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Protecting the integrity of android applications by 
employing automated self-introspection methods 

Swapnil Jadhav  

18212344  
 

 

Abstract 

The Android ecosystem gained a huge popularity and market share owing to wider 

compatibility and its open-source nature. But it also suffers from circulation of 

counterfeit applications resulting from repackaging attacks. Such attacks are aided by 

easy reverse engineering and the application’s poor self-defence mechanisms. It results 

in an adversary being able to modify the application to introduce additional 

functionalities like embedding a spyware, malware, ransomwares and other malicious 

codes. To defend against the repackaging attacks the android applications are protected 

with various obfuscation, anti-debugging, anti-reversing and anti-tampering schemes. 

However, the protection mechanism solely lies at the client side and are susceptible to 

the reverse engineering thereby rendering them ineffective. This paper proposes a new 

mechanism to detect the tampered apps and prevent it from communicating with the 

application server. The mechanism aims at separating the client-side tamper-detection 

logic from the main application and placing it in the android’s system partition. The 

other part of verification logic will reside at the application server and co-ordinate with 

the client-side’s logic via a cryptographic token. The proposed mechanism first detects 

the tampered application and later cuts off its communication with the application server 

thereby rendering it non-operational.  

 

 

1 Introduction 
 

Android-based smartphones have become an integral part of our daily lives. The Android 

offers a platform for developing a wide range of applications to be used in various sectors 

like health, finance, banking, education, gaming, etc. These applications are the most-likely 

vulnerable assets for any organisation from a security perspective since they open-up a 

doorway into the organisation’s infrastructure. Hence it is pre-emptive that these applications 

run in an un-modified way in order to provide the intended functionalities. Results of the 

tampering may include intellectual property theft, data-loss, business and financial loss, 

reputational damage, etc. As per the OWASP Mobile Security Project1 application code 

tampering has been among the top 10 threats for mobile security for an organisation. 

 

The android applications can be broken down and analysed up to a granular level with 

techniques such as run-time modifications, reverse-engineering, re-patching, etc. Various 

Dynamic Binary Instrumentation (DBI) tools such as FRIDA, Intel’s Pin, Xposed 

Framework, etc. allow modifying the application’s binary instructions to be modified during 

runtime. For these tools to work either the underlying platform must be operated with 

 
 
1 https://owasp.org/www-project-mobile-top-10/ 

 

https://owasp.org/www-project-mobile-top-10/
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elevated privileges or the tools must be bundled with the targeted application. FRIDA2 in 

non-rooted mode works by using its FRIDA-gadget which is to be patched alongside the 

target application. Once the application is launched the FRIDA-gadget library is loaded in the 

process memory and builds a two-way communication path with the FRIDA-agent already-

running on another device. 

 

This report’s scope is limited to defend against the code-tampering attempts on a non-rooted 

android device. Various android application anti-tamper mechanisms exist which slow down 

an adversary in their tracks. Popular protection measures include –  

1) Calculation of CRC checksum over the “classes.dex” file and matching it with the 

stored values either on client or server side. 

2) Obfuscating the application logic. 

3) Encrypting the main application logic and then decrypting it at runtime.  

4) Running tests that pre-check the underlying platform conditions before launching the 

main application. 

All these methods suffer from a common single point of failure which is the placement of the 

verification logic alongside the main application. Before installing an application, the 

integrity checker code can be removed then, the application can be re-patched and resigned. 

After this, the now modified application will be treated as a third-party app by an android 

device. This new app can be installed on an android device since installation of third-party 

apps is allowed by android. And thus, counterfeit copies of the original application can be 

distributed amongst the non-suspecting users. Hence, it is necessary that the sensitive 

additional code must run outside the reach of a regular user.  

 

In android certain apps that are pre-installed cannot be removed by a regular user. This is 

because these apps are marked as ‘system’ and the android O.S prevents these from being 

removed. So, can this feature of the android O.S be leveraged to protect the application’s 

integrity? Hence, the objective of this report is to research the possibility of placing the 

integrity checker code in an environment that’s part of the core system which can assess the 

integrity of the user application code. By doing so, any unauthorised modifications to the user 

app can be detected and the counterfeit app can be rendered unusable. 

 

This research will help developers to build robust app protection mechanisms. It will ensure 

that only the approved builds releases would be allowed to run on an end user’s non-rooted 

android device. The report is divided into sections as follows – 1) Introduction – Introduce 

the topic and briefly outline the various anti-tamper mechanisms in use. 2) Related Work – A 

brief discussion of the research work done by numerous researchers for protecting android 

applications. 3) Research Methodology – The research procedure and evaluation strategy. 4) 

Design Specification – The technical aspects of the solution covering the platform, tools, 

frameworks and other requirements. 5) Implementation – Description of the solution and the 

results produced. 6) Evaluation – Comprehensive analysis of the tests performed 7) 

Conclusion and Future Work – Research conclusion and possible future enhancements. 
 

