
Modified Blowfish Algorithm to Enhance its
Performance and Security

MSc Internship

Cyber-security

Ashokkumar Kothandan
Student ID: x19138857

School of Computing

National College of Ireland

Supervisor: Ross Spelman

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ashokkumar Kothandan

Student ID: x19138857

Programme: Cyber-security

Year: 2020

Module: MSc Internship

Supervisor: Ross Spelman

Submission Due Date: 17/08/2020

Project Title: Modified Blowfish Algorithm to Enhance its Performance and
Security

Word Count: 6015

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA
the National College of Ireland’s Institutional Repository for consultation.

Signature:

Date: 16th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Modified Blowfish Algorithm to Enhance its
Performance and Security

Ashokkumar Kothandan
x19138857

Abstract

Blowfish Algorithm is a 64-bit symmetric block cipher algorithm with 16 Feistel
iterations constructed in the year 1993, which is still preferred to be one of the best
algorithms. The motive of this paper is to enhance the performance and security
of the Blowfish Algorithm by converting it to a 128-bit block cipher and designing
a new S-Box function to generate 64-bit data from 8-bit input. On evaluating the
performance of the modified block cipher algorithm based on metrics like time taken
and memory allocation. The average time taken for the key expansion, encryption,
and decryption by the modified algorithm was 0.8ms, 0.2ms, 0.2ms, respectively.
The modified algorithm used double the size of the memory allocation required for
the original algorithm.

1 Introduction

The rapid growth of data transmission over the internet, especially industrial data trans-
mission, became a critical issue in the last two decades. Various sectors like finance,
banking, require a secure way of data transmission between two mediums. Tampering
or leakage of data by unauthorized persons commonly called as hackers has increased
to a numerous extent. To overcome these security threats, experts have come up with
many solutions while transmitting data through the internet. Encryption of data before
broadcasting through the ”public” channel is to be one of the best approaches in the
security phase.

According to Katz and Lindell, ”Modern Cryptography is the study of mathemat-
ical techniques for securing digital information, systems, and distributed computations
against adversarial attacks” [1]. Cryptography provides confidentiality (maintaining data
secrecy), integrity (protecting it from any unauthorized person), availability (author-
ized identity or authentication), and non-repudiation (assuring data not being changed
when received) [2]. Encryption algorithm mainly categorized into two categories; the
symmetric-key algorithm uses the same key of fixed length for both encryption and de-
cryption, whereas the asymmetric-key algorithm uses a public key for encrypting and
private key for decrypting data [1]. Apart from these two algorithms, another type of
encryption method is the Hashing algorithm. Hashing the message or data is irrevers-
ible, the original text cannot be retrieved but compared with another hashed data. The
symmetric-key algorithm includes stream ciphers like Vigenère Cipher and block cipher
like AES, DES, Blowfish. Because of the same key used in symmetric-key encryption,
a key distribution takes place before the data transmission happens. Bitcoin uses the

1



same type of asymmetric encryption methodology for the money transaction using public
internet securely.

The blowfish algorithm is a 64-bit symmetric block cipher algorithm with 16 Feistel
rounds designed by Bruce Schneier in 1993.1 Blowfish algorithm is a widely accepted en-
cryption scheme and the most recommended block cipher much faster than DES(Data En-
cryption Standard) and IDEA(International Data Encryption Algorithm). Block Cipher
Algorithm is an unpatented, royalty-free algorithm, having a variable key length of 32-
bits to 448-bits.1 Comparing the other algorithms evaluated by Patil et al.,, Blowfish
Algorithm is superior in security, execution time, and other parameters like avalanche
effect, throughput [3].

Though being the most recommended encryption technique, the blowfish algorithm is
outdated because of the 64bit data encryption. There is a lot of updated encryptions like
AES, DES, Twofish, Threefish algorithm with 128, 192, 256-bit encryption. Another ma-
jor defect of the blowfish algorithm is the weak keys expansion. According to Vaudenay,
differential cryptanalysis on the blowfish algorithm is possible with a piece of information
from the F function or by reducing the number of rounds [4]. The substitution-box have
weakness based on collision. Weak keys can decrease the significance of complexity of the
attackers around eight round when the Function is known [4].

In this paper, author will be addressing on ”How to enhance the performance of the
blowfish cipher by modifying the algorithm without affecting the basic functionality of
the cipher?”. This research work attempts to enhance the performance and security of
the blowfish algorithm by converting the 64-bit block size encryption to 128-bit block size
encryption with the altered S-Box calculation Function by maintaining the original struc-
ture of the algorithm. Finally, there will be an evaluation of the primary and modified
algorithms based on parameters like time and memory consumption.

