presented above is critical to the formulation of the method of code

delivery proposed by this paper. However, a few more primers on essential topics are required to

formulate the same altogether. The next subsection dedicates itself towards introducing the reader

to the concept of self-modification of code and its linearization, which is one of the most critical

concepts that need special mention due to the massive role it plays in the formulation of the

proposed code delivery method by this paper.

2.8 Self-modifying Code

This subsection deals with the introduction of self-modification of code, while also

explaining how the linearization of the same occurs using State Enhanced – Control Flow Graphs

as proposed by Anckaert et al. [14]. Self-modification of code refers to the modification of any

piece of the code within a running program, by the same running program for altering the

operation it performs when it encounters that code. Data transfer operations in a writable and

executable section in memory can facilitate self-modification of code to alter its behaviour.

Malware writers generally exploit this method, but it can also lead to the generation of dynamic

code in a specific section in memory and executing it to perform various fancy operations. In

usual programs that do not exploit this behaviour, a control flow graph is constructible, which

shows the various execution paths an executable can take during its execution. However, a

general control flow graph is not constructible for a program utilising self-modification of code.

Anckaert et al. propose a method to generate a model of control flow graph that takes into

consideration the different states the program is at and details the subsequent transition or

transformation related to it. Unfortunately, this linearization using State Enhanced – Control Flow

Graphs is only possible if the targets of indirect control transfer within a program are known. If

9

they are not known, then the State Enhanced – Control Flow Graph model has to take into

consideration every byte getting altered at any particular time within the program and the control

flow getting passed to all of them which makes the problem infeasible to solve. Thus, in other

words, if the addresses where the instructions are getting altered and executed are not constant,

then it is challenging for this model to linearise the disassembly generated. In the case of the

implementation presented by this paper, the VirtualAlloc or VirtualAllocEx type of functions find

their utilisation, which in turn allocate a size of memory in the heap section starting from a

random address, and thus the previous model cannot be used for analysis. Additionally, the

control transfers are pseudorandom and can occur at any point leading to further complexities.

This subsection marks the end of the Related Work section. The techniques learnt in this section

help in some or the other way to build a robust code delivery mechanism. A few additional topics

were worthy of mention, but since they do not require extensive analysis for the formulation, they

were ignored and are instead lightly touched upon in the subsections of the next section for the

sake of brevity.

3 Research Methodology

As noted from the Related Work section, the packing methods present in today’s world are

largely inefficient with the exception of step-by-step unpacking packers. Hence there is a need to

formulate a novel code delivery mechanism where the executable code which can be altered or

patched does not reside on the computer of the analyst locally and is only present during its

execution. One way to tackle this problem is to completely make the application a server sided

application but this approach hinders with multiple applications where it is necessary for a

particular piece of executable code to be present on the client’s machine to perform certain tasks.

Additionally, this approach makes organisations incur heavy costs for server operations due to the

additional load in implementing such a mechanism. It is also noteworthy to mention that the

valuable resources present on the client’s computer would find zero use in such an approach and

thus it can be considered a waste of computational resources.

Hence there is a valid reason to propose an idea of secure code delivery to the client’s

computer so that the computational resources on the client’s system are utilised to generate the

results while keeping the executable code away from the prying eyes of the analysts to prevent

piracy and other sorts of malicious operations or inspection. A way in which this can be achieved

is by sending an executable program to the client with its .text section completely stripped so that

there is no way to analyse the code or data manipulations that occur during execution locally

using a disassembler or a debugger, thus preventing software piracy from the ground-level of the

design of code delivery. The .text section can then be provided by the server as and when

required to the client which will be patched into memory using memory manipulation operations

by a loader executable.

 The proposed and implemented method uses a loader to utilise the VirtualProtectEx

function to perform in-memory section access protection flag modification to utilise the

WriteProcessMemory operation to write the executable code upon execution. This code is

received from the server as and when required by the client. Additional benefits to this approach

lie in the ambiguous functionality of the code received. This allows for a programmer to craft an
executable with a wide array of functionalities and present only a following portion of the code to

client depending on the functionality requested by them. Further details regarding the approach is

discussed in the Implementation section of the document.

10

 The evaluation criteria for such an approach plays a crucial role in determining the

feasibility of the approach. In this case, the criteria for evaluation considers the size of the
resulting stripped PE file, the size of the code emitted by the server to the client, the section

entropy of the resulting stripped PE file and the execution time of the PE resulting stripped PE

file upon receiving the executable code from the server. All these criteria are discussed in detail

in the Evaluation section of the document.

4 Design Specification

The proposal mentioned here has been implemented only on the Windows operating system

in both x86 and x64 environments and work for executable files with five sections that are

considered but can be extended to more sections by simply modifying the code. Additionally, it is

also important to mention that the section name checks are not performed and hence the .text

section is assumed to be the first section of the PE file followed by the .rdata section, .data

section, .rsrc section and the .reloc section, as is the case with MSVC compiled binaries.

However, this code too can be changed to look for section names before performing any

operation specific to a section.