 
2 https://frida.re/docs/modes/ 

https://frida.re/docs/modes/
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2 Related Work 
 

This section showcases the prior research done by notable authors for protecting android 

app’s integrity. An overview and comparison of numerous mechanisms have been discussed 

like dynamic code loading, stub-DEX, dynamic code injection, APK-overwrite, custom 

frameworks for APK integrity verification. It concludes with the emphasis of using the 

system partition of the android platform for providing reliable placeholder for the additional 

code. 

2.1 In-app anti-tamper measures 

 

This subsection discusses various tamper detection techniques that are included as a part of 

the main application logic. Also, the shortcomings of using them have been discussed in 

brief. 

 

To protect an application from malicious attacks anti-reversing techniques are deployed. A 

research by Kundu Deepti [1] lists various methods such as inserting dead or irrelevant code, 

extended loop conditions and adding redundant operands. These techniques are just to add 

complexity to the application code during reversing but are immune to an experienced 

reverse engineer. Instead code obfuscation can be used to change the visual layout of the 

application code. Code Obfuscation is done to mask the original code so that an adversary is 

confused during reverse engineering of the application logic. Code obfuscators convert the 

application packages’ original identifiers, classes and methods into an obscure representation. 

This slows down the application tampering attempts as it makes no literal sense of the 

application code upon reversing. These tools automatically locate and remove dead code too. 

DexGuard3, Proguard4, DexProtector5, etc. are among the well-known Obfuscator tools used. 

A research on android code obfuscation was performed by Patrick Shulz [2] wherein various 

methods such as identifier mangling, string obfuscation, dynamic code loading and self-

modifying code were discussed. As intended, only the visual representation of the reversed 

code was altered whereas the application control flow was unchanged. Hence, this basic 

technique doesn’t provide much value to secure the application code. Sudipta Ghosh et al. [3] 

took this a step further and proposed an algorithm that increased the complexity of the 

application’s workflow. The algorithm and the basic obfuscation technique now not only 

change the visual appearance of the code but also complicates the logic. But this can be 

bypassed with the help of tools such as DeGuard6, java-de-obfuscator7 and with some 

experience in reverse engineering. Another research by Yan Wang et al. [4] describes the 

techniques to identify the obfuscators used on an android application. Benjamin et al. [5] in 

their research work have shown the process to repackage an Android application package 

 
 
3 https://www.guardsquare.com/en/products/dexguard 
4 https://github.com/Guardsquare/proguard 
5 https://dexprotector.com 
6 http://apk-deguard.com/ 
7 https://github.com/java-deobfuscator/deobfuscator 
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(APK) and removing the application’s security logic. The de-obfuscated application code can 

now be re-packaged with FRIDA gadget to modify the application’s runtime behaviour. In 

order to build upon the shortcomings of the previous technique other measures such as anti-

debug and CRC checks were introduced and they are discussed as below. 

 

Applications can be debugged at run-time to inspect the internal operations such as return 

values of critical methods and modify them. A research by Michael N. et al. [6] describes 

various methods to prevent reverse engineering by presenting techniques that attack the 

debuggers. A mechanism against debugging was proposed by Junfeng Xu et al. [7] wherein 

the debug state and environment can be pre-checked to protect the apps against dynamic 

debugging. The detection for ‘Debug State’ involves checking the usage of various debuggers 

such as GDB8, IDA9, ‘strace10’ by enquiring the parent process or using the Linux’s inbuilt 

utility ‘ptrace’ to read the process status. ‘Debug Environment’ detection involves checking 

for any attributes that are specific to emulators. However, the techniques presented by 

Michael N. et al. [6] and Junfeng Xu et al. [7] can be bypassed as the ‘debugger’ feature can 

be enabled explicitly under the Android’s developer options as highlighted by numerous 

security researchers in the Open Web Application Security Project’s (OWASP) Mobile 

Security Testing Guide11 (MSTG). Also, a research by A. Vasudevan [8] provides a 

technique that allows an application tester to set virtually unlimited breakpoints that cannot 

be detected. They used the concept of ‘Stealth Breakpoints’ which combines the simple 

stealth methods using hardware single-stepping and virtual memory mechanisms. Having 

enabled the feature, the app can now be launched in a debugged state and then the anti-debug 

mechanism can be safely disabled. In addition, the anti-debug mechanism can also be 

bypassed by re-packaging the app with the FRIDA gadget and making runtime modifications. 