2 Related Work

Cryptography is art or study of defending the data leakage by encoding or encrypting
the data using mathematical algorithms like block cipher, Vigenere cipher, permutation
cipher, and Stream cipher. The block cipher algorithm operates on blocks of a fixed
length of bits with a constant transformation using a symmetric key [5].

2.1 Blowfish Algorithm

Blowfish is a 16-round Feistel symmetric-key block cipher algorithm with a block size
of 64-bits and the key-length varying from 32 to 448-bits. Block cipher has a complex
initialization phase before the encryption takes place [6]. Key-expansion plays a vital
role in the initialization of the Blowfish Algorithm. The initialization of the Blowfish
algorithm includes instantiation of the Permutation Array(P-Array) and Substitution
Boxes(S-Box) with the key-expansion process. Blowfish uses one P-Array of 18, 32-bit
keys, and 4 S-Boxes of 256 elements. [7] The values of P-Array and S-Box elements
are initialized with the hexadecimal value of pi(0x3.243f6a8885...). For generating the
complete set of key-expansion, a total of 521 iterations is required [6].

1The Blowfish Encryption Algorithm : https://www.schneier.com/academic/blowfish/

2

https://www.schneier.com/academic/blowfish/


The study on the DES and Blowfish Encryption algorithm by Tingyuan and Teng,
both the encryption algorithm has resistance against the differential and linear cryptana-
lysis [8]. the encryption speed of the blowfish algorithm is much higher than DES [8].
Thus the time for the encryption should be taken into consideration when evaluating the
performance of the proposed model. Mousa mentioned that the speed of the encryption
and decryption is affected by file size, but not by changing the key-length [7].

2.2 Modified Blowfish Algorithm

Vaudenay, reported the first analysis on the blowfish cryptanalysis of the key-length
and the Feistel rounds in 1996. Any blowfish encrypted data can be cracked with an
adequate piece of information describing the F function or with a weak key-expansion [4].
Later in 2007, Kara and Manap reported on a new class of weak keys in the blowfish
algorithm, enhancing the previous work of Vaudenay. This report is about the recovery
of the unknown key in 2(k+32-16r)/64 where the pre-computation phase roughly costs r·2k-11

steps [9].

A modified approach to the S-Box permutation in the blowfish algorithm based on
the Fisher-Yates Shuffle(FYS) or Knuth Shuffle(KS) was reported by Corpuz et al., with
modified function F = (S1+S4)Mod 232 XOR (S2+S3)Mod 232. The values of S-Box
are randomized within the 256 elements [10]. This method has proved to provide better
performance than the original algorithm with 72% of the encryption time and 48% of
decryption time for the five different files. Later the same team deployed the encryption
algorithm in the cloud computing platform resulting in the performance of the modified
algorithm with 440% efficiency in encryption and 308% efficiency in decryption [11].

Analyzing the four different cases of the Modified function F of the blowfish algorithm,
Vaibhav and Singh have concluded that all the instances give better performance than
the original and case with function F = (S1+S3)Mod 232 XOR (S2+S4)Mod 232 provides
the best security [12].

Dulla et al., have designed an enhanced blowfish algorithm by reducing the number of
Feistel rounds to 14 and increasing the block size to 128-bits and variable key length [13].
Though the team increased the block size to 128-bits, they used two separate blowfish
algorithm for the encryption. The enhanced algorithm improved the performance with
an average of 11.36% in encryption and 9.8% in decryption [13]. Reducing Feistel rounds
may lead to leakage of data due to the weak key as proposed by Vaudenay.

Ariel Roy Reyes et al., have researched on modifying the blowfish algorithm support-
ing 128 bit Block size called Blowfish-128 [14]. As shown in Figure 1, the block selector
sends each 128-bit for encryption and divided into two equal lengths, 64-bit data. Based
on the sum of the generated numbers, the block is sent to either Crypto-algorithm Pro-
cessor or Inverted Crypto-algorithm Processor. There isn’t any descriptive explanation
on the Crypto-algorithm Processors and its operation.

