ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Internship
MSc in Cyber Security

Aleena Gerard
Student 1D:18211593

School of Computing
National College of Ireland

Supervisor: Niall Heffernan

‘——
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Student Aleena Gerard
Name:

Student ID: 18211593

Programme: MSc in Cyber Security Year: 2019-2020
Module: Internship
Lecturer: Niall Heffernan

Submission
Due Date: 17/08/2020

Project Title: Detecting Malicious Content from Extracted API Call Sequence By
Applying Deep Learning And Machine Learning Algorithm

Word Count: 1158 Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the
National College of Ireland’s Institutional Repository for consultation.

Signature: Aleena Gerard
Date: 17/08/2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Aleena Gerard
Student ID:; 1811593

1 Introduction

Configuration manual indicate the requirements like software and hardware and the phases of
programming for the implementation of the proposed research project. The performed
research uses a malicious api dataset, then the pre-processing is automated for the data and
the evaluation of the different models of machine learning used.[1] The configuration manual
helps in assisting the user for evaluation, and the proper usage of the code and execution. The
primary aim of the research is to detect malicious contents using machine learning from
extracted api calls.[2] Deep learning algorithms like CNN,RNN and LSTM are used with LR,
LDA, KNN, CART, NB. The proposed research project is “DETECTING MALICIOUS

FROM EXTRACTED APl CALL SEQUENCE PATTERNS BY APPLYING MACHINE LEARNING
ALGORITHM”

2 System Configurations

The system requirements which were used to implement has been described in this section.
The information regarding the specifications of the system is always an asset before
conducting the experiments.

2.1 Google colab specification:

Memory: 358.27 GB

RAM: 13 GB

Runtime Types: CPUs, GPUs, and. TPUs
Accelerator: GPU

2.2 Software Requirements

Python 3. The implementation of the proposed method has been performed on the python 3
platform from the beginning to the end. Python platform is used for the web development,
data science , scripting etc.

Jupyter Notebook: The execution and the programming of the code is done in this platform.
Jupyter Notebook is a web application which are is open source for the users for coding,
visualizing, execution etc.

Google colab: A large portion of the project is conducted in google provided cloud platform
known as google colab. The main purpose of the platform is to perform execution of code,
visualizing and analyzing the data, and evaluation of machine learning models.

3 Data Acquisition and Evaluation:

3.1 Guidance to Google colab

We should have an google account inorder to sign into the google colab. After sign in we
have to open the link https://colab.research.google.com/notebooks/welcome.ipynb. After opening the
link, we have to select File, from there we have to choose Python3 and for the working
environment we have to connect notebook. We are using GPU, so from under runtime we
have to change the runtime type we select GPU as the execution is fast. Then we must save
the file in google drive.

3.2 Package Dependencies and Data Acquisition

3.2.1 Package Installation

[1 %*tensorflow version 1.x

!'pip install hypertools

In google colab many packages are pre-installed, in this project we are using tensorflow
version 1. Tensorflow is generally a library in python for numerical calculations fast. We had
to install the Hypertools package. Hypertools is also a library which we can be used to do
manipulation and visualization of data those are high dimensional in Python.

import os
import pandas

import numpy as np

from keras.callbacks import TenscrBoard

import keras

from keras.layers import merge, Convolution2D, MaxPooling2D, Dropout
from keras.layers.core import Reshape, Flatten

from keras.models import Model, load_model

from keras import metrics

from keras.callbacks import EarlyStopping,ModelCheckpoint

from keras.layers import Dense, Input, Embedding

from keras.optimizers import Adam #, RMSprop

extra imports to set GPU options
import tensorflow as tf
from keras import backend as k

import frmatch
import glob

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import hypertools as hyp
import zipfile
from keras.layers import LSTM

https://colab.research.google.com/notebooks/welcome.ipynb

We have imported libraries and functions which are used to implement deep learning an
machine learning models as shown in the above snapshot.

3.2.2 Data Acquisition

[1] from google.colab import files
files.upload()

! mkdir ~/.kaggle
! cp kaggle.json ~/.kaggle/

! chmod 682 ~/.kaggle/kaggle.json
! mkdir 18@k

'kaggle datasets download -d ang3loliveira/malware-analysis-datasets-api-call-sequences
3.2

Using Kaggle api we have downloaded the dataset into the google colab from Kaggle
environment.