 

According to the OWASP’s MSTG a CRC check also known as an APK integrity check over 

some files provides a basic anti-tamper mechanism. This technique can be circumvented by 

using the FRIDA gadget as the main application is executed alongside the CRC checks. The 

gadget enables an adversary to skip the CRC checks. To separate the check logic from the 

main app researcher Kyeonghwan Lim et al. [9] proposed a STUB-DEX method. In this 

method an initial pre-run environment check is performed by the application loader i.e the 

STUB and then if passed, the main app’s DEX (Dalvik Executable) can be loaded in the 

memory. This approach prevents the main application logic from being executed unless the 

environment checks are fulfilled. However, this STUB-DEX is shipped with the application 

DEX to the client-side in an unencrypted format and this risks a malicious unauthorized 

tampering. Byungha Choi et al. [10] addressed this previous limitation in their research work 

and proposed an improved technique in which the application’s DEX is decrypted at runtime 

and deleting this DEX after usage. But this technique too can be bypassed as the STUB-DEX 

can be modified to drop the pre-run checks by reversing the app’s APK and not delete the 

 
 
8 https://www.gnu.org/software/gdb/download/ 
9 https://www.hex-rays.com/products/ida/support/download_freeware/ 
10 https://strace.io/ 
11 https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide 

https://www.hex-rays.com/products/ida/support/download_freeware/
https://strace.io/
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decrypted main app DEX, as per the method introduced by Benjamin et al. [5] The STUB can 

be modified at runtime too by repacking the APK with the FRIDA gadget. 

 

Hence, as seen from the above approaches these in-app anti-tamper mechanisms are built as a 

part of the main application. This shortcoming makes it easy to bypass them as the APK can 

be reversed to remove the mechanisms, repacked and re-signed to produce a version that has 

no defence mechanisms. APKs can be re-packed which is shown in the research work by 

Benjamin et al. [5] as mentioned earlier. Thus, the verification logic must reside outside the 

main application which will make it difficult to be accessible for any tampering attempts.  

In the upcoming subsection tamper detection measures, which reside outside the main 

application APK are discussed. 

2.2 Out of app anti-tamper measures 
 
This subsection discusses various anti-tamper detection techniques which are in the form of 

an ad-hoc code which resides either at server or client-end. It further briefs on the 

shortcomings of each technique and emphasises on the need of a tightly coupled out of app 

anti-tamper measure. 

 

In the previous subsection we saw how the client side APK based obfuscation tends to stall 

the reversing of the application and limitation of this technique. Yuxue Piao et al. [11] in 

their research proposed a server-based obfuscation module along with a client-side minimal 

obfuscated routine. Upon invocation the client app requests the server to send the encrypted 

and obfuscated main routine. The server sends in the requested routine along with the secret 

key to decrypt it. The client decrypts the received blob and executes the anti-tamper checks 

first, if successful then the main application logic is executed. This technique falls under 

‘code offloading’ category wherein the application code resides on the server and is delivered 

to client at runtime. A research by Marco V. et al. [12] compared and analysed the pros and 

cons of code offloading. Certainly, in case of low bandwidth and high latency network 

connections code offloading cannot be used. Hence the defence mechanism itself will affect 

the application’s usability. This method addresses the client-side application reversing but 

fails to check the integrity of the client-side routine that makes the initial request. This makes 

it possible to tamper the client-side routine by re-packaging the application as per research by 

Benjamin et al. [5]. The FRIDA gadget can be included in the re-packaging process and the 

application’s functionalities can be modified at run-time. A similar exploitation was carried 

out by researchers Taehun Kim et al. [13] where they highlighted the inherit weakness of the 

APK based anti-tamper mechanisms and emphasized the need of a secure approach which is 

platform based.  

 

Researchers Haehyun Cho et al. [14] proposed a dynamic code injection technique which will 

serve as a defence against application repackaging. They moved the tamper detection logic 

on the server side and injected it at client side where two other modules called the precursor 

and attestor will operate on it. The main application’s code instruction sequence and 

signature stays on the server. Upon executing the client-side module, the precursor connects 
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to the server and sends the application’s information to the server. The server replies with the 

saved instruction sequence and the application signature. The attestor module on client-side 

will now match the received information with the one stored on the user device. The attestor 

will terminate the application execution if the comparison fails. The server-end logic isn’t 

verifying the state of the precursor or attestor, hence both of these can be tampered. Also, this 

manoeuvre introduces a performance overhead as the attestor module is not coded in native 

language on android. This issue was addressed by Lina Song et al. [15] in their research work 

where they introduced an inter-locking dynamic dispatching guard net of time diversity. This 

net-like structure is generated from a defence static net which invokes the more efficient 

C/C++ codes. It too uses a client-server code attestation framework. However, like the 

previous solution by Haehyun Cho et al. [14] this technique too can be bypassed as no client-

side integrity checks are present which will verify the state of the attestation logic and 

FRIDA gadget can be used for re-packaging the application and modifying its runtime 

behaviour.  