Another consideration that is taken into account in this case is that, the building of the

executable is only possible through the MSVC or Visual Studio compiler. It should ideally be

able to compile with the MinGW compiler that is present for the Windows operating system but

the same is not tested as a part of the project. Linux environments and other OS are not supported

due to the difference in native functions that get utilised in this project. The functions utilised in

this project are Windows specific and execute on Windows XP+ operating system, meaning it

executes on any operating system that is Windows and has a version higher than that of Windows

XP.

The design of the code delivery mechanism also takes into account the presence of a server

and a client; however, the same device can act as the server and the client for the testing purposes

using the loopback address. Finally, the last consideration in the design lies in the zeroing out of

the .reloc section of the executable file and the zeroing out of the number of relocations and

pointer to relocations field in the section header of all sections, leading to the executable loading

at the same address on every execution. This approach needs future work as suggested in the

Future Work section of the document to enable the executable to load in any address and

maintain the security in terms on ASLR (Address Space Layout Randomisation).

5 Implementation

The implementation of this project consists of two major parts – one being the

2FileCreatorServer.exe and the other being RunPE Client.exe. The first executable is written in C

using Windows specific headers and functions and is responsible for carrying out three operations

– stripping the deliverable executable off the .reloc and the .text section, dropping two files – the

RunPE Client.exe and the resulting stripped executable file, and hosting the .text section of the

stripped file on a particular port for the client to connect to, so that it can send the data over for

execution by the client.

11

The second part of the project deals with the RunPE Client.exe which is also written in C

using Windows specific headers and functions and is essential as it performs multiple major

operations. It is responsible for launching the stripped executable in suspended state, changing

the access protection flags corresponding to the .text section of the stripped binary to read, write

and execute, writing the received executable code from the server to the .text section of the file in

memory, changing the access protection flags to their previous state and resume the process so it

can undergo normal execution. The output generated using these two files result in a normally

working executable file as it would in case if the code was present locally than being sent over by

the server.

The RunPE Client.exe achieves all of these operations by first calling the CreateProcess

function to launch the stripped binary in the suspeneded state, then changing the access protection

flags of the .text section of the executable file in memory to read, write and execute, writing the

received code to the process memory at the location of the .text section, changing the access

protection flags of the .text section in memory to its previous state and then using an

undocumented API call to NtResumeProcess to resume execution of the process.

Both the 2FileCreatorServer.exe and RunPE Client.exe utilise the WS2_32.lib to create raw

sockets for establishing a TCP connection. The TCP connection is essential out here as TCP

connections guarantee the delivery of packets unlike an UDP connection and this property is

abused to guarantee the delivery of code to the requesting client. Another consideration that

needs mention here is the data limit of TCP is 65535 bytes which is more than enough to contain

the entirety of the .text section even for very large executable files.

6 Evaluation

The analysis of the experiments performed are mentioned in this section in detail. There are

four experiments that get performed and all four result in interesting results.

6.1 File Size, File Section Entropy, Execution Time

After extensive experimentation it is found out that the size on disk remains similar for

both the non-stripped and the stripped binary, which is a plus point to the project as even though

there is no size reduction, there is no executable code present to be analysed by automatic

unpackers, code analysers, debuggers or disassemblers.

It is also found that the file section entropy for the .text section and the .reloc section is

zero compared to their higher old value leading to marking the file as not packed or encrypted

under any circumstance irrespective of the delivery of executable code that comes in from the

server.

 The execution time after extensive testing remains similar as the same instructions run

even after the delivery of the code on the actual hardware/CPU of the client if the execution time

of the loader is ignored and the delivery time of the code from the server is ignored. Both of these

values are minimalistic and hence can be ignored apart from the fact that the code is compiled

natively which makes the process faster than an interpreted language or VM based language.

12

6.2 Size of Code Emitted by the Server

The size of the code in this case is the size of the .text section of the original PE file. The

TCP data field supports up to 65535 bytes of data which results to 0xFFFF in hexadecimal

meaning that the .text section can be up to 0xFFFF in size which is very unusual. Additionally,

since its barely 64KB of data, the transmission of the .text section can occur very fast with

today’s evolving internet speeds.

6.3 Entering of the Wrong Encryption Key

When hosting the .text section of the PE file, the server encrypts it with an encryption

key. This encryption key needs to be provided by the client to decrypt the binary data. On

entering the wrong decryption key, the wrong instructions get written to memory. This leads to

invalid execution of instructions which do not result in the actual expected output of the binary,

thereby adding another layer of protection in the code delivery mechanism.

6.4 Polymorphic Code

Another important usage of this kind of code delivery mechanism lies in the fact that the

same code can be used to provide multiple functionalities depending on the requirements of the

client. This is because a modified version of the code can be provided to the client on one request

which may differ from another request, all while maintaining the same logic and code

underneath. Additionally, since the original .text section of the file that is with the client is of the

same size, there is no patches or updates that need to be made on the client side in order to

execute it giving more room to the programmers to incorporate multi-dimensional functionality to

their projects.

