~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analyticcs

Prasad Balasaheb Thorat
Student ID: 18185711

School of Computing
National College of Ireland

Supervisor: Dr Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Prasad Balasaheb Thorat
Student ID: x18185711
Programme: Data Analyticcs
Year: 2018
Module: MSc Research Project
Supervisor: Dr Christian Horn
Submission Due Date: 28/09/2020
Project Title: Configuration Manual
Word Count: XXX
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Prasad Balasaheb Thorat
x18185711

1 Hardware/Software Requirements

The configuration manual describes the steps required while running the scripts imple-
mented for the research project. This manual will help to run the code without any
problems. This manual also includes the information about hardware configuration of
the system in which code were executed. The minimum required configuration for the
system is also mentioned.

2 System Specification

2.1 Hardware Requirements

The hardware specifications of the system on which the research project is implemented
are as follows.

Processor: Intel Core i5 — 8265U CPU @ 1.60GHz 1.80GHz

RAM: 8 GB

Storage: 128GB SSD/1TB HDD

Operating System: 64-bit operating system, Windows 10 Home

2.2 Software Requirements

This research project used following programming tools.

1.Google Colaboratory (Cloud based Jupyter notebook environment),
2.Python version 3,

3.Microsoft Excel

4.0Overleaf

3 Enviroment Setup

3.1 Google Colaboratory

This section will help to setup Google Colaboratory enviroment. The following screen-
shots are included for better understanding.

(Welcome to Colaboratory

File Edit View Insert Runtime Tools Help

= Table of content X + Code + Text 2 Copy to Drive
= Table of contents

<> Getting started

Data sclence (O What is Colaboratory?

Machine learning Colaboratory, or ‘Colab' for short, allows you to write and execute Python in your browser, with

More resources X .

) « Zero configuration required
Machine learning examples o Free access to GPUS
Section o Easy sharing

Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab to find out more,

orjust get started below!

~ Getting started

The document that you are reading is not a static web page, but an interactive environment called a Colab notebook that lets you write and
execute code.

For example, here is a code cell with a short Python script that computes a value, stores it in a variable and prints the result:

[] seconds_in a day = 24 * 60 * 60
seconds_in_a_day

O seu00

Figure 1: Google Colaboratory Setup

4 Data Source

1. This research project used the dataset of histopathological images which are publicly
available as shown in Figure 2.

Lymphoma

Maligaant lymphoma is a cancer affecting lymph nodes. Three types of malignant lymphoma are represented in the ser: CLL (chronic lymphocytic leukernia), FL (follicular lymphoma), and MCL (mentle cell lymphoma).

The ability to distinguish classes of lymphoma from biopsies sectionad and stained with Hematoxylin/Eosin (H+E) would allow for morz consisten: and less demanding diagnosis of this disease. Only the most expert pathologists
specializing in thesz types of lymphomas zre able to consistently and accurately clessify these three lymphoma types from H+E-stained biopsies. The standard practice is to use class-specific probes n order to distinguish these classes
reliably.

The dataset prasented is a collection of samples preparad by different pathologists at different sites. There is 2 largs dagree of staining variation that one would normally expect from such samples.

Arandomly selectad image from 2ach class:

CLL L ‘ MCL

The source for this dataset is Elaine Jaffe (National Cancer Institute) and Nikita Orlov (National Institute on Aging).

Download this dataset

Wndchrm performance report

Figure 2: Data Source

2. Upload the downloaded dataset to google drive from gmail account. After that
mount the google drive to colab notebook as shown in Figure 3. Click on the url and
select the gmail account and enter the authentication code.

{ Dt et onind
bl Bime S8 8
Fe Ve et e T ey A

MRLRL:! (et v [y A

0 °fmvuog1 sl ot A

e et e ot e

I

[ot s Bl ina o g ot ol ol PR Gt s lsontt conlrecret izt s

Pt e atozatcn o

Figure 3: Mounting Drive

Google
Signin

Please copy this code, switch to your application and paste it there:

4/3AGUSHR- FD
dEbGGce3f19GyCub 11591wngsz32H3xdKzo7Iu3YFv-Gvk

Figure 4: Authentication Code

5 Implementation

Following are the necessary libraries that are required to build an image classification
model.

1. TensorFlow

2. NumPy

3. Matplotlib

4. opencv python

5. pandas

6. keras-preprocessing

7. Python Imaging Library(PIL)
8. keras.applications

9. Sklearn

5.1 Data Preprocessing

As a part of preprocessing, histogram normalization and image augmentation was per-
formed on entire dataset. The following Figure 5 shows the required libraries.