 

A tamper detection scheme proposed by Jiwoong Bang et al. [16] segregated the signatures 

within an android application. Their custom framework known as the ‘APK attester’ acquires 

the developer’s public key from the application’s APK and sends it to the server for 

verification. The server then compares the received key with the one it has stored earlier. 

Successful operation will allow the application to execute, failure will terminate it otherwise. 

However, this technique has two flaws – one, that the application’s digest value is not 

checked for integrity, - second, there is no provision for a backup plan in case the application 

fails to send the developer’s public key. Hence, as mentioned before the application can be 

tampered to not send the developer’s key to the server and will continue to function normally. 

A framework known as Stochas-tic Stealthy Network (SSN) was introduced by Lannan Luo 

et al. [17] in their research work which provides a repackage-proofing solution. The SSN 

operates by injecting the target application with multiple obfuscated detection nodes. These 

nodes will verify the integrity of the application by acquiring the secret key embedded and 

the application signature, then comparing it with the ones stored on the server. App 

terminates if the values differ. For this method to work it is essential that the end user should 

have this framework installed on their device, this may not be feasible for every user out in 

the market. Hence, for the users who don’t have this framework on their devices the target 

application is left unprotected.  

 

Hence, the tamper detection schemes built in the application are not enough to securely verify 

the integrity of the application. To overcome the shortcomings of these in-app integrity 

verification mechanisms numerous out of band techniques were designed that took the 

verification logic outside the main application. Although these methods did introduce some 

complexity in the design and made it difficult for an adversary to reverse the application, they 

had their own shortcomings. As long as an adversary has access to the verification logic, they 

can tamper the application to bypass the integrity checks. Also, just relying on the client-side 

application logic to do integrity checks is insufficient. Both the server and the client have to 

be involved in the tamper detection procedure. The android’s ‘system’ partition can be used 

to park the application verification logic. This area of android is not accessible to the end user 
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in a non-rooted mode and can hence stays protected from the adversary’s reach. Also, since 

it’s a system app it can be pushed as a part of the android’s OTA update after collaborating 

with the Original Equipment Manufacturer (OEM).   

 

3 Research Methodology 
 

As discussed in the previous sections the anti-tamper mechanisms that are built in the android 

application are not guaranteed enough to provide satisfactory outcomes. Also, the 

mechanisms that shift the tamper detection logic outside the application APK too have their 

own shortcomings. This is owing to the failure to verify the integrity of the client-side 

module running on the end user device. As a result, an application can be re-packaged with 

additional code or modified code and re-installed on a device thereby bypassing all the anti-

tamper checks. This calls for placing the verification logic in such a location from where it 

can fulfil its function without having to worry about the tampering attempts. 

 

The ’/system’ partition in an Android ecosystem is an area which holds the main operating 

system. It also includes the pre-installed applications like clock, gallery, calendar, etc. and 

other OEM applications. The system partition is a read-only partition and cannot be modified 

when the android is running. To modify it one must have a super user privileges otherwise 

known as ‘root’ and then remount it. Hence our verification logic can be hosted in this 

partition as a ‘system app’. We cannot tamper any application that’s available in the market 

as it would trigger legal proceedings as no prior approval from the application’s rightful 

owner. Hence, for this project we will develop a very basic 2-tier android application in Java 

using Android Studio. Then we will try to tamper this user application using various 

techniques and evaluate if our solution is successfully in detecting the application integrity 

breach and take necessary actions. For this research work the solution would be deployed 

locally and an android emulator would be used to run the user and system apps.  

 

The solution will be evaluated against the metric – Accuracy, i.e. how accurately can the 

verification logic detect the tampering attempts and prevents any use of the modified app. 

This solution uses two applications – 1) a user application which will have the business logic 

2) System app that will contain one part of the verification logic that will verify the integrity 

of the user app. The other part of the verification logic will reside on the back-end application 

server.  

 

The methodology followed for this research comprises of placing the verification logic as a 

system application, then extraction of the user application signature and its secure 

transmission to the application server. The user application will receive a token from the 

server if it passes the integrity checks. The steps that will be followed in the research work 

are outlined as below- 

 

1) The user app upon invocation will communicate with the system app via process and 

runtime Application Programming interfaces (API)s. 
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2) The system app will calculate an MD5 signature of the user app and sign it with a 

certificate with the jarsigner 12tool. 

