

Configuration Manual

MSc Research Project Data Analytics

Harshal Milind Tayade Student ID: x18182763

School of Computing National College of Ireland

Supervisor: Dr. Rashmi Gupta

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Harshal Milind Tayade
Student ID:	x18182763
Programme:	Data Analytics
Year:	2020
Module:	MSc Research Project
Supervisor:	Dr. Rashmi Gupta
Submission Due Date:	28/09/2020
Project Title:	Configuration Manual
Word Count:	1319
Page Count:	14

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Harshal Milind Tayade
Date:	27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only				
Signature:				
Date:				
Penalty Applied (if applicable):				

Configuration Manual

Harshal Milind Tayade x18182763

1 Introduction

This configuration manual provides a high level overview of the hardware and software requirements to replicate the research. This manual will prove helpful in understanding the coding steps needed to reproduce this research right from setting up the execution environment to visualizing the model results. A step-by-step guide below is divided into different sections for simplicity.

2 Hardware Requirement

The project was implemented on a Lenovo Legion Y740 laptop with the configuration details mentioned in figure 2 $\,$

```
2
View basic information about your computer
Windows edition
   Windows 10 Home Single Language
                                                                                                                                                    Windows 10
   © 2019 Microsoft Corporation. All rights reserved.
                     Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz
   Processor:
   Installed memory (RAM): 16.0 GB (15.9 GB usable)
                                                                                                                                                                                      Lenovo.
   System type:
                        64-bit Operating System, x64-based processo
   Pen and Touch:
                         No Pen or Touch Input is available for this Display
                                                                                                                                                                                      Support Information
Computer name, domain, and workgroup settings
                        LAPTOP-J2188VEA
   Computer name:
                                                                                                                                                                                     Change settings
                        LAPTOP-J2188VEA
   Full computer name:
```

Figure 1: System Configuration

3 GPU Configuration

The project was implemented using Nvidia GeForce RTX 2060 with the configuration as shown in figure 3 $\,$

4 Software Requirement

The software packages mentioned in table 1 were used in project implementation

NVIDIA CONTROL PANEL Version 431.65 GeForce RTX 2060	System Information × System Information about your NVIDIA hardware and the system it's running on. Display Components System Information	NVIDIA.
	Zerms Details GeForce RTX 2060 CUDA Cores: 1920 GeForce RTX 2060 CUDA Cores: 1920 Memory interface: 192-bit Shared system me 6144 M8 GDDR6 Shared system me 6131 M8 Video BIOS version: 00.62E-0.00 Work Mexand	
	Seve Close	

Figure 2: System Configuration

Name	Version
Anaconda Navigator	1.9.12
Jupyter Notebook	6.0.3
CMD.exe prompt	0.1.1
Python	3.7
Spyder	4.1.3
Google Chrome	84.0
Tableau	Professional Edition
Overleaf	N/A
Microsoft PowerPoint	2020 Edition

Table 1: Required Software Packages

5 Programming Environment Setup

Python programming language was used for project implementation. To achieve this we adopted the Anaconda development environment whose dashboard is shown in figure 3. Anaconda hosts bundle of applications which are suitable programming, debugging, visualization and data-mining. For our project we considered Jupyter Notebook for code development and testing. For advanced debugging spyder was used.