3



Figure 1: Blowfish-128 [14]

Blowfish algorithm gives better performance for the encryption and decryption when
the execution is based on the parallel computation in the Graphical Processing Unit
GPU instead of the Central Processing Unit CPU [15]. Analysis proves that the speed
of the encryption and decryption after the data is moved from the host memory to GPU
memory is 3 to 7 times higher, but the key expansion happens in the host memory as it
consumes time for the encryption [15].

2.3 Other Enhanced Algorithms

Reviewing the previous researchers work based on the blowfish algorithm and its enhance-
ments provides some information to design the algorithm without losing its property and
standard. Further review will be on the papers that enhanced other similar algorithms.
Kalaiselvi and Anand Kumar have designed two modified AES algorithms, one with the
Genetic Algorithm, another with Neural network in S-Box. In the Genetic Algorithm, en-
hanced cipher uses crossover and mutation operators for encryption and decryption [16].
Dynamic block bit size and multi-state tables can control multi-level keys in the Twofish
algorithm. From the statistical results produced by Muhajer and Monem, the complex-
ity of the modified Twofish algorithm is comparatively higher than the original Twofish
algorithm [17].

There isn’t any analysis of the modified algorithm to prove the strongness and with-
stand against brute-force attacks. Similar to the previous paper [17], Wang and Jiang
reported a design with 3-DES Encryption using the Genetic Algorithm [18]. Genetic Al-
gorithm can be used for generating an optimized key sequence, A block of 192 bits having
three 64-bits block each encrypted with three different key Sequences K1, K2, and K3.

Another paper proposed by Catalini et al., on modifying the Twofish algorithm, to
increase the security and efficiency by introducing an additional block in each round of
encryption. The Additional block required to be simple and well designed based on LFSR,
one such algorithm called ”Snow cipher” has been adopted [19]. To verify the performance
on the security, standardized procedures by NIST were followed. This analysis is achieved
by computing the Normalized Cross-Correlation function with the following equation [19].

where A(x,y) and B(x,y) are luminance functions of the original and ciphered image,
respectively. x and y are spatial coordinates.

4



Twofish-256 is a modified block cipher of 256-bit block encryption. Twofish algorithm
is an advanced version of the Blowfish algorithm with 128-bit of encryption. Lung Su et
al., proposed Twofish-256 with 16 256bit keys instead of 8 keys sequence [20].

2.4 S-Box Enhancement

de Souza and Luiz have researched on compacting the S-Box module for the Twofish
cryptographic algorithm. The compact Feistel function can support the key-size of 128,
192, 256 bits. With the increase in the key-length, the S-Box function expands [21]. The
compact S-Box module is shown in Figure 2, where the switch after the XOR of key
decides for the next operation based on key-length.

Figure 2: S-Box compact module [21]

S-Box plays a vital role in the cryptographic algorithm. The architecture of the S-Box
depends on the algorithm. In the two non-memory based S-Box, the Galois field-based
S-Box was designed by Rijmen to reduce the overall computation cost in AES S-Box [22]
and combinational logic based S-Box using the 16x1 multiplexer or 4x1 multiplexer.

2.5 Performance Analysis

Further, we will discuss the evaluation of performance on different parameters. To eval-
uate the performance of different block cipher, Kubadia et al., have used metrics like
encryption time, decryption time, throughput, and Cipher to Text Ratio [23]. Cipher to
Text Ratio is to determine the extra padded bytes generated by the algorithm.

Similarly, [24], [25] and [26] were also analyzed based on the evaluation of the en-
cryption, decryption speed, power consumption, and memory used. Priyadarshini et al.,
researched the comprehensive evaluation of cryptographic algorithms includes symmetric
and asymmetric ciphers [27]. The evaluation parameters used were Encryption and De-
cryption time - to determine the time taken by both encryption and decryption. Memory
utilized by each algorithm. Avalanche effect- a small change in input makes a significant

5



change in output. To determine the Avalanche effect, we use the Hamming distance(sum
of bit by bit XOR of ascii value) [27]. Entropy is the measure of randomness or uncertainty
in the output. Entropy can be determined by Shannon’s formula [27].

3 Methodology

Further, author will discuss on the methodology to achieve the proposed modified blowfish
algorithm. The previous section helped in learning the design and structure of the blowfish
algorithm. Later, we studied the previously modified blowfish algorithms and other
modified algorithms like AES, DES, Twofish. Some of the papers like [4], [10], [20] helped
in understanding the algorithm and its limitations. Other papers like [14] and [13] didn’t
find much helpful, and the modification in the design changes the basic functionality
of the algorithm. Some of the evaluation methods author reviewed will be used in our
performance analysis. Author used the source code of the blowfish algorithm written in
java by Markus Hahn in Septemeber 2002. The source code is available in the GitHub2

by author Matt Iversen.