3) The signing certificate will have the developers public key and the signed signature 

blob would be sent over a TLS backed secure channel to the backend application 

server. It is to be noted that the backend application server’s public certificate would 

be used for certificate pinning in both the system and user applications.  

4) The backend application server will now decrypt the received signature blob with the 

corresponding developer’s private key. Then it will compare the signature with the 

one stored in its database. 

5) If both the signatures values match then the server will issue a short-lived 

cryptographic token, AES-256 encrypt it with the server’s private key. This token is 

sent back to the system app. The token is generated using a secure random number 

generator algorithm, stored in the database 

6) The system app will verify the token’s authenticity by AES-256 decrypting it with the 

server’s public key. If verified, then the token will be passed on to the user app. 

7) The user app will now include this token with its every network request to the 

backend application server. The server will verify the token with the stored ones 

before serving the user app’s request. 

8) Since this token is short lived the token will expire after sometime and the user app 

will keep requesting the new token at certain intervals throughout the application’s 

session. 

9) Absence of this token in the user application’s request will generate a missing token 

error. The user app will once again request the system app to initiate the token 

generation process. 

10) If the signature comparison fails on the server side then no token will be issued to the 

user app. And since the user app does not have the token the server won’t serve the 

resources requested by the user app. 

11) The signature comparison failure will indicate that the client-side user application is 

compromised or tampered and no resources will be served unless the correct signature 

value is passed to the server. 

12) As mentioned before the system application will reside in the ‘/system’ partition its 

code is inaccessible to the end user. 

 

As compared to the research work by other authors mentioned in the ‘related work’ section 

this solution will accurately detect the tampered user app. Hence, tampering or using the 

counterfeit application will render it useless thus preventing its misuse. This solution ensures 

that the backend application server servers the requested resources for the user app only if it 

received the correct server issued token. The next section describes the design specification 

for the thesis implementation. 

 

 

 
 
12 https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html 

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html
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4 Design Specification 
 

Application development is carried out using Android Studio13 Integrated Development 

Environment (IDE) for both the user and system app. The required software development kit 

(SDK) is installed by the Android Studio itself. The Java Development Kit14 (JDK) path on 

the local system must be supplied to the Android Studio. The IDE is installed on Windows 10 

Pro base operating system. 

 

The user and system applications are developed in Java. Android Emulator is pre-installed in 

the Android Studio and an android virtual device (avd) is created from the same. The avd is 

used for deploying the system and user app. The server-side logic is developed in python 

along with the supporting flask framework. The server-side application logic is hosted on 

Pythonanywhere.com with MySQL database. 

 

The User app is installed in the user partition ‘/data/app’. The system app is installed in 

‘/system’ partition. The server comprises logic for the token verification, token generation, 

signature verification, database for app signatures and the business. The architecture diagram 

of the solution is presented in Figure 1.  

 

 
      Figure 1: Architecture block diagram of the solution      

 
 
13 https://developer.android.com/studio/index.html 
14 https://www.oracle.com/ie/java/technologies/javase-downloads.html 

https://www.oracle.com/ie/java/technologies/javase-downloads.html
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The bi-directional arrows represent a two-way communication channel. The user app will 

communicate with the system over the android’s system and process APIs. For creating the 

application’s signature, the MD5 algorithm is used. The system app will use MD5 algorithm 

to sign the user application’s signature. The application server’s public certificate will be 

used for certificate pinning in both the user and system apps. The server uses hashlib.md5 

function for comparing the received and stored application signatures. The server uses secure 

random number generator algorithm for generating the tokens. The tokens are short lived and 

must be renewed throughout the application’s user session.  

 

The functionality of the model implemented is as follows –  

 

1) The verification logic is kept separate as a system app in the system partition. 

2) The user app contains the business logic. 

3) When launched, the user app will communicate with the system app. 

4) The system app will generate the user app’s signature and send it to the application 

server. 

5) The application server will compare the received signature with the stored value. 

6) If both of them match then a token would be dispatched to the system app, which in 

turn will pass on this token to the user app. 

7) The user app must include the token in each of its server requests, failure to do so 

would receive a missing token error. 

8) If the signature match fails at the server then no token would be issued and the user 

app cease to execute for that session. 

9) The token generated by the server is short-lived, meaning it has to be renewed by the 

user app for the duration of the application’s user session.  

10) The server always checks the received token for its authenticity and validity before 

serving the user app’s request. 

 

5 Implementation 
 

The final build of the solution was developed using Android Studio IDE. It was implemented 

and tested against various test cases which are mentioned in the next section. The solution 

was tested on two user apps – Userapp1 and Userapp2. Userapp1 is an untampered user 

application whereas Userapp2 is a user application which is tampered using reverse 

engineering. The Userapp1, Userapp2 and the system app were installed on an android virtual 

device created from the android emulator in the Android studio IDE.  