Figure 3: Anaconda Programming Environment

5.1 Steps to setup the development, testing and debugging environment

1. Download the Anaconda Navigator Individual edition from the Official site 1

Figure 4: Anaconda Programming Environment

2. Install Jupyter Notebook and Spyder applications from the Home tab of Anaconda Navigator highlighted in figure 6

 $^{^{1}} https://www.anaconda.com/products/individual$

O Anaconda Navigator						-	o ×
	DA NAVIGATOR					Sign in to	Anaconda Cloud
👚 Home	Applications on tf	* Channels					Refresh
Environments	¢ jupyter	°	× °	° °	i î	¢	î
Learning	Notebook 6.0.3	PyCharm 2020.2	VS Code 1.48.0	CMD.exe Prompt 0.1.1	Glueviz 0.15.2	JupyterLab	
🗶 Community	Web-based, interactive computing notebook emironment. Edit and run human-readable docs while describing the data analysis.	Full-Featured Python IDE by JetBrains, Supports code completion, linting, debugging, and domain-specific enhancements for web development and data science.	Streamlined code editor with support for development operations like debugging, task running and version control.	Run a cmd.exe terminal with your current environment from Navigator activated	Multidimensional data visualization across files. Explore relationships within and among related datasets.	An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture.	
	Launch	Launch	Launch	Install	Install	Install	
	Ŷ	Ô	¢ IPtyl:	R	*		
	Orange 3 12:31 Component based data mining framework. Data visualization and data analysis for novice and expert. Interactive workflows with a large toolbox.	Powershell Prompt 0.0.1 Run a Powershell terminal with your current environment from Navigator activated	Qt Console 4.7.4 PyQt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calltips, and more.	RStudio 1.1456 A set of integrated tools designed to help you be more productive with R. Includes R essentials and notebooks.	Spyder 4.1.3 Scientific PYthon Development EnviRonment: Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features		
	Install	Instell	Instell	Install	Install		
Documentation							

Figure 5: Installing Jupyter and Spyder

3. Install CUDA version 10.1 from the officia NVIDIA developers website 2 and cUDNN version 7.6.5 compatible with CUDA 10.1 from cuDNN archive 3

elect Target Platform 🕄		
lick on the green buttons that des	ribe your target platform. Only supported platforms will be shown.	
Operating System	Windows Linux Mac OSX	
Architecture 🚯	x86_64	
Version	10 8.1 7 Server 2019 Server 2016 Server 2012 R2	
Installer Type 🚯	exe (network) exe (local)	
ownload Installer for Window	s 10 x86_64	
he base installer is available for d	ownload below.	
Base Installer		Download (2.4 GB)

Figure 6: Nvidia CUDA 10.1

4. Install the tensorflow environment in Anaconda using CMD. EXE prompt in the Navigator window and following executing commands from the Anaconda tensorflow website. 4

 $^{^{2}} https://developer.nvidia.com/cuda-10.1-download-archive$

 $^{^{3}} https://developer.nvidia.com/rdp/cudnn-archive#a-collapse765-101$

⁴https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

6 Dataset Aquistion

The research was carried out by sourcing a Zenodo website open to research dataset. This dataset consisted of different types of laryngeal tissue ragning from healthy to precancerous lesions. The dataset can be downloaded from the Zenodo website ⁵ by clicking the highlighted button.

Files (8.8 MB)		~
Name	Size	
laryngeal dataset.tar	8.8 MB	La Download
md5:aae9d2ed69a37138268d31763b723d70 😧		

7 Dataset Transformation

The sourced data is contained in zip file. The extracted files are structured in three folders. Each folder containing four other folders that represent different types of tissues. Figure 8 shows the original structuring.

1	> Pro	ject Code 🗧 laryngeal dataset		
		Alexan	Data modified	Trees
Quick access		Name	Date modified	type
Deskton		FOLD 1	04-10-2017 15:54	File folder
	<i>.</i>	FOLD 2	04-10-2017 16:04	File folder
Downloads	*	FOLD 3	04-10-2017 16:08	File folder
Documents	*			
E Pictures	*			


```
import os
import shutil
import tarfile
basePath = "C:\\Users\\Harshal\\Desktop\\Project Code"
tar = tarfile.open(basePath + "\\laryngeal dataset.tar"
) tar.extractall()
tissue_classes = ['He', 'Le', 'IPCL', 'Hbv']
for class_name in tissue_classes:
    try:
        os.makedirs(basePath + "\\dataset\\" + class_name)
except FileExistsError as exc:
        print(exc)
```

⁵https://zenodo.org/record/1003200#.XzXb7ChKhPa

These images are then restructured for binary classification into two folders. "Healthy" representing "he" folder images and "Cancerous" representing "Hbv", "IPCL" and "Le" folder images. This was automated using python script shown in the code.