Figure 3: High Level Design of Enhanced Blowfish Algorithm

3.1 Initialization & Key Expansion

Although the process of modifying the algorithm is on the encryption and decryption,
there is an initialization phase called the key-expansion. The modified blowfish sym-
metric block cipher algorithm encrypts with each block of 128-bits. Any size of the key

2https://gist.github.com/Ivoz/1342537

6

https://gist.github.com/Ivoz/1342537


as input will be converted into 256-bit by hashing using the SHA-256 algorithm. The
key is encrypted by the SHA-256 encryption algorithm to increase the strength of the
initialization. Initialization of the P-array and S-Box is from the hexadecimal value of
pi(π). P-Array has 18 elements of a 64-bit key set from P1 to P18. Four 64-bit S-Boxes
has 256 entries each. S-Box used here converts the 8-bit data to 64-bit data.

Around 1000 digit of pi value is taken from a website3 and converted to hexadecimal
value using java program. The result is used to initialize the P-Array and S-Boxes.
Consequent 64 bits of the key are XORed with each element of P-array. After 256-bit of
the key, this key cycle is repeatedly used for all the elements in P-array.

3.2 Encryption

After the key-expansion of the algorithm, we will design the encryption phase. The
given data that needs to be encrypted is divided into multiple 128-bit blocks, and a new
Initialization Vector of 128-bit is randomly generated for each data that needs to be
encrypted. Each block of 128-bit data is XORed with the generated Initialization Vector,
and the result is sent to the encryption block.

In the encryption block, the resulted 128-bit block is divided into two 64-bit blocks.
These two 64-bit blocks are sent into the 16 Feistel rounds, and in each round, each
element of P-Array is XORed. Each round has the operation of function F for the S-Box
calculation. All the four S-Boxes are used here to convert the 8-bit file to 64-bit data.
Finally, after all the operation in the encryption block, the two 64-bit encrypted data is
combined to make it into 128-bit data. The result is stored in the initialization vector
variable and XORed with the next 128-bit of data and, the encryption loop continues till
the last. Finally, the last remaining bits are padded with 0 to make it 128-bit value. The
output byte array and Initialization Vector are converted to a hexadecimal string and
returned as ciphertext.

3.3 Decryption

In the decryption phase, from the given cipher data, the first 128-bit data is stored in the
Initialization Vector. The second part of the cipher data is to be converted to the plain
text using the decryption scheme of the blowfish algorithm. Each 128 bit of data from
the second part of the ciphertext is sent to the decryption block.

The decryption block is as same as the encryption block with 16 Feistel rounds. Each
128-bit ciphertext is divided into two 64 bits for the decryption. The reverse operation of
the encryption happens in the 16 rounds. The most significant element in the P-array i.e.,
the 18th element of the p-array is XORed to cipher followed by the previous element from
the array. The same function F used in the encryption scheme is used for the decryption
block, with the S-Box generating the decrypted cipher value for the specified block. The
resulted value is XORed with the Initialization Vector and returned as the decrypted
text. In the decryption scheme, there isn’t a need for padding at the last set of bit, as
the ciphertext will always be a multiple of 128. After the cycle completes the resulted
byte array is converted to the plain text using UNC string conversion.

3http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

7

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html


3.4 Performance Metrics

To determine the performance of the modified blowfish algorithm is better than the ori-
ginal version, we will use some of the parameters used in the previous papers as discussed
in section 2.5. Some of the parametric metrics are

Time: One of the important metrics to be concentrated when analyzing the per-
formance is the time taken for each action by the algorithm. Time taken for the key
Expansion, Encryption, and Decryption are calculated for both the original and modified
algorithm to find the difference with the help of different key sizes and plain text length.

Memory: Another metric, we will be evaluating the performance is based on the
memory consumption of the algorithm in each phase. An average of different input is
taken and determined for both the original and modified algorithms.

4 Design Specification

In this section, we will discuss the architecture and specifications of the algorithm with
the variable declaration.

Key - In the initialization phase, a new object is created based on the specific key
provided by the user with datatype ”string” of any length. The provided key is hashed
to a 256-bit byte array using SHA-256.

