

Configuration Manual: Early Diagnosis of Parkinson's Disease Progression

MSc Research Project Data Analytics

Dharesh Vadalia Student ID: x18192076

School of Computing National College of Ireland

Supervisor: Prof. Christian Horn

National College of Ireland MSc Project Submission Sheet School of Computing

Student Name:	Dharesh Vadalia										
Student ID:	X18192076										
Programme:	Master of Science - Data Analytic	S	Year:	2020							
Module:	M.Sc. Research Project										
Supervisor:	Prof. Christian Horn										
Submission Due Date:	17/8/2020										
Project Title:	Configuration Manual: Early diagnosis of Parkinson's Disease Progression										
Word Count:	2006	Page Cou	unt:	14							

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Dharesh Vadalia
Date:	17 th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project,	
both for your own reference and in case a project is lost or mislaid. It is	
not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Dharesh Vadalia x18192076

1 Introduction

The configuration manual outlines the description of step by step process involved in environmental setup for this research project and the implementation of this project, which is motivated to identify the rate of progression in Parkinson's Disease patients based on their baseline assessment characteristic. Configuration manual includes the information about the programming language used, necessary library packages and system configuration details. Document also discusses the results obtained from different tests scenarios, plotted info graphics and outputs of evaluation metrics used in this research.

2 Specification for Environment Setup

2.1 System Specifications

Implementation of this project is carried out on Google Collaboratory (Colab). It is an open source online platform build on top of Jupiter Notebook, which allows users to run python programs on Google servers and leverages high end GPU's and TPU's free of cost for implementing machine learning model.

2.2 Technical Specifications

For implementation of this project Python 3¹ programming language is used. Following packages of Python are used in execution of project:

- Pandas 1.1.0²
- Numpy 1.19.1³
- Scikit-learn 0.23.2⁴
- Keras 2.3.0⁵
- Matplotlib 3.3.16

¹ https://www.python.org

² https://pandas.pydata.org/

³ https://numpy.org/

⁴ https://scikit-learn.org/stable/index.html

⁵ https://keras.io/

⁶ https://matplotlib.org/

- Tensor flow 2.3.0⁷
- pypmi⁸

2.3 Data Source

The data for implementation of the project is collected from the Parkinson's Progression Markers Initiative (PPMI)⁹ organisation funded by Michael J. Fox Foundation. PPMI pioneers in the collection and management of clinical data of PD the patients for the purpose of research in area PD diagnosis. This comprehensive set of clinical data is maintained in a public repository of PPMI which is made available to researchers on request for study purposes. Data is fetched from the repository via API call using fetch methods defined in '*pypmi*' library to communicate with PPMI data repository.

3 Implementation

This section elaborates the steps performed for end to end implementation of proposed project. Providing understanding over the techniques employed for data preparation and feature engineering, feature extraction and modelling of classification algorithms.

3.1 Necessary Library Imports

Figure 1: Necessary Libraries

⁷ https://www.tensorow.org/install/

⁸ https://pypmi.readthedocs.io/en/latest/index.html

⁹ http://www.ppmi-info.org

3.2 Data Loading and Pre-processing

Download data from PPMI repository via **fetch_studydata()** API function of *pypmi* library. **Note: In case of poor network connection API connection may timeout while downloading the dataset. In such case re-run the line of code. Download file size is approx. 20 MB A **Dictionary** is created with important covariates which are to be extracted from downloaded .csv files. Each .csv file represents different pre-clinical assessment test conducted to access patient's condition against biomarkers of Parkinson's Disease. Data is loaded into separate data frame for each selected clinical assessment.