8 Data Pre-Processing

The images required to be denoised using appropriate image processing technique. After analysis of literature review, we have implemented Gaussian Filtering in our code. We evaluated our proposed method by using BRISQUE image quality mertric. The coding snippets below describe the required libraries and pre-processing steps.

```
import shutil
import cv2
import cv2
import glob import Augmentor
import numpy as np
import numpy as np
import imme
import matplotlib.pyplot as plt
import imquality.brisque as brisque
import matplotlib.image as img
from PIL import Image, ImageFilter
from matplotlib import pyplot as plt
from pylab import array, plot, show, axis, arange, figure, uint8
from skimage import io, img.as.float
from skimage.restoration import denoise.nl.means, estimate.sigma from skimage.restoration import (denoise.tv.chambolle,
denoise.bilateral, denoise.wavelet, estimate.sigma)
from skimage import data, img.as.float
from skimage import io, img.as.float
from skimage import jo, img.as.float
from scimport job
from os import listdir
from os.path import isfile, join
```

```
import glob
os.chdir(basePath + "\\dataset\\")
for file in glob.glob('**\\*.png', recursive=True):
    img = cv2.imread(file)
    dst = cv2.GaussianBlur(img, (5,5), cv2.BORDER_DEFAULT)
    filename = file
    cv2.imwrite(filename, dst)
```

print("BRISQUE score of Gaussian Smoothing : ",brisque.score(dst))

9 Data Augmentation

As the data is from biomedical domain the challenge of smaller dataset size had to be overcome. This was solved using appropriate data augmentation techniques which included different geometric transformations shown in the below coding snippet. import shutil import cv2 import glob import Augmentor import numpy as np

he.images = Augmentor.Pipeline(basePath + "\\dataset\\He\\") ipcl.images = Augmentor.Pipeline(basePath + "\\dataset\\Le\\") hbv.images = Augmentor.Pipeline(basePath + "\\dataset\\Le\\") hbv.images = Augmentor.Pipeline(basePath + "\\dataset\\Hbv\\") he.images.rotate(probability=0.7, max.left.rotation=10, max.right.rotation=10) ipcl.images.rotate(probability=0.7, max.left.rotation=10, max.right.rotation=10) le.images.rotate(probability=0.7, max.left.rotation=10, max.right.rotation=10) he.images.com(probability=0.5, min.factor=1.1, max.factor=1.5) ipcl.images.zoom(probability=0.5, min.factor=1.1, max.factor=1.5) le.images.flip.left.right(probability=0.5) le.images.flip.left.right(probability=0.5) le.images.flip.left.right(probability=0.5) le.images.flip.top.bottom(probability=0.5) le.images.flip.top.bottom(probability=0.5) le.images.flip.top.bottom(probability=0.5) le.images.rotate(probability=0.7, max.left.rotation=10, max.right.rotation=10) hbv.images.rotate(probability=0.7, max.left.rotation=10, max.right.rotation=10) hbv.images.flip.left.right(probability=0.5) le.images.flip.top.bottom(probability=0.5) le.images.flip.top.bottom(probability=0.5) le.images.flip.top.bottom(probability=0.5) hbv.images.rotate(probability=0.7, max.left.rotation=10, max.right.rotation=10) hbv.images.flip.left.right(probability=0.5) hbv.images.flip.top.bottom(probability=0.5) hbv.images.flip.top.bottom(probability=0.5)

Figure 9: Data Augmentation Pipeline Output

10 Data Modelling

All the models are designed and implemented using keras library for deep learning and Anaconda Jupyter Notebook. For implementing the two baseline models i.e. Convolutional Neural Network and DenseNet121 based transfer learning models we have created three folders named train, validate and test as shown in the below code.

```
dataset.dir = "\\content\\data\\"
train.dir = "\\content\\train\\"
val.dir = "\\content\\val\\"
test.dir = "\\content\\test\\"
train.ratio = 0.8
val.ratio = 0.1
test.ratio = 0.1
```

10.1 Baseline 1 - CNN model

The CNN model was designed from scratch using the configuration shown in below snippet. The libraries required for the model implementation is also shown in the following code snippet.

