ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Internship
MSc in Cyber Security

Sumanth Kumar Alladi
Student I1D: X18108377

School of Computing
National College of Ireland

Supervisor: Michael Pantridge

‘-—
National College of Ireland \ National

MSc Project Submissi Sheet COllegeOf
c Project Submission ee I
reland
School of Computing
Student Sumanth Kumar Alladi
Name:

Student ID: X18108377

Programme: MSc in Cyber Security Year: 2020
Module: Academic Internship
Lecturer: Michael Pantridge

Submission
Due Date: 28/09/2020

Project Title:
Effectively improving the efficiency and performance of an intrusion
detection system using hybrid machine learning models

Word Count: 880 Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the
National College of Ireland’s Institutional Repository for consultation.

Y e L 1= T] <SSO T ST RSP OPRRRPPRO

[- 1 o

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project | o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sumanth Kumar Alladi
Student ID; X18108377

1 Introduction

This configuration manual was created as a guide for the setup of the system and the
environment that was used for the development and the execution of this thesis program titled
R . The configuration and setup of the both, the hardware side and the software side
has been explained below, with the procedures on how to use the program was explained.

2 System Requirements

In the below figure we can observe the hardware configuration of the system that was used to
develop and run the project.

File Help

em Valve

Hardware Resources 0OS Name Microsoft Windows 10 Home

Components Version 10.0.18363 Build 18363
i Software Environment Other OS Description Not Available

0S Manufacturer Microsoft Corporation
System Name LAPTOP-2N48JUPO
System Manufacturer HP
System Model HP Pavilion Laptop 14-ce0xxx
System Type x64-based PC
System SKU 3ZU99EA#ABU
Processor Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 C...
BIOS Version/Date Insyde F.21, 26-11-2019
SMBIOS Version 3.0
Embedded Controller V... 2.15
BIOS Mode UEFI
BaseBoard Manufacturer HP
BaseBoard Product 84BA
BaseBoard Version 02.15
Platform Role Mobile
Secure Boot State On
PCR7 Configuration Elevation Required to View
Windows Directory C:\WINDOWS
System Directory CAWINDOWS\system32
Boot Device \Device\HarddiskVolume1
Locale United Kingdom
Hardware Abstraction L... Version = "10.0.18362.752"
Username LAPTOP-2N48JUP0O\suman
Time Zone GMT Summer Time

Installed Physical Mem... 8.00 GB
Total Physical Memory 7.88 GB
Available Physical Mem... 1.15 GB
Total Virtual Memory 100 GB
Available Virtual Memory 1.16 GB

Find what: Close Find

] Search selected category only [[JSearch category names only

3 Softwares Used

For the development of the project the softwares that were used are:

3.1 Anaconda Navigator

| have installed Anaconda Navigator version 1.9.12 to setup an environment which can use
multiple types of IDE environment softwares.

J

{2 ANACONDA NAVIGATOR

@ Envircments o)
kA Jupyter
8 —
v »

3.2 Spyder

Usage

Here you can get help of any object by pressing Ctri# in front of it either on
O
 can aiso be automatically afler writng lldlw' next to an

shown
»ct You can activate this behavior in Preferences > Help.
New fo Spyder? Read our tutorial

Spyder is an Python Development Environment software which contains a powerful Python
editor. This software has been first installed on Anaconda Navigator and then has been
launced on it. The version use for this project is 4.0.1.

Package named ‘tabulate’ was installed on the Anaconda Navigator through the command
line prompt. This was done so that the graph generated by the project can be executed and
viewed. The command used for the installation of the page was “pip install tabulate”. After
this | was able to run the project by executing the main.py file.

4 Files Executed

The project contains 11 files that needs to be executed, they are as follows:

4.1 Main.py

This is the file that basically executes the whole project. In this the testing and training
datasets are sent to preprocess.py file which gets loaded to it. Then the values received from
the pre-processing is then sent to the either the hybrid model or the individual model. It
depends on which model is getting executed. And lastly, the results are displayed in a tabular
and graphical form.