%load ext tensorbeoard

TensorFlow wizardry
config = tf.ConfigProto()

Don't pre-allocate memory; allocate as-needed
config.gpu options.allow growth = True

Only allow a total of half the GPU memory to be allocated
config.gpu_options.per_process_gpu memory_fraction = 8.3

Create a session with the above options specified.
tf.keras.backend.set_session(tf.Session(config=config))
R

Configuration of tensorflow dependency.

zf_path = file_path

zf = zipfile.Zip|File(zf_path) # zipfile.ZipFile object

all files = zf.namelist() # list all zipped files

all files = [f for ¥ in all_files if f.endswith('.csv')] # e.g., get only csv

When we download the dataset using kaggle api, it comes in zip file, so the extraction of zip
file is shown in the above snapshot.

3.2 Exploratory Data Analysis
df.head() # return the first 5 rows

[1 df.describe() # summary statistics, excluding MaN values

[1 df.info(verbose=True, null_counts=True) # concise summary of the table
[1 df.isnull().values.any()

[] df.isnull().sum()

[1] df.shape # shape of dataset

[1 df = df.dropna()

[1 df.shape

df.skew() # skewness for numeric columns

df .kurt() # unbiased kurtosis for numeric columns
df.corr()

all numeric columns
for ¢ in df.columns:
if df[c].dtype in ['inted4', "floated']:
sns.distplot{df[c].dropna()}, kde=False)
plt.show()

¥ = df.iloc[:,1:101]

y = df.iloc[:,-1:]

hyp.plot(X,'.", reduce='SparsePCA')
hyp.plot(X, '.", n_clusters = &)

In the above snapshots we have performed the EDA on the data. We have checked the
datatype of the data, checked for any null values present, we have checked for the statistical
properties using skew and kurt functions. For every column we have plotted histogram for
data visualization an distribution. The dataset is having 100 columns so the dimension of the
data s very high, so that we have used SparcePCA to plot cluster inorder to check the
association of the data.

3.2.1 Feature Selection

relevant_features

malware 1.@
Mame: malware, dtype: floated

Here we have performed the feature selection. For thi we have used filter method as the
absolute correlation value is higher than 0.5. We have used this method under feature
selection as the other methods are computationally expensive because the data is very high
dimensional.

3.3 Data Preparation

x
¥

datanewX

datanewy

take the 88X of data as train_set, 28% to test
train_len = int{®.8 * datanewx.shape[a])

train_lenl = int(@.3 * datanewX.shape[@
traindataX = datanewX[:train_len, :]
test_len = int(®.2 * datanewX.shape[2])
testdataX = datanewX[train_len: :]
traindata¥ = datanew¥[:train_len]
testdataY = datanewY[train_len:]

Here we have split the data into two, train dataset and test dataset.

4 Implementation

4.1 Experiment1

4.1.1 CNN

embedding_dim = 108
filter_sizes = [
num_filters = 12
drop = 8.5

Learning_rate = 8.881
max_epoch = 5@
batch_size = 5@8@
max_seq_len = ma_len

These are the hyperparameters used to compile the model.

save_path = log path

inputs = Input(shape=(max_seq_len,), dtype="int32")

embedding = Embedding(output_dim=embedding_dim, input dim=input dim, input length=max_seq_len)(inputs)
reshape = Reshape((max_seq_len, embedding dim, 1))(embedding)

conv_@ = Convelution2D(num _filters, filter_sizes[@], embedding dim, border_mode='valid', init='normal’,
activation="relu’, dim ordering="tf")(reshape)

maxpool @ = MaxPooling2D(pool size=(max_seq_len - filter sizes[@] + 1, 1), strides=(1, 1),
border_mode="valid', dim ordering="tf"}(conv_8)

flatten = Flatten()(maxpool @)
dropout = Dropout(drop) (flatten)

#densel = Dense(output_dim=1000, activation="relu')(dropout)
dense2 = Dense(output_dim=1008, activation='relu')(dropout)
output = Dense(output_dim=output dim, activation='softmax')(dense2)

model = Model(inputs=inputs, outputs=output)
adam = Adam(lr=Learning_rate, beta 1=8.9, beta_2-0.993, epsilon=1e-8, decay=1e-6)
model. compile(loss="sparse_categorical crossentropy’, optimizer=adam, metrics=['sparse_categorical accuracy'])