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.callbacks import TensorBoard
import tensorflow

classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape=(100, 100, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool.size=(2,2), strides=2)) # if stride not given it equal to pool filter size
classifier.add(MaxPooling2D(pool.size=(2,2), strides=2))
classifier.add(Flatten())
classifier.add(Flatten())
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=2, activation='relu'))
```

The model was trained using different hyper-parameters which are included in the code below.

The CNN model was evaluated on different metrics. The evaluation code snippet along with visualized results are shown in figure 10

```
from keras.optimizers import SGD
opt = SGD(lr=0.001)
classifier.compile(loss = "categorical_crossentropy", optimizer = opt, metrics=['accuracy'])
```

```
from sklearn.metrics import classification.report, confusion.matrix
#Confution Matrix and Classification Report
Y.pred = classifier.predict.generator(val.set, steps = 4950)
y.pred = np.argmax(Y.pred, axis=1)
print('Confusion.matrix(val.set.classes, y.pred))
print('Classification.report')
target_names = ['Healthy', 'Cancerous']
print(classification.report(val.set.classes, y.pred) total=sum(sum(cm))

cm = confusion.matrix calculate accuracy accuracy1=(cm[0,0]+cm[1,1])/total
print ('Accuracy : ', accuracy]
sensitivity1 = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity1 )
specificity1 = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity1)
```

WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 4950 batches). You may need to use the repeat() function when building your dataset. Confusion Matrix [[939 51] [154 836]] Classification Report recall f1-score support precision Healthy 0.86 0 95 0.90 990 Unhealthy 0.94 0.84 0.89 990 0.90 1980 accuracy 0.90 macro avg 0.90 0.90 1980 weighted avg 0.90 0.90 0.90 1980 Accuracy : 0.8964646464646465 Sensitivity : 0.94848484848484848485 Specificity : 0.84444444444444444

Figure 10: CNN Model Evaluation

10.2 Baseline 2 - Dense-Net 121 model

The transfer learning Dense-Net 121 model was designed using the keras api library ⁶. The model is trained on "ImageNet" dataset. The library and configuration parameters is shown in figure 11

```
from keras.application import DenseNet121
base_model = DenseNet121(weights='imagenet',include_top=False, input_shape=(100,100,3)) #imports the INception model
and discards the last 1000 neuron layer.
x = base_model.output
x = Flatten(name="Flatten")(x)
x = Dropout(0.5)(x)
preds = Dense(2,activation = 'softmax')(x) #final layer with softmax activation
densent_model = Model(inputs = base_model.input,outputs = preds)
#specify the inputs
#specify the outputs
#now a model has been created based on our architecture
print(densent_model.summary())
           Model: "functional 33"
           Layer (type)
                                         Output Shape
                                                            Param #
                                                                       Connected to
                        ------
           input_15 (InputLayer)
                                         [(None, 100, 100, 3) 0
```

```
zero_padding2d_16 (ZeroPadding2 (None, 106, 106, 3) 0
                                                             input_15[0][0]
conv1/conv (Conv2D)
                             (None, 50, 50, 64) 9408
                                                             zero_padding2d_16[0][0]
conv1/bn (BatchNormalization) (None, 50, 50, 64) 256
                                                             conv1/conv[0][0]
conv1/relu (Activation)
                            (None, 50, 50, 64) 0
                                                             conv1/bn[0][0]
zero_padding2d_17 (ZeroPadding2 (None, 52, 52, 64) 0
                                                             conv1/relu[0][0]
pool1 (MaxPooling2D)
                              (None, 25, 25, 64) 0
                                                             zero_padding2d_17[0][0]
conv2_block1_0_bn (BatchNormali (None, 25, 25, 64) 256
                                                             pool1[0][0]
```

Figure 11: Dense-Net 121 model Configuration

```
from keras.optimizers import SGD
opt = SGD(lr=0.001)
densent_model.compile(loss = "categorical_crossentropy", optimizer = opt, metrics=['accuracy'])
fit_history = densent_model.fit_generator(train_set,
```

```
steps.per.epoch=step.size_train,
epochs = 10,
validation.data = val.set,
validation.steps = step.size_val)
```

 $^{6} \rm https://keras.io/api/applications/densenet/$

Epoch 1/10 990/990 [===================================	racy:
Epoch 2/10 990/990 [===================================	racy:
Epoch 3/10 990/990 [===================================	racy:
Epoch 4/10 990/990 [===================================	racy:
Epoch 5/10 990/990 [racy:
Epoch 6/10 990/990 [===================================	accur

Figure 12: Dense-Net 121 model Training

The Dense-Net 121 model was trained based on the hyper parameters shown in the code snippet 12. Every epoch monitors the accuracy and loss for training and validation set.