pypmi.fetch_studydata('all', user='x18192076@student.ncirl.ie', password='@Dharesh123') covariates = {} #UPDRS - Unified Parkinson's Disease Rating Scale (Part 1 - Part 4) povariates["updrs1"] = ["PATNO", "SUENT_ID", "INFODE", "NP1COC", "NP1ARLL", "NP1DERS", "NP1ARXS", "NP1APAT", "NP1DDS"] povariates["updrs1pq"] = ["PATNO", "EVENT_ID", "NP1SLPN", "NP1SLPD", "NP1PAIN", "NP1PAIN", "NP1CNST", "NP1LHD", "NP1FATG"] povariates["updrs2pq"] = ["PATNO", "SUENT_ID", "R012PSCH", "NP2SALL", "NP3PACT", "N02CHT", "N02IMRT", "N02IMRT, "N02IMR # MOCA - Montreal Cognitive Assessment covariates["moca"] = ("PATNO', 'EVENT_ID", "MCAALTTM", "MCACUBE", "MCACLCKC", "MCACLCKN", "MCACLCKH", "MCALION", "MCARHINO", "MCACHMEL", "MCAFDS' % FSTAI - State-Trait Anxiety Inventory Test covariates["stat"] = ["PATNO', "EVENT_ID", "STAIAD1", "STAIAD2", "STAIAD3", "STAIAD4", "STAIAD5", "STAIAD6", "STAIAD6", "STAIAD6", "STAIAD8", "SCAU8", "SCAU8", "SCAU8", "SCAU8", "SCAU9", "SCAU9 tive Ass OVAFIATES[SCHW_aut] - ['PARNO', "EVENT_ID", "VLTANIM", "VLTVEG", "VLTFRUIT"] ovariates["sft"] = ["PARNO', "EVENT_ID", "ULTANIM", "VLTVEG", "VLTFRUIT"] REM-RBD - Rapid Eye Movement Sleep Behavior Disorder Test Ovariates["rem_Izd1"] = ["PARNO", "EVENT_ID", "DRMJVID", "DRMAGRAC", "DRMNOCTB", "SLPIMBMV", "SLPINJUR", "DRMVERBL", "DRMFIGHT", "DRMUMV", "DRM EPMORTH - Epworth Sleepness Scale ovariates["epworth"] = ["PARNO", "EVENT_ID", "ESS1", "ESS2", "ESS3", "ESS4", "ESS5", "ESS6", "ESS6", "ESS8"] HVLT- Hopkina Verbal Learning Test HVLT- Hopkina Verbal Learning Test covariates["epworth"] = ["PATNO", "EVENT_ID", "ESS1", "ESS2", "ESS3", "ESS4", "ESS5", "ESS6", "ESS7", "ESS8"] # WIUT- Hopkins Verbal Learning Test covariates["hult"] = ["PATNO", "EVENT_ID", "HULTRT1", "HULTRT2", "HULTRT3", "HULTREC", "HULTPPRL", "HULTPPUN"] # LNS - Letter Number Sequencing Test covariates["hult"] = ["PATNO", "EVENT_ID", "LNS_COTRAM"] # Neurological exam: Cranial Nerves Test covariates["hult"] = ["PATNO", "EVENT_ID", "EVENT_ID", "CN1RSP", "CN346RSP", "CN5RSP", "CN7RSP", "CN8RSP", "CN910RSP", "CN11RSP", "CN12RSP" # SOM - Symbol Digit Modalities Test covariates["had"] = ["PATNO", "EVENT_ID", "SDMTOTAL"] # Neuropsychological Test - (Line Orientation) covariates["had"] = ["PATNO", "EVENT_ID", "JL0_TOTRAM"] path="" ols=covariates["neuro_cranial"])

Figure 2: Data loading and Pre-processing

3.3 Exploratory Data Analysis

LOV

202

Ы

N03

V04

Detailed analysis of fetched data is conducted to obtain better understanding on characteristic and quality of fetched data.

Figure 3: Process of clustering PD cases based on risk of progression

Asses

V05

Sont Visit IDs

707

600

11

5

80

From above visualisation, it can be inferred that as we move towards last visit of assessment, steep decline in number of participants can be seen. Also, for various tests are not mandatory to be conducted during each visit. Therefore, based presented data instead of selecting each visit, specific visits with most test data is selected. That is BL, V02, V04, V06, V08, V10, V12. Records of data for all the essential covariates identified in selected list of clinical assessment is merged over unique index key defined on patient id (PATNO) and visit id (EVENT_ID) for the filtered list of patients.