 

The runtime behaviour of the Userapp1, Userapp2 and system app is as follows - 

 

1) Upon launching Userapp1 the system app’s verification logic was triggered and the 

Userapp1’s signature was sent to the backend application server over a secure https 

channel. 

2) The server compared the received signature with the value stored in the database.  
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3) A token was issued to the system app which relayed it over to the Userapp1 

application.  

4) Userapp1 included this token in it’s every request to the application server and was 

able to communicate with the server hassle-free. 

5) The token did expire in between the application’s session but every time a new token 

was issued by the application server to the user app. 

6) The Userapp1’s traffic could not be intercepted using BurpSuite15 as we had 

implemented certificate pinning of the application server on the user app. 

7) Userapp1’s activity was identified as the normal application’s behaviour since it was 

not tampered and was accepted by the application server. 

8) Userapp2 upon invocation communicated with the system app. 

9) The system app generated Userapp2’s signature and sent it to the application server. 

10) The application server compared this received value with the Userapp1’s signature as 

Userapp1 is the production approved genuine application. 

11) The comparison failed as the signatures of both the applications differ. 

12) The application server replied back to the system app about the signature mismatch 

and did not generate the required token. 

13) The system app upon receiving the server’s response terminated the Userapp2. 

14) Userapp2 was modified again to not interact with the system app but connect directly 

to the application server.  

15) Since the application server expects a valid token in every user app’s request, it 

replied back with a missing token error message.  

16) Having no way of obtaining the server’s token without providing valid signature the 

Userapp2 was rendered functionless. 

17) The system app in the system partition was not accessible for reverse engineering on 

the emulator as it required elevated privileges.  

 

The application server uses the python’s hashlib.md5 method for comparing the received user 

application’s signature to the ones stored in its database. Secure random number generator 

algorithm was used to generate the token. The server validated the token (if any) received in 

the user application’s request every time before serving the requested resources. 

 

The entire runtime for both the user and system applications is summarized in a flow diagram 

presented in Figure 2.   

 
 
15 https://portswigger.net/burp/communitydownload 
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Figure 2: Code Flow diagram of the solution 

 

The next section describes the test cases performed and the received / observed output.  

 

6 Evaluation 
 

This section showcases the various test cases performed, the results achieved, comprehensive 

analysis of the methods used, shortcomings of the solution and the possibilities of enhancing 

the solution. 
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6.1 Test Cases Performed and Results 
 

The test cases performed and the outcome have been presented in a tabular format in the 

Table 1. 

    Table 1: Test Cases and Results 
 

No. Test Case Activity Performed Result 

1 Tampered user app with 

additional code. 

The user app was reverse engineered, modified to 

add new code / feature and executed. 

Pass 

2 Tampered user app with 

no connection to the 

system app. 

The user app was reverse engineered, the 

communication with system app was removed 

and executed. 

Pass 

3 Tampered user app with 

Frida Gadget. 

The app was repackaged with the Frida gadget 

and executed. 

Pass 

4  User App traffic 

interception. 

Attempted to intercept the user app’s traffic with 

the server. 

Pass 

5 Token Replay. Tried using the old token for the server requests. Pass 

6 Token less server 

requests. 

User app tried to access the server resources 

without the token. 

Pass 

7 Token Guessing. User app tried to access the server resources by 

guessing the token. 

Pass 

 

8 Modifying the system app. The system app’s verification logic was targeted 

and attempted to modify the system app. 

Pass 

9 Run tampered user app 

without installing system 

app. 

The system app was uninstalled and the tampered 

app was executed.  

Pass 

10 Run original user app 

without installing the 

system app. 

The system app was uninstalled and the 

unmodified user app was executed. 

Pass 

11 Tampered user application 

execution in rooted 

environment. 

The user app was repackaged with Frida gadget 

and executed on a rooted emulator environment. 

Fail 

 

The Pass / Fail outcome in the ‘Results’ Column is described as below – 

Pass – The solution successfully detected the tampered app and terminated communication 

with it for test cases 1,3. 



14 
 

 

- For test case 2, since no system app is present to initiate the token generation process 

the user app did not have the required valid token. Hence, it couldn’t access the 

server’s resources due to absence of a valid token. 

- For test case 4, the app’s traffic couldn’t be intercepted because of the certificate 

pinning in place. Hence the communication channel wasn’t compromised. 

- For test case 5, the application server rejected the replayed token because an expired 

token was used and the user app’s request was denied. 

- For test case 6, the application server didn’t serve the user app’s request since it did 

not have the required valid token. 