P-Array - P-Array consists of 18 elements, each of 64-bit value. We will use the
hexadecimal pi value718BCD5882154AEES to initialize the P-Array. For example, P1
is stored with the first 64-bit of pi(π in hexadecimal) value 243F6A8885A308D3, P2 is
stored with the next 64 bit i.e., 13198A2E03707344. The process continues until the P18
value.

S-Box - Next 64-bit of pi value, after initializing P18, is used for the S-Box1 1st
element. Similarly, All the 256 elements of the S-Box1 is initialized, followed by other
S-Boxes are filled each with 256 elements. Similar to the P-Array all the elements used
are stored in ”Long” data type.

4.1 Modified Function F(n)

The detailed construction of the modified function F() is shown in the Figure 4. Consider
’n’ be the 64-bit block from the encryption or decryption block sent to function. As the
S-Box is designed to convert the 8-bit value to 64-bit value, we divide n into two halves,
namely nL and nR, 32-bit each. Both the nL and nR are divided into four 8-bit values.
Each 8-Bit value is sent to the four S-Boxes, shown in the Figure 4. First 8-bit of nL
and first 8-bit of nR is XORed. Similarly, corresponding nL and nR values are XORed.
Function(F) is given by

S1out = (S1(nL1) XOR S1(nR1))

S2out = (S2(nL2) XOR S2(nR2))

S3out = (S3(nL3) XOR S3(nR3))

S4out = (S4(nL4) XOR S4(nR4))

F(n) = (((S1out + S2out)mod64 XOR S3out) + S4out)mod64

where nL1, nL2, nL3, nL4 are First, Second, Third, Forth 8-bit of nL, respectively.

8



nL1, nL2, nL3, nL4 are First, Second, Third, Forth 8-bit of nL, respectively.

S1(), (S2(), (S3(), (S4() are S-Box1, S-Box2, SBox3, and SBox4, respectively.

Figure 4: Modified Function F

4.2 Encryption

In this section, we will discuss the architecture of the blowfish encryption algorithm as
shown in Figure 5. Given plain text is divided into multiples of 128 bits and sent to the
encryption block.

1. Consider X be the 128-bit data sent to the encryption block. It is divided into
two 64-bit block XL and XR.

2. For : n = 1 to 16
P

′
n = XL XOR Pn

F
′
n = F(P

′
n) where F(x) is the modified function

XL = F
′
n XOR XR

XR = P
′
n

3. After 16th iteration
XL = XL XOR P18

XR = XR XOR P17

4. Both the 64bit output from the encryption block is combined to make a 128-bit
encrypted block of cipher data.

9



Figure 5: Blowfish Encryption

4.3 Decryption

Same as the encryption block, the decryption block has 16 Feistel rounds of encryption.
After the separation of the Initialization Vector, the remaining ciphertext is sent to the
decryption block of 128-bits.

1. Consider X be the 128-bit cipher data sent to the decryption block. It is divided
into two 64-bit block XL and XR.

2. For : n = 1 to 16
P

′

(19−n) = XL XOR P(19−n) —– i.e., starts from P18 till P3

F
′
n = F(P

′

(19−n)) where F(x) is the modified function

XL = F
′
n XOR XR

XR = P
′

(19−n)

3. After 16th iteration
XL = XL XOR P1

XR = XR XOR P2

10



4. Both the 64bit output from the decryption block is combined to make a 128-bit of

plain text.

Figure 6: Blowfish Decryption

5 Implementation

5.1 System Specification

The blowfish algorithm is designed using Java programming language. The system con-
figuration is as follows.

Model : HP Pavilion Sleekbook
Processor : Intel(R) Core(TM) i5-3317U CPU @1.70GHz
Operating System: Windows 10 Home
RAM : 12 GB
Hard Disk : 750GB

11



IntelliJ IDEA version 202.1.4 is used to program the java code for the modified al-
gorithm. This source code is written in a single java class. Further, we will discuss the
important methods and variables used in the implementation of the algorithm.

5.2 Methods and Variables

For storing the 128-bit data, we use BigInteger. BigInteger class provides analogs to
primitive integer operations. BigInteger allows storing any number of bits. We use
methods like byteArrayToBigInteger() and bigIntegerToByteArray() to convert any
of the input to 128-bit integer. For the 64-bit and 32-bit storage, we use Long and Integer
data types, respectively. Also to separate long values from BigInteger we use the methods
longLo64() and longHi64(). Similarly, intLo32() and intHi32() is used to convert
the long value to two integers of 32-bits.