Figure 4: Process of clustering PD cases based on risk of progression

6

Patient Category

PRODROMA

오

SWEDD

REGPD

Above bar graph represents the category of participating patients. It can be inferred that most of the participants fall under Healthy Control (HC) and Parkinson's Disease (PD) category. Thus, we will consider records from these two categories for training model.

3.4 Feature Engineering

STEP 1: Time Series Vectorisation & Imputation

GENPD

GENUN

Below steps are performed to Vectorise time series data into one series, that is patient's data from each visit and handle missing values using *interpolate()* function¹⁰. Vectorisation technique eliminates looping hops, generating better performing model and reduces the

¹⁰ https://scikit-learn.org/stable/modules/impute.html

computation load by 20 to 30%. In this technique data points of each covariate from every visit of patient is pivoted against its unique patient ID, creating a single row of record for each patient ID.

Figure 5: Code base for vectorizing time series data and imputation

STEP 2: Normalisation\Standardisation

Normalisation\Standardisation¹¹ techniques are adopted to uniformly scale data points. As different covariates in dataset are measured on different scales and thus do not contribute equally during training of machine learning model, which might end up creating a bias.

¹¹ https://scikit-learn.org/stable/modules/preprocessing.html

0	<pre>minmax = i=1 for d in datas i = i datas minma for c m db_minmax db_minmax</pre>	<pre>{} arr_o et = +1 et_co x[dat ol in inmax = pd .head</pre>	f_vect 'd' + lumns aset] datas [datas .conca mi mi mi (3)	<pre>data str(i = eva = pd. eet_co eet][c .nmax[.nmax[.x.int</pre>	lisets: -) DataF olumns col] = .nmax['d8'] 'd15' :erpol	caset) rame = (eva 'd1') , min], min late(n).colu (inde: al(dat), min inmax[inmax] method	umns.: x=eva: taset; nmax['d9']; ('d16 d='l1;	leve l(da)[co 'd2' , mi '],m near	ls[0] taset l]-ev], mi nmax[inmax ', ax	[0:-1 2).ind ral(da nmax) 'd10 ('d10 ;['d17 ;['d17 ;is=1,] iex, itase ['d3' '], m 7']], , lim	colu t)[c], m inma: axi: it=1	mns=e ol].m inmax x['d1 s=1) 0, lin	val(d in(). ['d4' 1'], mit_d	atase min()], mi minma irect	at).co))/(ev inmax ax['d: cion=	olumn val(d; ['d5' 12'], 'both	s) atase], min minm ')	t)[co nmax[ax['d	1].ma 'd6'] 13'],	1x().1 , m: , mini	max() inmax max['	-eval(['d7'] d14'],	datas	et)[c	ol].m	1in().	.min()
₽		NP1C	OG						NP1	HALL						NP1D	PRS						NPLA	NXS					
	EVENT_ID PATNO	BL	V02	V04	V06	v 08	V10	V12	BL	V02	V04	V06	V0 8	V10	V12	BL	V02	V04	V 06	V08	V10	V12	BL	V02	V04	V 06	V08	V10	V12
	3000	0.25	0.125	0.00	0.25	0.25	0.00	0.25	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.25	0.25	0.25	0.25	0.00	0.0	0.25	0.25	0.125	0.00	0.25	0.50	0.00	0.25
	3001	0.00	0.000	0.25	0.00	0.00	0.00	0.25	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00	0.00	0.25	0.00	0.00	0.0	0.25	0.00	0.000	0.25	0.00	0.25	0.25	0.25
	3002	0.25	0.250	0.25	0.50	0.25	0.25	0.50	0.0	0.0	0.0	0.0	0.0	0.25	0.0	0.25	0.25	0.25	0.75	0.25	0.0	0.25	0.00	0.125	0.25	0.25	0.50	0.50	0.25
	3 rows × 159	95 colu	mns																										

Figure 6: Output from Min-Max Normalization

Min-Max normalisation technique is performed to scale value of data points between 0 and 1.