```
from sklearn.metrics import classification.report, confusion.matrix
#Confution Matrix and Classification Report
Y.pred = densent.model.predict.generator(val.set, steps = 4950)
y.pred = np.argmax(Y.pred, axis=1)
print('Confusion.matrix(val.set.classes, y.pred))
print('Confusion.matrix(val.set.classes, y.pred))
print('Classification.report('Val.set.classes, y.pred, target.names=target.names))
cm = confusion.matrix(val.set.classes, y.pred)
total=sum(sum(cm))
#from confusion matrix calculate accuracy
accuracy1=(cm[0,0]+cm[1,1])/total
print ('Accuracy : ', accuracy1)
sensitivity1 = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity1)
```

WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 4950 batches). You may need to use the repeat() function when building your dataset. Confusion Matrix [[828 162]

[327 663]]	n Penort			
Classificacio	precision	recall	f1-score	support
Healthy	0.72	0.84	0.77	990
Unhealthy	0.80	0.67	0.73	990
accuracy macro avg weighted avg	0.76	0.75	0.75 0.75 0.75	1980 1980 1980
Accuracy : 0 Sensitivity : Specificity :	0.7530303030303 0.83636363 0.66969696	0303 63636363 96969697	0.75	1900

Figure 13: Dense-Net 121 model Evaluation

The Dense-Net 121 is evaluated using the code snippet shown in figure 13

10.3 Attention-based Multiple Instance Learning

This section explains the implementation for our novel method in detection of laryngeal cancer. We have designed this code by referring to (Ilse et al.; 2018; Wang et al.; 2018). The code is arranged using modular design using functions and classes wherever appropriate. This will help the user in reproducing the results in easy manner. The main class contains the basepath of the dataset and K-fold cross validation parameters. The main function calls two methods. First method loads the data and second method trains, tests and returns the model evaluation. The snippet below summarizes the main method.

The coding snippet denote the libraries that were used for implementation of our novel MIL technique. They comprise of standard python libraries, keras libraries, file handling libraries and visualization libraries.

```
import os
import cv2
import sys
import time
import glob
import random
import imageio
import argparse
import threading
import numpy as np
import scipy.misc as sci
import tensorflow as tf
import matplotlib.pyplot as plt
from random import shuffle
from keras import backend as K
from keras.models import Model
from keras.layers import Layer
from keras.optimizers import SGD,Adam
from keras.regularizers import 12
from keras.utils import multi_gpu_model
from keras import activations, initializers, regularizers
from keras.layers import Input, Dense, Layer, Dropout, Conv2D, MaxPooling2D, Flatten, multiply
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping
 Import
from sklearn.model_selection import KFold
```

Based on the K-fold cross validation the data from Healthy and Cancerous image folders are shuffles into train and test set. Different images in each set during every fold execution shown in the following code. Here we have used 3-fold cross validation.

```
def load.data(dataset.path, n_folds, random_state):
    p.path = glob.glob(dataset.path+"\\Healthy\\*.png")
    n.path = glob.glob(dataset.path+"\\Cancerous\\*.png")
    p_num = len(p.path)
    n_num = len(n.path)
    all.path = p.path + n.path
    kf = KFold(n.splits=n_folds, shuffle=True, random_state=random_state)
    datasets = []
    for train.idx, test.idx in kf.split(all.path):
        dataset =
        dataset['train'] = [all.path[ibag] for ibag in train.idx]
        datasets.append(dataset)
    return datasets
```

The model_training() function in the depicted code snippet handles the code execution

from creating train and test bags, batch generation for each phase, model training and testing to result generation.