L. Histogram Normalization Final.ipynb

File Edit View Insert Runtime Tools Help Al changes saved

+ Code + Text

L—>
O
° import os
import cv2
O import numpy as np

import tensorflow as tf

from PIL import Image

import pandas as pd

import matplotlib.pyplot as plt

from PIL import ImageOps

from numpy import expand_dims

from matplotlib import pyplot as plt

from IPython.display import display, Math, Latex
import matplotlib.pyplot as plt

Figure 5: libraries for Augmentation and Histogram Normalization

The Figure 6 shows the function written for Data Augmentation. The function will
take path of all the images that needs to be augmented and will write the augmented im-
ages in respective folder. The augmentation methods available in tensorflow are applied.
Similarly The Figure 7 demonstrates the code for histogram normalization. A function

& Data_Augmentation.ipynb

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

<> €© from PIL import Image
import cw2

dest = "/Jcontent/gdrive/My Drive/Dataset/Augmentation/FL/"

def augmentation(path):

for image in os.listdir(path):

fmm paEn = ec-pethofefniEpath & feme)
img_ load = cv2._.imread(img_ path)

flippedrl = tf.image.flip left_right(img load)

fliprl = np.asarray(flippedrl)

cv2_imwrite(dest + image[:-4] + "_Ffliprl' + '_tif', fliprl)
rotated = tf.image.rot90(img load)

rot = np.asarray(rotated)

cv2_ imurite(dest + image[:-4] + '_rotateS®' + ' _tif', rot)

flippedud = tf.image.flip_up_down(img_load)

flipud = np.asarray(flippedud)
cv2_imwrite(dest + image[:-4] + "_flipud' + '.tif', flipud)
cropped = tf.image.central_crop(img_load, central_fraction=8.8)
crop = np.asarray(cropped)
cw2.imwrite(dest + image[:-4] + ' crop® + '.tif', crop)
L 1 src = "Jcontent/gdrive/My Driwve/Dataset/FL/"
if name = - main '

augmentation(src)

Figure 6: Function for data augmentation

~ Histogram Normalization

[1 def histo(fileName):
img = Image.open(fileName)
img = np.asarray(img)

flat = img.flatten()

hist = get_histogram(flat, 256)

#execute the fn
cs = cumsum(hist)

numerator & denomenator
nj = {(cs - cs.min()) * 255
N = cs.max() - cs.min()

re-normalize the cdf

cs =nj / N

cs = cs.astype(uintd"')

img_new = cs[flat]

put array back into original shape since we flattened it
img_new = np.reshape(img_new, img.shape)

return img_new

Figure 7: Function for Histogram Normalization

is written which will take all the images that need to be normalized and will write all
processed images into destination folder with for loop.

The images were accessed with the help of ImageDataGenerator. The images were
loaded into training and testing with ImageDataGenerator as shown below.

train = train_gen.flo from directory("/content/gdrive/My Drive/Augnented Normalized/train/",
class mode="catenorical’,
tanget size=(14, 14),
color mode="rgh",
shuffle=Trug,
batch size=3)

Figure 8: Loading Images with ImageDataGenerator

5.2 Execution of CNN and Transfer Learning

All the required libraries for execution of CNN and trasnfer learning with Inception_v3
and DenseNet121 are shown in figure below. The Figure 9 demonstrates the libraries
required for CNN execution.

° from keras.models import Sequential
from keras.layers.normalization import BatchNeormalization
from keras.layers.convolutional import Conw2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation, Flatten, Dropout, Dense,Reshape
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.utils import np_utils
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from keras.preprocessing import image
from sklearn.preprocessing import MultilabelBinarizer
import matplotlib.pyplot as plt
import os
import tensorflow as tf
from pathlib import Path
from keras.applications import densenet
from keras.models import Sequential, Model, load_model
from keras.preprocessing import image
import keras
import tensorflow as tf
from keras.models import Sequential,Input,Model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, Conv3D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import LeakyRelU
from keras.optimizers import Adam
from keras.losses import mae, sparse_categorical_crossentropy, binary_crossentropy , categorical_crossentropy

Figure 9: Required libraries for CNN

The Figure 10 demonstrates the architecture of CNN used in this research project.
For execution of transfer learning, the libraries shown in Figure 11 are imported.