3.5 Dimensionality Reduction

Dimensionality reduction¹² techniques are adopted to scale down the number of covariates, dimensionality reduction technique is applied to group correlated features into new component vectors and prevent loss of information. Two techniques are compared for the purpose of study, Principle Component Analysis (PCA) and Nonnegative Matrix Factorization (NMF). PCA which tends to group both positively as well as negatively correlated components together (Ian Goodfellow, Yoshua Bengio, 2016). Whereas, NMF tends to find patterns among variable with the same direction of correlation.

اہ 🜔 ط ط ط	<pre>db_selected = db_minmax db_selected_labled = pd.concat([db_selected, merged_data["info"].ENROLL_CAT], axis=1) # labeling of selected subjects db_selected_labled.head(3)</pre>														
#	<pre>#PCA based dimensionality reduction pca targets = ['pl','p2','p3']</pre>														
p m	<pre>pca_targets = ['pl','p2','p3'] m_pca = pd.DataFrame(index=db_selected.index, columns=pca_targets)</pre>														
m	m_bu = pu bacariame index-ub_selected.index, columns=pu_cargets) model_pca = sklearnPCA(n_components=3)														
m	<pre>model_pow = Skteringer(n_components=5) m_pca[['p1','p2','p3']] = model_pow.fit_transform(db_selected)</pre>														
#	MMF based dimensi	onality reduc	tion												
n	nf_targets = ['n]	','n2']			.										
m	<pre>m_nmf = pd.DataFrame(index=db_selected.index, columns=nmf_targets)</pre>														
m	odel NMF = decomp	osition.NMF(n	components=2	. init='nnd	svda', max i	er=200)									
n n	odel_NMF = decomp _nmf[['nl', 'n2']	osition.NMF(n] = model_NMF	_components=2 .fit_transfor	, init='nnd	svda', max_i ed)	er=200)									
m m	odel_NMF = decomp _nmf[['nl', 'n2']	osition.NMF(n] = model_NMF	_components=2 .fit_transfor	, init='nnd	svda', max_i ed)	ser=200)									
m m	odel_NMF = decomp _nmf[['n1', 'n2'] pl	position.NMF(n] = model_NMF p2	_components=2 .fit_transfor p3	, init='nnd m(db_selecto n1	svda', max_i ed) n2	er=200)									
PAT	del_NMF = decomp nmf[['nl', 'n2'] pl	position.NMF(n] = model_NMF p2	_components=2 .fit_transfor p3	, init='nnd m(db_select n1	avda', max_i ed) n2	cer=200)									
PAT: 300	odel_NMF = decomp _nmf[('n1', 'n2'] p1 k0 0 -2.858799	<pre>position.NMF(n } = model_NMF p2 1.612145</pre>	_components=2 .fit_transfor p3 -0.913844	, init='nndo m(db_selecto n1 0.854110	avda', max_i ^{ed)} n2 0.091709	-er=200)									
PAT 300	del_NMF = decomp nmf[('n1', 'n2') p1 k0 0 -2.858799 1 0.715528	<pre>bosition.NMF(n) = model_NMF p2 1.612145 -1.962377</pre>	_components=2 .fit_transfor p3 -0.913844 1.095335	, init='nnd m(db_selecto n1 0.854110 0.658744	avda', max_i ad) n2 0.091709 0.498369	-er-200)									

Figure 7: Output from PCA and NMF Dimensionality Reduction technique

¹² https://scikit-learn.org/stable/modules/decomposition.html

Figure 8: Scatter plot from PCA and NMF vector components

3.6 Unsupervised Clustering

Clustering based on **Gaussian Mixture Modelling (GMM)**¹³ techniques generates data clusters by grouping similar data points based on their feature and correlation between the points. In proposed design data points are grouped into 3 clusters, where each cluster defines the risk of PD progression among the patient. These clusters are marked as Low, Medium and High referencing to progression rate.