Elr.p'y’ ,llr_kmeans.p'_\.' | [E mainpy E3 ‘ mip.py ,\mlp_kmeans.p'y’ J\pl'eprcncess.py J\kmeans.p'_v' l

1 [¢ —*- coding: utf-8 —*-

3 from tabulate import tabulate
4 from preprocess import load data

from mlp import classify MLP

from 1r import classify LR

from mlp kmeans import classify MLP Emeans
g from 1r kmeans import classify LR Kmeans
10 from kmeans import cla351fy_Kmeans

12 import matplotlib.pyplot as plt
13 import seaborn as sns

14 import numpy as np

15 import pandas as pd

18 Eif __name == " main "
20 print("Project started...™)

22 # Load train & test data
23 print ("Load train &
24 train flle name =

test flle name = "KDDTest+.csv"
traln test trainLabel, testLabel, trainBinLabel, testBinLabel = \
27 load data(train file name, test file name)

29 ## Classi fy 7ith MLP
30 print ("MLP started..."™)
31 acc_MLE, senS_MLP, spec_MLP = \

32 classify MLP(train, test, trainLabel, testLabel, trainBinLabel, testBinLabel)

34 % ## Classify with LR

35 print ("L e:a::;‘]

36 acc LR, sens LR, spec LR = \

37 cla551fy LR{traln test, trainLabel, testLabel, trainBinLabel, testBinLabel)

39 ## Classi fy with Emeans

40 print ("Kr started...")

41 acc_Kmeans sens kmeans spec_kmeans = \

42 classify_Kmeans{traln test, trainLabel, testLabel, trainBinLabel, testBinLabel)
43

4.2 Preprocess.py

Here the feature selection, labelling and data conversion to the nominal values process takes
place. First, the file takes all the data from the dataset and maps different types of attacks.
Necessary feature required by the model is considered and all the other data is dropped. This
code was written by referring it from the code present on GitHub website.

B ipy & B ir_kmeanspy £3| B mainpy £

ENEEE| BRPRRESREEE | proprocess py £ |ERnNEaReBIE]|

o W

30

o e W N

W wWwwwwww i

o o

=

|# —*_ coding: utf-8 —*_—

impeort pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder

Load train and test data

def load data({train_file name, test_file name):
Loads the nsl-kdd train and test data
train = pd.read csv(train_file name, header=None)
test = pd.read csv(test_file name, header=None)

Reads "Field Names.csv". Use this to set the names of train and test data columns
columns = pd.read csv('Field Names.csv', header=None)

columns.columns =_['nane', "type'l

train.columns = columns['nam="']

test.columns = columns['name']

Read Attack Types.cswv
Use this to create a mapping from attack types to final labels (Normal, Dos, R2L, Prob, U2R)
attackType = pd.read csv('Attack Types.csv', header=None)

attackType.columns = ['Nams', "Tvp
attackMap = {}

Creates attackMap map which contains a mapping between attack type and the final label
for i in range(len(attackType)) :
attackMapl[attackTypel 'Name'1[1i]1] = attackTypel ' Tveoe'l1[4i]

Add a new variable called 'label' which contains the final label
= train['atta ~_type'l .map (attackMap)
test['atta tyvpe"1.map (attackMap)

The wvariable 'label' is stored in different wvariables
This is reguired to keep the dependent wvariable separate from the independent wariable

trainLabel =

testLabel =

trainBinLabel = (np.array({trainLabel) == 'normal') .astype(np.int)
testBinLabel = (np.array(testlabel) == 'normal ') .astype(np.int)

4.3 Ir.py

Here, Logistic Regression model has been executed. The components such as accuracy,

sensitivity and specification has been calculate using confusion matrix.
Elr.py x| |Elr_l-imeans.p§|r d| Emlp.mr h..’| E mlp_kmeans.py h.’| Ekmeans.py h."l