5.3 Input and Output

The public Java class is created with the name ModifiedBlowfish, and the parameterized
constructor uses the key as an argument. To initialize the key we use the following code.

ModifiedBlowfish blowfish = new ModifiedBlowfish("12345");

12345 represent the key sent to the ModifiedBlowfish class as the argument. This
initializes the ModifiedBlowfish class followed by the hashing of key using SHA-256.
MessageDigest4 class is a one-way hashing function provided by oracle as an inbuilt
class. digest.update() method is used to provide the input for hashing using SHA.
digest.digest() method is used to retrieve the 256-bit hashed data.

MessageDigest digest = MessageDigest.getInstance("SHA-256");

Public method encryptString() is implemented for calling the encryption process
with the string that needs to be encrypted as a parameter. For example,

blowfish.encryptString("abcde"); where ’abcde’ is the plain text that
needs to be encrypted. Output for the same string varies everytime we run the code.
This is due to the Initialization Vector randomly generated by the encryption method
for each processing. One of the output returned after encryption for the plain text is
"d5d1046fda09796c4c88d5b4eb636efad0b89be737b6c0a3e8ff16ad07627db".

Ciphertext returned has 256-bit of data, where the first 128-bit i.e, the first 32 char-
acters "d5d1046fda09796c4c88d5b4eb636efa" represents the Initialization Vector. Fol-

lowing 128-bit "d0b89be737b6c0a3e8ff16ad07627dbb" is the ciphertext encrypted by
using the blowfish algorithm for the plain text ”abcde”.

Similarly, public method decryptString() is implemented for the decryption process
with the input as ciphertext. Ciphertext length is in multiples of 128-bits. The first 128-
bit refers to the Initialization Vector, and the following text is the encrypted ciphertext.

Public void method destroy() is called to destroy or delete all the initialized factors
like P-Array, S-Boxes, and Initialization Vector to zero. After the cleanup, both encryp-
tion and decryption dependencies are ignored, and a new object has to be created for
using the blocks.

4https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html

12



6 Evaluation

In this section, to measure the performance of both the original and modified blowfish
algorithm, we use the parameters like Time, Memory. In java code to find the time taken
for the operation of each method, we use the inbuilt method System.nanoTime(). The
difference in time before and after the execution is the actual time taken to process.

To determine the used memory of each operation, we use the inbuilt Class called
Runtime. Some of the necessary methods in Runtime class are gc(), used to clear
the garbage collector data, totalMemory() returns the total memory of the system.
freeMemory() gives the available memory in the system. Hence the difference is used to
determine the memory used by the code to run.

6.1 Case Study 1: Time Taken for Key Expansion

To evaluate the performance based on the time taken for the key expansion, we de-
termine the time taken for the initialization of the array. As already mentioned, code
ModifiedBlowfish blowfish = new ModifiedBlowfish("key"); is used to initialize
the key. We evaluate both the original algorithm and the modified algorithm. The
determined time difference is measured in nanoseconds(10−9).

As shown in Table 1, the time taken for the modified algorithm is almost 8 to 10
times higher than the original algorithm, and the increase in the key length doesn’t affect
the time taken by the algorithm. This is because we hash any key given by the user
to 256-bits. Time taken for the key expansion by the modified Algorithm is higher but
unnoticeable. The average time taken for the initialization of the blowfish algorithm is
0.8ms(milliseconds).

Time Taken

Key Modified Original

Length Algorithm(ns) Algoirthm(ns)

0 1418209 152669

50 1084229 135512

100 1080227 117010

150 777279 91120

200 723287 105119

250 776783 93467

300 756137 108748

350 663487 87503

400 644478 89595

450 641505 97339

500 677470 140607

Table 1: Time Taken for Key Expansion

13



6.2 Case Study 2: Time Taken for Encryption and Decryption

Similarly, on evaluating the time taken for the encryption and decryption, based on
different lengths of plaintext, the original blowfish algorithm is 8 to 10 times faster than
the time taken by the modified blowfish algorithm. All the time description is calculated
in nanoseconds(10−9). The average time taken for the encryption and decryption phase
is 0.2ms(milliseconds).