Figure 9: Process of clustering PD cases based on risk of progression

¹³ https://scikit-learn.org/stable/modules/preprocessing.html

Figure 10: Process of clustering PD cases based on risk of progression

Comparative representation of resultant clusters generated by GMM model for both dimensionality reduction technique. NMF is best suited for clustering with non-negative gaussian data. PCA it is ideal for pattern recognition and dimension reduction.

3.7 Modelling and Training

For the purpose of study, a comparative study on various classification algorithm is conducted to determine the classification accuracy on this dataset. List of selected models are: Nearest Neighbours, Support Vector Machine (SVM), Decision Tree, Random Forest Classifier, AdaBoost, XGBoost, Multilayer Perceptron learning (MLP)

• Step 1: Split into Train/Test data

Labelled baseline characteristic dataset is split into test and train set with split ratio of 0.2, for training and validation of built models.

Figure 11: Code logic to slit into train and test set

• Step 2: Training Tradition Classification Models

Figure 12: Code logic for training classification

• Step 3: Multilayer Perceptron Learning Model

After testing various structural combinations of layers and hyper-parameters, adopted state of art delivers model with best performance. In order to improve performance regularisation using Dropout layers are added and activation function ReLu and SoftMax are used in the structured model.

Figure 13: Output for deigned ML model architecture

Early stop function is assigned to training function to monitor the training rate and prevent overfitting. Model checkpoint saves model at every stage of improvement to deliver best performing model as resultant.

Figure 14: Learning curves for MLP model

From train and validation accuracy plot it can visualise that both curves show improvement with each epochs and progress close to each other this shows model is a good fit and we are not overfitting the data. Also, with increasing number of epochs accuracy of model is also improving steadily. From train and validation losses curve, it can be visualised that training and validation loss is decreasing with each epoch.

4 Evaluation

Models are evaluated over various evaluation metrics studied from (Kuhn and Johnson, 2013):

- **1. Matthews Correlation Coefficient:** MCC score measures prediction of accuracy for each class in multi class classification model.
- **2. Precision:** Precision is the measure to calculate ratio of true positive to the number of predicated positive results.
- **3. Recall:** Recall is the measure to calculate proportion of true positive with respect to all possible relevant data.
- **4. F1-Score:** F1-Score gives the harmonic mean from precision and recall values and is also called as f1 measure. Higher the F1-score better is the model performance.

5. Confusion Metrix: Confusion matrix results in number true positive prediction and miss classifications made by trained model for each class in multi class classification scenario.

0	nn_1 nn_1 nn_1 nn_1	pred = pred = pred = pred[0	nn_m (nn_ nn_p	odel.j pred> red.a	predict 0.5) stype(:	t(X_tes	st)																				
₽	arra	ay([1,	0, 0	, 0])																							
0	nnnn nn	result result i in : f nn_re lif nn_re lse: nn_re i in : f nn_re lse: nn_re lse: nn_re lse: nn_re lif nn_ rn_re lif nn_re lif nn_re lif nn_re lif nn_re lse: nn_re	= pd [['HC [['ac = nn, result sult. resu sult. sult. resu sult. resu sult. resu sult. resu sult.	.Data 	<pre>Frame(: D_l',]) = Y; lt.rest nn_rest ,'pred (c[i,'P] ,'pred (c[i,'pr] ,'pred nn_rest i,'actu ,'actu ,'actu c[i,'actu ,'actu ,'actu ,'actu</pre>	<pre>index="> index=" 'PD_m', test etat_inde alt)): [[0].as [](0].as [](0].as [](1] []'] [']</pre>	<pre>Y_test. , 'PD_h ex() stype(i HC' 0].asty PD_h' PD_h' 0] -= 0 'HC' 1[0] -= 'PD_h' 'PD_h' 'PD_h'</pre>	<pre>index, '']] = r nt) == pe(int) pe(int) : 1: 2:</pre>	colu n_pr 1: ==	nns=[ed 1:	('HC'	, ' Σ Ε	<u>,</u> ,	'PD_	_m',	'PD	_h',	, 'ac	st ua]	1',	'pred	a')))					
C+	1	PATNO	HC F	י ב_סי	PD_m P	D_h ad	ctual j	pred																			
		3620					нс	нс																			
		3651					HC	нс																			
		3264					HC	HC																			
	3	3812					HC	HC																			
	4	3169					HC	HĊ																			