#additional setting

earlyStopping = EarlyStopping(monitor='sparse_categorical accuracy’, patience=18, verbose=8, mode='max')
checkpointer = ModelCheckpoint(filepath=log path +'weights.hdfS', verbose=1, save_best_only=True,period=12)
tensorboard = TensorBoard(log_dir=save_path, histogram_freq=0, write_graph=True, write_images=False)

print("training start....")
callbacks = [earlyStopping, checkpointer, tensorboard)]
history_callback = model.fit(traindataX, traindataY¥, batch_size=batch_size, epochs=max_epoch, verbose=1, validation split=2.1,shuffle=True,callbacks=callbks)

The above snapshot give the model definition of the process, how CNN is defined with these
layers. For optimisation we have used adam, for loss function we have used
sparse_categorical_crossentropy, and for metrics we have used sparse_categorcal_accuracy.

4.1.2 LSTM

] max_epoch = 5@
batch size = Sée
max_seq_len = ma_len

These are the hyperparameters used to compile the model.

max_epoch = 58
batch_size = 500
max_seq_len = ma_len

log_path = './log_1layer_lstm_lr=8.081/"
model_name = log path + './1 layer_lstm.h5'

inputx = Input(shape=(max_seq_len,), name= 'user_input')

#input_dim is the number of vocubularies (total APIs), input_length is the number of words (APIs) token into consideration in the context.
inputemb = Embedding(output_dim = 5@, input_dim = input_dim+l , mask_zero = True, input_length = max_seq_len)(inputx)

lstmoutl = LSTM(units = 256, return_sequences = False, dropout = 8.1, recurrent_dropout = 8.1)(inputemb)

out = Dense(input_dim, activation = 'softmax’, name = 'out")(lstmoutl)

modell = Model(inputs = inputx, outputs = out)
sgd = Adam(1lr = ©.881, beta 1 = 8.9, beta 2 = 8.999, epsilon = le-8, decay = le-6)
modell.compile(loss = 'sparse_categorical crossentropy’, optimizer = sgd, metrics = ['sparse_categorical_accuracy'])

history = AccuracyHistory()

thCallBack = TensorBoard(log dir = log_path, histogram freq =8, write_graph = True, write_images = True)

checkpointer = ModelCheckpoint(filepath=log path +'weights.hdf5', verbose=1, save_best_only=True,period=18)

earlyStopping = EarlyStopping(monitor='val_loss', patience=18, verbose=8, mode='min')

callbacks = [history,tbCallBack,checkpointer]

historyacc = modell.fit(traindataX, traindata¥, batch_size = batch_size, epochs = max_epoch, verbose = 1, validation_split = 8.1, callbacks = callbks)

The above snapshot explains the definition of the model. For optimisation we have used
adam, for loss function we have used sparse_categorical_crossentropy, and for metrics we

have used sparse_categorcal_accuracy.

4.1.3 RNN

max_epoch = 5@
batch_size = 588
max_seq_len = ma_len

These are the hyperparameters used to compile the model, RNN.

model? = keras.Sequential()
model2.add(layers.Embedding(input_dim=188, output dim=2))

The output of GRU will be a 3D tensor of shape (batch_size, timesteps, 256)
model2.add(layers.GRU(256, return_sequences=True))

The output of SimpleRNN will be a 2D tensor of shape (batch size, 128)
model?.add(layers.SimpleRNN(128))

model2.add(layers.Danse(108))

model2. summary ()

sgd = Adam(Ir = 8.081, beta_1 = 8.9, beta 2 = 8.999, epsilon = 1le-8, decay = le-6)
model2. compile(loss = "sparse_categorical crossentropy’, optimizer = spd, metrics = ['sparse_categorical accuracy'])

historyl = AccuracyHistory()

thCallBackl = TensorBoard(log_dir = log_path, histogram_freq =8, write graph = True, write_images = True)
checkpointerl = ModelCheckpoint(filepath=log_path +'weights.hdfs', verbose=1, save best_only=True,period=16)
earlyStopping = EarlyStopping(monitor="val_loss', patience=18, verbose=8, mode="min")

callbks = [historyl,tbCallBackl,checkpointerl]

r*yeoB 820

historyacc2 = model2.fit(traindataX, traindata¥, batch_size = batch_size, epochs = max_epoch, verbose = 1, validation_split = 6.1, callbacks = callbks)

model2. save(model_name)

The above snapshot explains the definition of the model. For optimisation we have used
adam, for loss function we have used sparse_categorical_crossentropy, and for metrics we

have used sparse_categorcal_accuracy.