- For test case 7, user app’s request contained invalid tokens in an attempt to guess the 

valid token. The application server rejected the tokens and denied the user app’s 

requests. 

- For test case 8, the system app’s logic was tried to tamper but since the /system 

partition is read-only the attempt was unsuccessful.   

- For test case 9, 10 since no system app was present the token request was not initiated 

and the user app’s request had no tokens. Hence, the app server denied these requests. 

Fail – In a rooted environment the application which was tampered with the Frida gadget was 

able to hook into the system app’s process memory and modify the application signature that 

was to be sent to the server. The unmodified application’s signature was passed instead of the 

tampered application’s signature to receive the valid token. 

 

6.2 Discussion 
 

The user application was tampered with many techniques aided by reverse engineering and 

then repackaged. The repackaged user application was executed on both non-rooted and 

rooted emulator environments. Numerous test cases were prepared and tests were carried out. 

The outcomes of each test case are discussed as below. 

 

In the first test case the legitimate user application was reversed and some additional features 

were added. This is an example of malicious actors repackage the legitimate innocuous 

application with malwares, spywares, etc. The goal was to tamper the application and test if 

the solution detected the tampered app. As expected, the solution correctly identified and 

stopped the execution of the tampered application since its signature was different from that 

of the legitimate application. This was not possible in the case of the previous researchers’ 

work as the verification logic was built in the main application which could be removed via 

reverse-engineering. The verification logic in the system app was shielded from tampering 

and hence the solution worked correctly.  

 

In the second test case, the legitimate user application was modified so as to not interact with 

the system application. The modified user application was executed, since there was no 

communication with the system application no signature was sent to the application server. 

Hence, no token was generated for the user application and the requests to the server did not 
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have the required valid token. Hence, the server did not serve the user application’s requests. 

This was not possible in the previous researchers’ work as there was no provision for 

tokenized communication and hence the application server continued to serve requests from 

the tampered application.  

 

In the third test case, the legitimate user application was only repackaged with Frida gadget 

and no code was modified. But still this classifies as a modified application and as a result the 

generated application signature differed from that of the legitimate one. Owing to this 

difference the server didn’t issue a token for the modified application. Again, due to the lack 

of the tokenized communication the previous solutions failed to identify the requests from a 

tampered/modified user application. 

 

In the fourth test case, two versions of the user application were used. The unmodified user 

application was executed first. The aim of this test was to sniff the token from the user app – 

server communication and use it for the requests from the modified app. But due to the 

certificate pinning in place the application traffic could not be intercepted and the token for 

the modified application couldn’t be obtained.  

 

In the fifth test case, the unmodified user application tried to use the old expired token in its 

requests to the server. The server correctly verified the old token usage and generated a token 

expiry error. Hence the user application was unable to access any resource from the server 

unless it passed on a new valid token.  

 

In the sixth test case, the unmodified user tried to communicate to the serve without any 

token. This was done after the application passed the signature check. The application was 

coded to not use the token received from the system application. As its evident, due to 

absence of token in the legitimate user application’s server requests the server refused to 

provide access to its resources. Valid tokens are required by the server even if the requests 

are coming from the legitimate user applications. 

 

In the seventh test case, the user application was designed to not use the server assigned 

token. Instead, a random token was to be used with the user application’s request. The server 

logic correctly identified the invalid token usage in the user application’s request and 

declined all of them. Hence, as with previous test case a correct valid token is to be supplied 

by the user application if the server’s resources are to be accessed. 

 

In the eighth test case, the system app was targeted. Tried to install a new system application 

with modified verification logic that always passed the unmodified application’s signature. 

Installing applications as ‘system applications’ require elevated privileges which was not 

possible on a non-rooted environment. Hence this test passed, but it would have failed on a 

rooted emulator environment. 

 

In the ninth test case, the system application was removed and the tampered user application 

was executed. Since there was no system application present to initiate the token generation 

process the tampered application didn’t have a token to interact with the server. Hence 

tokenization of the application communication ensures the server doesn’t interacts with the 

counterfeit application which was not designed in the previous researchers’ solution. 

 

In the tenth test case, the system application was removed and the unmodified user 

application was executed. Since there is no system application, no token was generated for 
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the legitimate user application. Like the previous test case the server declined all the requests 

from the user application as no token was present.  

 

In the eleventh test case, the user application was repackaged with the Frida gadget and 

executed in the rooted emulator environment. The Frida gadget was able to hook in to the 

system application’s process memory and modify the application’s signature. Instead of 

passing the tampered application’s signature, the unmodified application’s signature was 

passed to the server. The server-side’s verification logic successfully verified the signature 

check and issues the token to the modified user application. This test case failed as in a 

rooted environment the FRIDA gadget is able to hook into almost all the system level APIs. 