1

LUalne s RRE B e SO B FU I o8)

s)

0y e WO

W W W w Wi

Erom sklearn.metrics import accuracy score, confusion matrix
from sklearn.linear model import LogisticRegression

Classify Logistic Regression
Ldef classify LE(train, test, trainLabel, testlLabel, trainBinlLabel, testBinLabel):

Training RF model
model = LogisticRegression(max iter=200, C=0.1, random state=123)
model . fit(train, trainBinLabel)

Prediction of testing data using trained model
pred = model.predict(test)

Calculating performance statistics
Calculate accuracy
acc = accuracy_score(y_pred=pred, y_true=testBinLabel)

Calculate confusion matrix
con matrix = confusion matrix(y pred=pred, y_true=testBinLabel)

Calculate TN, FN, TF, FP
TN = con matrix[0][0]
FN = con matrix[1][0]
TP = con matrix[1][1]
FP = con matrix[0]1[1]

Calculate detection rate and FAR
sens = TP / (TP + FN)
spec = TN / (TN + FF)

return acc, sens, spec

4.4 Ir_kmeans.py

In this file the hybrid model of Logistic Regression and K-Means model has been executed
with the calculation of the performance components similarly done in the previous file.

BEirpy &3 = ir_kmeans py E1 |E mip.py &3|[E mip_kmeans py 3| B kmeans py ~_J|

S o s Wk e

18

N

ok W EOWY

Howo

2
2
2
2
2
2
2
2
2
=
3
3
3
3
=

ok Wl

4.5

Ercm sklearn.metrics import accuracy score, confusion matrix
from sklearn.linear model import LogisticRegression

from sklearn.cluster import EKMeans

import numpy as np

Eldef

classify LR _Kmeans{train, test, trainLabel, testLabel, trainBinLabel, testBinLabel):

Training RF model
model = LogisticRegression{max iter=200, C=0.1, random state=123})
model . fit({train, trainBinLabel)

Training Kmeans model
kmeans = EMeans(n_ clusters=2, random state=0).fit(test)

Prediction of testing data using trained model
pred kmesans = 1 - kmeans.labels_

Prediction of testing data using trained model
pred 1r = model.predict(test)

Combine RF & Kmeans
rred = np.zeros(len(pred 1r))
for i in range (len(pred)) :
if pred 1r[i]l] == 1 and pred kmeans[i] == 1:
pred[i]l] = 1

Calculating performance statistics
Calculate accuracy
acc = accuracy_ score(y_ pred=pred, ¥ true=testBinLabel)

Calculate confusion matrix
con _matrix = confusion matrix(y pred=pred, ¥ true=testBinLabel)

Calculate TN, FN, TP, FP

TN = con _matrix[0][0]
FN = con_matrix[1][0]
TP = con_matrix[1][1]
FP = con _matrix[0]1[1]
@ T T s Ceme Sl ard sy A TS F S~ e

mip.py
Multi-Layer Perception model has been executed to get the performance outputs which has

been calculate by using the confusion matrix.
Elmippy B |Em|p_kmeans.py | B kmeans.py ._J|

1

SO T TV

o0 @

(S

(%]

M) (]
<o e W N

(S}
oo

Wl W W W Wk
halp=

0o Wk

hrom sklearn.metrics import accuracy score, confusion matrix
from sklearn.neural network import MLPClassifier

Classify MLP

def

classify MLP{train, test, trainLabel, testLabel, trainBinLabel, testBinLabel):

Training RF model
model = MLPClassifier(hidden layer sizes=(100, 25), activation='r
model.fit(train, trainBinLabel)

u', random_ state=123)

Prediction of testing data using trained model
pred = model.predict (test)

Calculating performance statistics
Calculate accuracy
acc = accuracy_ score(y_pred=pred, y_ true=testBinLabel)

Calculate confusion matrix
con matrix = confusion matrix(y pred=pred, y true=testBinLabel)

Calculate TN, FN, TP, FP
TN = con _matrixz[0][0]
FN = con matrix[1][0]
TP = con_matrix[1][1]
FP = con matrix[0][1]

Calculate detection rate and FAR
sens = TP / (TP + FN)
spec = TN / (TN + FF)

return acc, sens, spec

4.6

mpl_kmeans.py

The hybrid model of MLP and K-Means has been executed with the calculation of
performance components.