4.1.4 Performance Evaluation (CNN,LSTM,RNN)

seed = 7
prepare models
models = []

models.append(('LSTM", modell})
models.append({ "DCNM', model))
models.append(("RNN', model2))

y_pred_probl=modell.predict(testdataX) # predict the test data

y_predl = np.argmax(y_pred_probl, axis=1)

Compute False postiwve rate, and True positive rate

fprl, tprl, thresholdsl = metrics.roc_curve(testdataY,y_pred_probl[:,1])
Calculate Area under the curve to display on the plot

aucl = metrics.roc_auc_score(testdataY¥,y_predl)

Mow, plot the computed walues

y_pred prob2=model.predict(testdataX) # predict the test data

y_pred2 = np.argmax(y_pred_prob2, axis=1)

Compute False postiwve rate, and True positive rate

fpr2, tpr2, thresholds2 = metrics.roc_curve(testdataY,y_pred_prob2[:,1])
Calculate Area under the curve to display on the plot

auc2 = metrics.roc_auc_score(testdataY,y_pred2)

MNow, plot the computed values

y_pred_prob3=model2.predict(testdataX) # predict the test data

h_predB = np.argmax(y_pred_prob3, axis=1)

Compute False postive rate, and True positive rate

fpr3, tpr3, thresholds3 = metrics.roc_curve(testdataY,y_pred_prob3[:,1])
Calculate Area under the curve to display on the plot

auc3 = metrics.roc_auc_score(testdataY,y_pred3)

We have evaluated the performance of all the implemented deep learning models usinf ROC
and AUC.

seed = 7

prepare models

models = []

models.append(('LR', LogisticRegression(solver="'lbfgs'}))
models.append(('LDA", LinearDiscriminantAnalysis()))
models.append(("KNN", KNeighborsClassifier()))
models.append(('DT', DecisionTreeClassifier()))
models.append(('MNB', GaussianMB()))
#models_append(("SYM", SWC(probability=True)))

evaluate each model in turn

results = []
names = []
scoring = "accuracy’

¥_train, X_test, y_train, y_test = train_test split(X, Y, test _size=8.33)

for name, model in models:
kfold = model selection.KFold(n_splits=18, random_state=seed)
cv_results = model selection.cross_wval score(model, X _train, y_train, cw=kfold, scoring=scoring)
results.append(cv_results)
names . append{nams)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print{msg)
model.fit(X_train, y_train)
y_pred=model.predict(X_test) # predict the test data
Compute False postive rate, and True positive rate
fpr, tpr, thresholds = metrics.roc_curve(y_test, model.predict_proba(¥_test}[:,1])
Calculate Area under the curve to display on the plot
auc = metrics.roc_auc_score(y_test,model.predict(X_test))
Now, plot the computed values
plt.plot{fpr, tpr, label="%s ROC (area = %8.2f)" % (name, auc))

Custom settings for the plot

plt.plot([e, 1], [@, 1], 'r--")

plt.xlim([e@.8, 1.8])

plt.ylim([@.8, 1.85])

plt.xlabel(1-Specificity(False Positive Rate)")
plt.ylabel('Sensitivity(True Positive Rate)")
plt.title(’Receiver Operating Characteristic')
plt.legend(loc="1lower right™)

plt.show()

boxplot algorithm comparison

fig = plt.figure()

fig.suptitle(Algorithm Comparison’)
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)

plt.show()

Models like LR, LDA, KNN, DT, NB used as machine learning algorithms. These models are
implemented using K-fold cross validation and the evaluation of the model is plotted using
ROC curve and AUC value.

References

[1] R. Python, “Jupyter Notebook: An Introduction — Real Python.” https://realpython.com/jupyter-notebook-
introduction/ (accessed Aug. 17, 2020).

[2] “HyperTools: A python toolbox for gaining geometric insights into high-dimensional data — hypertools
0.6.2 documentation.” https://hypertools.readthedocs.io/en/latest/ (accessed Aug. 17, 2020).