This is a limitation of this solution. 

 

As evident from the test cases in a non-rooted environment, the solution was able to detect 

and prevent the tampered user application from accessing the application server’s resources. 

But the solution fails when it is deployed and executed in a rooted environment. Also, this 

solution must be installed as a ‘system application’ in the end user device. Hence, the 

business must work with the OEMs to include their solution with the respective android 

updates for their respective android devices. Assuming the OEMs have pre-installed this 

solution for the end users, the target application will communicate with the system 

application. Since a normal user’s android device won’t have the super user or root privileges 

unless the user explicitly chooses to do so, this solution works perfectly fine with a 100% 

accuracy. Hence mass distribution of counterfeit applications can be prevented as the system 

application that would be pre-installed in the users’ devices and will detect and terminate the 

modified apps. But the application won’t be protected against the reverse engineering as on a 

rooted environment the tampering possibilities are infinite. In order to improve / enhance the 

application’s anti-reversing capabilities a defence-in-depth approach should be used. Other 

techniques such as code obfuscation, dynamic code offloading loading, code injection, etc. 

must be deployed in addition to this solution as per the business’s requirements. A more 

promising security enhancement would be the use of a secure / trusted execution environment 

(TEE). The TEE is a separate execution environment that runs in parallel with the android 

operating system. The TEE resources are not accessible from the normal android O.S and 

hence is the ideal location for placing the entire business application or just the verification 

logic. Usage of the TEE is an advanced concept and can drastically improve the security of 

an android application. 
 
 

7 Conclusion and Future Work 
 

Existing solutions such as obfuscation, dead code injection, CRC checks, anti-debugging, etc. 

discussed previously in the related work section do introduce complexity in reversing and 

modifying the application. But these trivial application protection schemes lack the 

separation and verification of the anti-tamper mechanisms. Hence, these solutions fail to 

address the question of protecting an application’s integrity.  

 

For a non-rooted android device, the system partition provides a secure area which can host 

applications that cannot be tampered or uninstalled. This secure area can be used to host 

critical code of an android application which is responsible for its integrity. This code will be 

part of the logic that will detect modification of the intended user application and terminate it. 

From the tests performed in this research work, it has been evident that placing the integrity 

verification logic inside the system partition gave promising results with an accuracy of 

100% for a non-rooted emulator environment. Splitting the verification between the client – 
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server and tokenizing the communication prevents a modified / counterfeit application from 

accessing the server’s resources. It has been shown that any attempts at using the counterfeit 

application in presence or absence of the system application will be detected and would result 

in the user application being out of operation. Even if the legitimate user application is used 

without the system application installed access to the server’s resources is denied. This 

research proves that on a non-rooted android device this solution gives reliable results. The 

research work carried out would result in a robust android application protection mechanism. 

This will also prevent the counterfeit applications from running on end user devices and 

provide the features that were intended to be used in the approved release builds.  

 

This solution has few shortcomings. The first being the delivery of the solution. For this 

solution to work it is absolutely necessary that the end users have the solution’s system 

application pre-installed on their devices. If the OEMs do not agree to install the solution 

then the target application remains unprotected and this might block the execution for their 

users since a valid token is required for communication with the application server. Another 

limitation is that this solution fails on a rooted android device or emulator and the modified 

user application runs with no hindrance. This solution provides no anti-reversing solution and 

must be combined with other techniques such as code obfuscation, dynamic code offloading, 

etc. which together will provide defence in depth.  

 

Using TEE will greatly enhance the android application’s self-protection capability. The TEE 

provide a TEE O.S which runs in parallel to the normal android O.S. The TEE’s resources 

cannot be accessed from the android O.S but the converse is not true. The TEE can access the 

android world’s resources because the TEE O.S runs at a super-elevated privilege. So, the 

mission critical part of the android’s core logic e.g. the integrity verification logic can be 

placed and executed from this TEE O.S. This eliminated all the shortcomings of this research 

work as despite the android O.S operating in root mode the TEE O.S resources remains 

inaccessible due to its super-elevated privileges. Many OEMs have extended their support in 

collaborating for the TEE development. On Advanced RISC Machine (ARM) powered 

devices this TEE technology is known as ARM TrustZone16. For others but not limited to, the 

list is as - On Intel devices its Intel Software Guard Extensions 17(SGX), for Apple its Apple 

Secure Enclave18 and for AMD its AMD Platform Security Processor19. TEE based research 

is an emerging and promising area of secure application development. The only challenge 

being lack of open-source contributions and emulator-based implementations for android. But 

as the era of android development evolves so will the availability of the TEE 

implementations for developers. 
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