= mip_kmeans.py E4 |E kmeans.py .Jl

1

oo Wl

) 0 @

=

-
PN VERN e

SISy
= O W m oy N

30

WoW WL

D=l Ul W N

Bkl WoW WL
VHOWwm

4.7

hrom sklearn.metrics import accuracy_score, confusion matrix
from sklearn.neural network import MLPClassifier

from sklearn.cluster import KMeans

import numpy as np

Hdef classify MLP Kmeans (train, test, trainLabel, testLabel, trainBinLabel, testBinLabel):

Training RF model
model = MLPClassifier(hidden layer sizes=(100, 25), activation='relu', random state=123)
model.fit(train, trainBinlLabel)

Training Kmeans model
kmeans = KMeans{n_clusters=2, randomﬁstate=ﬂ}.fit(train)

Prediction of testing data using trained model
pred kmeans = 1 - kmeans.labels

Prediction of testing data using trained model

pred lr = model .predict (test)

Combine RF & Kmeans
pred = np.zeros{len{pred_lr)}

ﬁ for i in range(len(pred)):
= if pred 1r[i] == 1 and pred kmeans[i] == 1:
+ predf[i] = 1

Calculating performance statistics
Calculate accuracy
acc = accuracy_ score(y pred=pred, y_true=testBinLabel)

Calculate confusion matrix
con_matrix = confusion matrix(y pred=pred, y_ true=testBinLabel)

Calculate TN, FN, TP, FP
TN con_matrix[0]1([0]

FN = con_matrix[1]([0]
TP = con_matrix[1][1]
FP = con matrix[0]1[1]

kmeans.py

The performance components has been calculate for the K-Means model in this file.

[l kmeans.py E3 |

1 from sklearn.metrics impeort accuracy score, confusion matrix
2 from sklearn.cluster import KMeans

3

4 [Hdef classify FKmeans({train, test, trainLabel, testlLabel, trainBinlLabel, testBinLabel}):
(& ## Clustering Kmeans model

7 kmeans = KMeans(n clusters=2, randomﬁstate=ﬂ}.fit{test}
9
10 ## Prediction of testing data using trained model
11 pred = 1 - kmeans.labels
12
13
14 ## Calculating performance statistics
15 # Calculate accuracy

16 acc = accuracy_score(y_pred=pred, y_true=testBinLabel)
18 # Calculate confusion matrix

19 con matrix = confusion matrix(y pred=pred, y true=testBinLabel)
20

21 # Calculate TN, FN, TP, FF

22 TN = con matrix[0][0]

23 FN = con matrix[1][0]

24 TP = con_matrix[1][1]

25 FP = con_matrix[0][1]

26

7 # Calculate detection rate and FAR

8 sens = TP / (TP + FN)

29 spec = TN / (TN + FP)

30

31 L return acc, sens, Sped

4.8 Attack Types.csv

In this file, different types of attacks have been grouped together into four main attack
categories.

4.9 Field Names.csv

This file helps the model in the feature selection process as it contains the required field that
must be taken into consideration and all other data can be dropped.

4.10 KDDTest+.csv

20% of NSL-KDD dataset has been taken as a testing data. This file helps the model to test
itself to see if its able to detect the anomalies in the network traffic.

4.11 KDDTrain+.csv

This file has been used to train the model. 80% of the data from the NSL-KDD dataset has
been taken.