Figure 15: Output from prediction of Test set data using MLP model

Above code block labels predicted values against actual values for the purpose of comparison and applying evaluation metrics over MLP the model.

Figure 16: Performance comparison of all models

In this research, performance of 7 different models are compared. Based on thorough evaluation of model with optimal selection of hyper parameters. Best performing model identified is SVM model with classification prediction accuracy of 87%.

0	Y_pred = mode	el.predict(X_t	:est)								
	<pre>print("Evaluation print("Mattheter print('Accuration print('F1 scot print('Recall print('Precise print('An clat confusion_mtx print('An confusion_mtx)</pre>	tion Result for www.correlation acy:',round(me pre:',round(me t:',round(me sion:',round(me sion:',round(me sification re a metrics.co fussion matri	or SVM mod on Coeffic etrics.acc etrics.fl_ rics.recal metrics.pr eport:\n', onfusion_m ix:\n',con	<pre>el\n") ient:", ro uracy_scor score(Y_te l_score(Y_ ecision_sc metrics.cl latrix(Y_te fusion_mtx</pre>	und(metrics.ma e(Y_test,Y_pre st,Y_pred,aver test,Y_pred,av ore(Y_test,Y_p assification_r st,Y_pred))	atthews_corrcoef(d),3)) "age='weighted'), "erage='weighted' "red,average='wei report(Y_test,Y_r	(Y_test,Y_pr ,3)) '),3)) ighted'),3)) pred))	red),3))			
Đ	Evalution Res	ult for SVM m	odel								
	Matthews Corr Accuracy: 0.8 Fl score: 0.8 Recall: 0.867 Precision: 0.	relation Coeff 167 159 868	icient: 0	.818							
	clasificatio	on report:	rogall	fl score	gupport						
		precision	recall	II-SCOLE	support						
		0.91	1.00	0.96	32						
		0.79	0.88	0.84	26						
		0.88	0.61	0.72	23						
		0.90	1.00	0.95							
	accuracy			0.87	90						
	macro avg	0.87	0.87	0.86	90						
	weighted avg	0.87	0.87	0.86	90						
	confussion m [[32 0 0 [1 23 2 0 [2 6 14 1 [0 0 0 9	atrix: 0] 0] 1]									

Figure 17: Result of various evaluation metrics from SVM model

Results from various evaluation metrics states that SVM model is capable to classify class of PD progression with 87% accuracy. Also, with good precision and recall score, MCC score of 0.82 state that model has good prediction accuracy for each individual class.

Figure 18: Confusion Matrix plot for test set prediction by SVM model

Above matrix plot is a confusion matrix. Plotted to visually understand the true positive classification and miss classifications in each class.

5 References

Ian Goodfellow, Yoshua Bengio, A. C. (2016) *Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville - Google Books, MIT Press.* Available at: https://books.google.com/books?hl=fa&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=d eep+learning&ots=MMV1gumDRV&sig=28lNwSUYLNWXXQhzxqzjPZOZg3s#v=onepag e&q&f=true%0Ahttps://books.google.co.uk/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fn d&pg=PR5&dq=deep+learning+goodfello.

Kuhn, M. and Johnson, K. (2013) *Applied predictive modeling*, *Applied Predictive Modeling*. doi: 10.1007/978-1-4614-6849-3.