Encryption Decryption

Plain Original Modified Original Modified

text Algorithm(ns) Algoirthm(ns) Algorithm(ns) Algoirthm(ns)

0 35529 304808 14752 161311

50 20107 229966 24457 182158

100 17349 240570 22051 223074

150 28817 229415 28394 136424

200 13980 144714 44872 170814

250 39887 208551 34822 198007

300 28207 183551 31729 225145

350 30643 216414 70739 256715

400 26708 249431 214371 299852

450 37625 264102 131048 370908

500 45696 315707 69922 381983

Table 2: Time Taken for Encryption and Decryption

6.3 Case Study 3: Memory Allocation

The memory used in the blowfish algorithm is calculated using Runtime class in java. As
shown in Table 3, the memory allocation is only for the key Expansion and encryption, but
not for decryption. On comparing the memory usage by original and modified algorithm,
the modified blowfish algorithm consumes two times the memory required for the original
version.

Memory Original Modified

Allocated Algorithm(kb) Algoirthm(kb)

Key Expansion 495.92 974.12

Encryption 84.04 185.64

Decryption 0 0

Table 3: Memory Allocation

14



6.4 Discussion

Using metrics like the time consumption and memory utilized by the algorithm in each
phase, we can conclude that the original blowfish algorithm is faster and less memory
consuming. The modified algorithm uses double the memory size of the original al-
gorithm. In terms of encryption quality and security perspective, the modified algorithm
is comparatively powerful as the encryption uses a 128-bit Initialization vector and 64-bit
P-array and S-Box elements.

Although the time taken for the encryption and decryption is 8 to 10 times the
original algorithm, it maintains the same speed throughout all the sizes of data. When
the encryption or decryption time is high, brute force attacks can be controlled. The delay
in the encryption or decryption speed is unnoticeable by a human. Thus the modified
encryption is considered to be performing better than the older version.

One of the disadvantages is the memory usage of the modified blowfish algorithm.
The memory capacity is two to three times higher than the original blowfish algorithm.
Modified Algorithm may require excess memory than the prior.

7 Conclusion and Future Work

Thus the enhancement of performance and security of the blowfish algorithm by modifying
the block size of the cipher from 64-bit to 128-bit is successfully implemented and evalu-
ated. In terms of evaluation, though the memory consumption of the modified algorithm
is large, the security perspective is handled perfectly to overcome the disadvantages of
the weak key expansion.

The design of the S-Box generating 8-bit to 64-bit block is simple and other different
methods are not evaluated. An evaluation of different S-Box design can be done to
generate 16-bit to 64-bit, which is quite difficult. This is because the memory usage will
be exponential on using such S-Box. An optimized S-Box can be designed for future
work. I have used BigInteger to convert store the 128-bit data, which also increases the
memory when initialized each time. This can be optimized by replacing the BigInteger
with a user-defined 128-bit data type.

References

[1] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed. A Chapman
& Hall Book, 2014.

[2] E. Conrad, S. Misenar, and J. Feldman, CISSP Study Guide, Chapter 4 - Domain
3: Security Engineering (Engineering and Management of Security), 3rd ed., 2015.

[3] P. Patil, P. Narayankar, D. G. Narayan, and S. M. Meena, “A comprehensive eval-
uation of cryptographic algorithms: Des, 3des, aes, rsa and blowfish,” International
Conference on Information Security & Privacy (ICISP2015), vol. 78, pp. 617–624,
2016.

[4] S. Vaudenay, “On the weak keys of blowfish,” Ecole Normale Superieure, 1995.

15



[5] C. Tana, X. Dengb, and L. Zhang, “Identification of block ciphers under cbc mode,”
8th International Congress of Information and Communication Technology (ICICT),
2018.

[6] S. K. Chinta, “Blowfish,” 2015.

[7] A. Mousa, “Data encryption performance based on blowfish,” pp. 131–134, 2005.

[8] T. Nie and T. Zhang, “A study of des and blowfish encryption algorithm,” TENCON
2009 - IEEE Region 10 Conference, Singapore, pp. 1–4, 2009.

[9] O. Kara and C. Manap, “A new class of weak keys for blowfish,” Fast Software
Encryption. FSE 2007. Lecture Notes in Computer Science, vol. 4593, pp. 1–4, 2007.

[10] R. Corpuz, B. Gerardo, and R. Medina, “A modified approach of blowfish algorithm
based on s-box permutation using shuffle algorithm,” 2018, pp. 140–145.

[11] R. Corpuz, R. Medina, and B. Gerardo, “Using a modified approach of blowfish
algorithm for data security in cloud computing,” pp. 157–162, 2018.

[12] V. Poonia and D. N. S. Yadav, “Analysis of modified blowfish algorithm in different
cases with various parameters,” pp. 1–5, 2015.