6.5 Discussion

Having mentioned the outcomes of all the above experiments, it is essential to point the

downsides to such a method. The biggest downside is the fact that even though a static
disassembly is not possible, a memory snapshot can be taken, and this can be analysed or

recorded to promote software piracy thereby completely rendering the code delivery mechanism
in place useless. The other downside that lies in the project is that, if the executable cannot load at

the address 0x401000, it will quit as the .reloc section along with the relocation values for each
section is completely nulled out. Both downsides make the project seem extremely inefficient but

one of them can be tackled easily. However, the solution to both of them are discussed in the next
section.

7 Conclusion and Future Work

The research done here provides an invaluable way to deliver executable code to the client

with its own share of advantages and disadvantages. However, in general the advantages
outweigh the disadvantages making it an efficient solution. The methods applied in the

implementation already tackle most of the problems that are present in today’s world in regard to
software piracy. However, some of the downsides mentioned in the Discussion section of the

document might make the entire project seem pointless. This is where additional work is

required. With the plethora of memory based RunPEs that are available, it is not difficult to

replicate a code to perform the relocations as necessary for the PE file and hence this is

considered an easy task.

The actual future work lies in step-by step execution of code so that a memory snapshot
cannot be taken for the process under consideration. The implementation of this has already been

13

done by me up to 99% and is still pending due to a misalignment in the ESI registers in one of the

operations towards the end and adding the same to this adds a totally new perspective towards

secure code delivery and execution and thereby prevents piracy close to cent percent.

References

[1] W. Yan, Z. Zhang, and N. Ansari, “Revealing Packed Malware,” IEEE Secur. Privacy

Mag., vol. 6, no. 5, pp. 65–69, Sep. 2008, doi: 10.1109/MSP.2008.126.
[2] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK: Deep Packer

Inspection: A Longitudinal Study of the Complexity of Run-Time Packers,” in 2015 IEEE
Symposium on Security and Privacy, San Jose, CA, May 2015, pp. 659–673, doi:
10.1109/SP.2015.46.

[3] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “PolyUnpack: Automating the
Hidden-Code Extraction of Unpack-Executing Malware,” in 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06), Miami Beach, FL, Dec. 2006, pp. 289–
300, doi: 10.1109/ACSAC.2006.38.

[4] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: a hidden code extractor for packed
executables,” in Proceedings of the 2007 ACM workshop on Recurring malcode - WORM
’07, Alexandria, Virginia, USA, 2007, p. 46, doi: 10.1145/1314389.1314399.

[5] L. Martignoni, M. Christodorescu, and S. Jha, “OmniUnpack: Fast, Generic, and Safe
Unpacking of Malware,” p. 10.

[6] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka: A Framework for
Enabling Static Malware Analysis,” in Computer Security - ESORICS 2008, vol. 5283, S.
Jajodia and J. Lopez, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 481–
500.

[7] J. Calvet, F. L. Lévesque, J. M. Fernandez, E. Traourouder, F. Menet, and J.-Y. Marion,
“WAVEATLAS: SURFING THROUGH THE LANDSCAPE OF CURRENT
MALWARE PACKERS,” p. 7.

[8] C. Lim, Y. Syailendra Kotualubun, Suryadi, and K. Ramli, “Mal-Xtract: Hidden Code
Extraction using Memory Analysis,” J. Phys.: Conf. Ser., vol. 801, p. 012058, Jan. 2017,
doi: 10.1088/1742-6596/801/1/012058.

[9] C. Lim, Suryadi, K. Ramli, and Suhandi, “Mal-XT: Higher accuracy hidden-code
extraction of packed binary executable,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 453, p.
012001, Nov. 2018, doi: 10.1088/1757-899X/453/1/012001.

[10] C. Lim, Suryadi, K. Ramli, and Y. S. Kotualubun, “Mal-Flux: Rendering hidden code of
packed binary executable,” Digital Investigation, vol. 28, pp. 83–95, Mar. 2019, doi:
10.1016/j.diin.2019.01.004.

[11] K. Coogan, S. Debray, T. Kaochar, and G. Townsend, “Automatic Static Unpacking of
Malware Binaries,” in 2009 16th Working Conference on Reverse Engineering, Lille,
France, 2009, pp. 167–176, doi: 10.1109/WCRE.2009.24.

[12] S. Cesare and Y. Xiang, “Classification of Malware Using Structured Control Flow,”
Parallel and Distributed Computing, vol. 107, p. 10, 2010.

[13] M. Bat-Erdene, T. Kim, H. Park, and H. Lee, “Packer Detection for Multi-Layer
Executables Using Entropy Analysis,” Entropy, vol. 19, no. 3, p. 125, Mar. 2017, doi:
10.3390/e19030125.

[14] B. Anckaert, M. Madou, and K. De Bosschere, “A Model for Self-Modifying Code,” in
Information Hiding, vol. 4437, J. L. Camenisch, C. S. Collberg, N. F. Johnson, and P.
Sallee, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 232–248.