```
def model_training(input_dim, dataset, irun, ifold):
    train_bags = dataset['train']
    test_bags = dataset['test']
    # convert bag to batch
    train.set = generate_batch(train_bags)
    test_set = generate_batch(test_bags)
    model = cell_network(input_dim, useMulGpu=False)
    # train model
    t1 = time()
    num_batch = len(train.set)
    #for epoch in range(10):
    model_name = train.eval(model, train.set, irun, ifold)
    print("load saved model weights")
    model.load.weights(model_name)
    test_loss, test_acc = test_eval(model, test_set)
    t2 = time.time()
    print ('run time:', (t2 - t1) / 60.0, 'min')
    print ('test_acc=:.3f'.format(test_acc))
    return test_acc
```

We create image bags for training based on the class label of the image. The function in the below code returns bag of image containing image data and labels.

```
def generate.batch(path):
    bags = []
    for each.path in path:
        name.img = []
        img = []
        img = []
        img.path = glob.glob(each.path)
        num.ins = len(img.path)
        label = each.path.split('\\')[-2]
        if label = - 'Healthy':
            curr.label = np.ones(num.ins, dtype=np.uint8)
        else:
            curr.label = np.zeros(num.ins, dtype=np.uint8)
        for each.img in img.path:
            img.data = cv2.imread(each.img, cv2.IMREAD.UNCHANGED).astype(float)
            scale.percent = 50
            width = 64
            height = 64
            height = 64
            img.data[:, :, 0] -= 123.68
            img.data[:, :, 0] -= 123.68
            img.data[:, :, 2] -= 103.939
            img.data /= 255
            img.apend(np.expand.dims(img.data, 0))
                 name.img.append(each.img.split('\\')[-1])
        stack.img = np.concatenate(img, axis=0)
            bags.append((stack.img, curr.label, name.img))
        return bags
```