model = Sequential()

model.add(Conv2D(filters = 16, kernel size = 3, padding = 'same', activation = 'relu’, input_shape = (224, 224, 3)))
model.add(Dropout(0.3))

model.add(MaxPooling2D(pool size = 3))

model.add(Conv2D(filters = 32, kernel_size = 3, padding = 'same', activation = 'relu'))
model.add(Dropout(8.3))
model . add(MaxPooling2D(pool size = 3))

model.add(Conv2D(filters = 64, kernel size = 3, padding = 'same', activation = 'relu'))
model.add(Dropout(8.3))
model. add(MaxPooling2D(paol size = 3))

model.add(Conv2D(filters = 128, kernel size = 3, padding = 'same', activation = 'relu'))
model.add(Dropout(8.3))

model.add(Flatten())
model.add(Dense(512, activation="relu'))
model.add(Dropout(8.3))

model.add(Dense(3, activation = 'softmax'))

model. compile(optimizer=Adam(8.0001), loss=categorical crossentropy, metrics=['accuracy'])
model. summary ()
return model

Figure 10: CNN Model

° from keras.models import Sequential
from keras.layers.normalization import BatchMormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Actiwvation, Flatten, Dropout, Dense,Reshape
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.utils import np_utils
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from keras.preprocessing import image
from keras.preprocessing.image import img_to_array
from sklearn.preprocessing import MultilabelBinarizer
import matplotlib.pyplot as plt
from sklearn.metrics import confusionimatr‘ixl
from mlxtend.plotting import plot_confusion_matrix
from keras.applications import densenet
from keras.models import Sequential, Model, load _model
from keras.preprocessing import image
import seaborn as sn
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from keras.application import DenseNet121
from tensorflow.keras import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow import keras

Figure 11: libraries for DenseNet121 and Inception_v3

5.3 Training and Validation Accuracy Plot
The training and validation graph was plotted with the help of code shown in Figure 12.

[1 # plot the model loss and accuracy
train_loss = model history.history[loss”]
train_acc = model_history.history['accuracy']

valid_loss = model history.history['val loss']

valid_acc = model_history.history['val _accuracy']
x = [(i+1) for i in range(len(train_loss))]

f,ax = plt.subplots(1,2, figsize=(12,5))
ax[@].plot(x, train_loss)

ax[0].plot(x, valid_loss)
ax[@].set_title("Loss plot™)
ax[@].set_xlabel("Epochs")
ax[0].set_ylabel("loss")
ax[0].legend(['train', 'valid'])

ax[1].plot(x, train_acc)
ax[1].plot(x, valid_acc)
ax[1].set_title("Accuracy plot")
ax[1].set_xlabel("Epochs")
ax[1].set_ylabel("acc"
ax[1].legend(['train', 'valid'])

plt.show()

Figure 12: Code for training and validation accuracy

6 Other Software Used

The documentation of the research finding is done with the help of overleaf. The Figure
13 demonstrates how overleaf is used for project documentation.

G Menu 2 Diks!

o ,a & Recompile

6.3 C;

b Review g share. @ submit

D vstory @ cnat

% Methodology.PNG

% Methodology_1.PNG

% Transfer Learning PNG
% Trasnfer Learning 1.PNG

% use_case_3 inception_after_augmenta..

% logos

Original Tnage Right: Transformed Inage}
I NCI_Logo_colourjpg tion}
v B text
B abstract.tex
B conclusion.tex
B declaration.tex
B design.tex
B evaluation.tex

[implementation.tex

7 Discussion

B introduction.tex
B methodology.tex

I relatedworktex

B Notes and meeting tex

1 esy
& refsbib

) researchProject.pdf 4 \label{} {\textbfiLayers} } & {\textbf{Information}} \\ \hline

B researchProject.tex

43 \hline
B titlepage.tex 44 -

Figure 13: Overleaf Code

References

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/
image/ImageDataGenerator

https://www.tensorflow.org/tutorials/images/data_augmentation
https://keras.io/api/preprocessing/image/
https://www.tensorflow.org/tutorials/keras/classification

https://matplotlib.org/tutorials/introductory/sample_plots.
html

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/tutorials/images/data_augmentation
https://keras.io/api/preprocessing/image/
https://www.tensorflow.org/tutorials/keras/classification
https://matplotlib.org/tutorials/introductory/sample_plots.html
https://matplotlib.org/tutorials/introductory/sample_plots.html

	Hardware/Software Requirements
	System Specification
	Hardware Requirements
	Software Requirements

	Enviroment Setup
	Google Colaboratory

	Data Source
	Implementation
	Data Preprocessing
	Execution of CNN and Transfer Learning
	Training and Validation Accuracy Plot

	Other Software Used