[13] G. L. Dulla, B. D. Gerardo, and R. P. Medina, “An enhanced blowfish (ebf) algorithm
for securing x64filemessage content,” pp. 1–6, 2018.

[14] A. R. Reyes, E. Festijo, and R. Medina, “Blowfish-128: A modified blowfish al-
gorithm that supports 128-bit block size,” 06 2018.

[15] T. Mahajan and S. Masih, “Enhancing blowfish file encryption algorithm through
parallel computing on gpu,” in 2015 International Conference on Computer, Com-
munication and Control (IC4), 2015, pp. 1–4.

[16] K. Kalaiselvi and A. Kumar, “Enhanced aes cryptosystem by using genetic algorithm
and neural network in s-box,” in 2016 IEEE International Conference on Current
Trends in Advanced Computing (ICCTAC), 2016, pp. 1–6.

[17] S. M. Kareem and A. M. S. Rahma, “A novel approach for the development
of the twofish algorithm based on multi-level key space,” Journal of Information
Security and Applications, vol. 50, p. 102410, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214212619304119

[18] L. Wang and G. Jiang, “The design of 3-des encryption system using optimizing
keys,” in 2019 China-Qatar International Workshop on Artificial Intelligence and
Applications to Intelligent Manufacturing (AIAIM), 2019, pp. 56–58.

[19] G. Catalini, F. Chiaraluce, L. Ciccarelli, E. Gambi, P. Pierleoni, and M. Reginelli,
“Modified twofish algorithm for increasing security and efficiency in the encryption
of video signals,” in Proceedings 2003 International Conference on Image Processing
(Cat. No.03CH37429), vol. 1, 2003, pp. I–525.

[20] Shun-Lung Su, Lih-Chyau Wuu, and Jhih-Wei Jhang, “A new 256-bits block cipher
- twofish256,” in 2007 International Conference on Computer Engineering Systems,
2007, pp. 166–171.

16

http://www.sciencedirect.com/science/article/pii/S2214212619304119


[21] O. de Souza Martins Gomes and R. L. Moreno, “A compact s-box module for
128/192/256-bit symmetric cryptography hardware,” in 2016 9th International Con-
ference on Developments in eSystems Engineering (DeSE), 2016, pp. 94–97.

[22] K. B. Anuroop, A. James, and M. Neema, “Hardware software codesign for a hybrid
substitution box,” in 2017 30th International Conference on VLSI Design and 2017
16th International Conference on Embedded Systems (VLSID), 2017, pp. 423–428.

[23] A. Kubadia, D. Idnani, and Y. Jain, “Performance evaluation of aes, arc2, blowfish,
cast and des3 for standalone systems : Symmetric keying algorithms,” in 2019 3rd In-
ternational Conference on Computing Methodologies and Communication (ICCMC),
2019, pp. 118–123.

[24] T. Nie, C. Song, and X. Zhi, “Performance evaluation of des and blowfish al-
gorithms,” in 2010 International Conference on Biomedical Engineering and Com-
puter Science, 2010, pp. 1–4.

[25] M. Panda, “Performance analysis of encryption algorithms for security,” in 2016 In-
ternational Conference on Signal Processing, Communication, Power and Embedded
System (SCOPES), 2016, pp. 278–284.

[26] M. Iavich, S. Gnatyuk, E. Jintcharadze, Y. Polishchuk, A. Fesenko, and A. Abisheva,
“Comparison and hybrid implementation of blowfish, twofish and rsa cryptosys-
tems,” in 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engin-
eering (UKRCON), 2019, pp. 970–974.

[27] P. Patil, P. Narayankar, D. Narayan, and M. S M, “A comprehensive evaluation
of cryptographic algorithms: Des, 3des, aes, rsa and blowfish,” Procedia Computer
Science, vol. 78, pp. 617–624, 12 2016.

17


	Introduction
	Related Work
	Blowfish Algorithm
	Modified Blowfish Algorithm
	Other Enhanced Algorithms
	S-Box Enhancement
	Performance Analysis

	Methodology
	Initialization & Key Expansion
	Encryption
	Decryption
	Performance Metrics

	Design Specification
	Modified Function F(n)
	Encryption
	Decryption

	Implementation
	System Specification
	Methods and Variables
	Input and Output

	Evaluation
	Case Study 1: Time Taken for Key Expansion
	Case Study 2: Time Taken for Encryption and Decryption
	Case Study 3: Memory Allocation
	Discussion

	Conclusion and Future Work