```
def cell_net(input_dim, useMulGpu=False):
         lr = 1e-2
         weight_decay = 0.005
         momentum = 0.9
         data.input = Input(shape=input.dim, dtype='float32', name='input')
conv1 = Conv2D(36, kernel.size=(4,4), kernel.regularizer=12(weight.decay), activation='relu')(data.input)
         conv1 = Conv2D(36, kernel_size=(4, 
conv1 = MaxPooling2D((2,2))(conv1)
         conv2 = Conv2D(48, kernel_size=(3,3), kernel_regularizer=12(weight_decay), activation='relu')(conv1)
         conv2 = MaxPooling2D((2,2))(conv2)
         x = Flatten()(conv2)
         fc1 = Dense(512, activation='relu',kernel_regularizer=12(weight_decay), name='fc1')(x)
         fc1 = Dropout(0.5)(fc1)
fc2 = Dense(512, activation='relu', kernel_regularizer=12(weight_decay), name='fc2')(fc1)
         fc2 = Dropout(0.5)(fc2)
         alpha = Mil_Attention(L_dim=128, output_dim=1, kernel_regularizer=12(weight_decay), name='alpha',
                   use_gated=False) (fc2)
         x_mul = multiply([alpha, fc2])
         out = Last_Sigmoid(output_dim=1, name='FC1_sigmoid')(x_mul)
         model = Model(inputs=[data_input], outputs=[out])
         if useMulGpu == True:
                  parallel_model = multi_gpu_model(model, gpus=2)
parallel_model.compile(optimizer=Adam(lr=lr, beta_1=0.9, beta_2=0.999), loss=bag_loss,
                   metrics=[bag_accuracy,
                   tf.keras.metrics.TruePositives(),tf.keras.metrics.FalsePositives(), tf.keras.metrics.FalseNegatives()])
         else:
                   model.compile(optimizer=Adam(lr=lr, beta_1=0.9, beta_2=0.999), loss=bag_loss, metrics=[bag_accuracy, bag_loss], tf.keras.metrics.TruePositives(), tf.keras.metrics.FalsePositives(),
                   tf.keras.metrics.FalseNegatives()])
                   parallel_model = model
         return parallel_model
```

The function cell_network() in the code defines the MIL model architecture consisting of the attention-based MIL pooling. All the hyper-parameters are set in this function.

The MIL attention class consists of multiple functions that perform the transformations defined in the pooling mechanism. Based on the hyper-parameter values and kernel configuration the constructor function initializes the data variables. The build function averages the weights generated by the convolutional network. The call function introduces the "tanh" product based on the attention mechanism.

<pre>def bag-accuracy(y_true, y_pred): y_true = K.mean(y_true, axis=0, keepdims=False) y_pred = K.mean(y_pred, axis=0, keepdims=False) acc = K.mean(K.equal(y_true, K.round(y_pred))) return acc</pre>	
<pre>def bag_loss(y_true, y_pred): y_true = K.mean(y_true, axis=0, keepdims=False) y_pred = K.mean(y_pred, axis=0, keepdims=False) loss = K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1) return loss</pre>	

The code shows the custom function used to evaluate the train/validation accuracy and loss for each fold.

A	В	C D	E	F	G	н	1	J	К	L
1 true_negatives	2707.1958	true_positives	262.0132		false_negatives	774.0994		false_positives	186.662	
2 true_negatives	8118.8174	true_positives	1814.9043		false_negatives	1495.185		false_positives	1233.974	
3 true_negatives	13643.8838	true_positives	3749.113		false_negatives	1798.539		false_positives	2204.299	
4 true_negatives	19440.7109	true_positives	5842.5439		false_negatives	1949.222		false_positives	2896.236	
5 true_negatives	25512.9141	true_positives	8014.6948		false_negatives	2046.483		false_positives	3287.649	
6 true_negatives	31683.6523	true_positives	10198.4805		false_negatives	2126.21		false_positives	3586.497	
7 true_negatives	37892.3203	true_positives	12391.875		false_negatives	2206.338		false_positives	3837.316	
8 true_negatives	44195.9375	true_positives	14565.125		false_negatives	2274.712		false_positives	4024.957	
9 true_negatives	50532.5234	true_positives	16756.1055		false_negatives	2340.566		false_positives	4164.717	
10 true_negatives	56896.3438	true_positives	18947.4805		false_negatives	2405.13		false_positives	4277.784	
11 true_negatives	63259.0703	true_positives	21140.4844		false_negatives	2481.118		false_positives	4379.075	
12 true_negatives	69634.4844	true_positives	23334.9609		false_negatives	2554.434		false_positives	4468.94	
13 true_negatives	76033.9766	true_positives	25524.627		false_negatives	2614.884		false_positives	4552.261	
14 true_negatives	82397.4062	true_positives	27748.2754		false_negatives	2669.829		false_positives	4643.327	
15 true_negatives	88795.7422	true_positives	29935.1914		false_negatives	2721.786		false_positives	4739.244	
16 true_negatives	95175.2734	true_positives	32155.627		false_negatives	2772.089		false_positives	4821.866	
17 true_negatives	101566.3281	true_positives	34370.8516		false_negatives	2818.838		false_positives	4901.844	
18 true_negatives	107933.2031	true_positives	36587.707		false_negatives	2869.318		false_positives	5000.329	
19 true_negatives	114339.3594	true_positives	38792.1836		false_negatives	2918.209		false_positives	5074.118	
20 true_negatives	120756.0938	true_positives	40997.0039		false_negatives	2957.985		false_positives	5145.558	
21										
22 Mean	60525.76184		20156.4624			2339.749			3871.333	
23										
24										
25										
26										
27										
28										
29										
fold1 fold3 fold2 graph • • •										

Figure 14: Excel for Metric Calculation

The figure 14 shows the collection of True Positives, True Negatives, False Positives and False Negatives from each epoch in a tabular format in excel. They were used to calculate sensitivity, specificity and F1 score.

The code for our proposed MIL architecture is referred from the GitHub⁷.

References

Ilse, M., Tomczak, J. M. and Welling, M. (2018). Attention-based deep multiple instance learning, *Conference Proceeding*.

Wang, X., Yan, Y., Tang, P., Bai, X. and Liu, W. (2018). Revisiting multiple instance neural networks, *Pattern Recognition* 74: 15–24.

 $^{^{7}} https://github.com/utayao/Atten_Deep_MIL$