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Configuration Manual

Harshal Milind Tayade
x18182763

1 Introduction

This configuration manual provides a high level overview of the hardware and software
requirements to replicate the research. This manual will prove helpful in understanding
the coding steps needed to reproduce this research right from setting up the execution
environment to visualizing the model results. A step-by-step guide below is divided into
different sections for simplicity.

2 Hardware Requirement

The project was implemented on a Lenovo Legion Y740 laptop with the configuration
details mentioned in figure 2

Figure 1: System Configuration

3 GPU Configuration

The project was implemented using Nvidia GeForce RTX 2060 with the configuration as
shown in figure 3

4 Software Requirement

The software packages mentioned in table 1 were used in project implementation
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Figure 2: System Configuration

Name Version
Anaconda Navigator 1.9.12
Jupyter Notebook 6.0.3
CMD.exe prompt 0.1.1

Python 3.7
Spyder 4.1.3

Google Chrome 84.0
Tableau Professional Edition
Overleaf N/A

Microsoft PowerPoint 2020 Edition

Table 1: Required Software Packages

5 Programming Environment Setup

Python programming language was used for project implementation. To achieve this
we adopted the Anaconda development environment whose dashboard is shown in figure
3. Anaconda hosts bundle of applications which are suitable programming, debugging,
visualization and data-mining. For our project we considered Jupyter Notebook for code
development and testing. For advanced debugging spyder was used.
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Figure 3: Anaconda Programming Environment

5.1 Steps to setup the development, testing and debugging en-
vironment

1. Download the Anaconda Navigator Individual edition from the Official site 1

Figure 4: Anaconda Programming Environment

2. Install Jupyter Notebook and Spyder applications from the Home tab of Anaconda
Navigator highlighted in figure 6

1https://www.anaconda.com/products/individual
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Figure 5: Installing Jupyter and Spyder

3. Install CUDA version 10.1 from the officia NVIDIA developers website 2 and cUDNN
version 7.6.5 compatible with CUDA 10.1 from cuDNN archive 3

Figure 6: Nvidia CUDA 10.1

4. Install the tensorflow environment in Anaconda using CMD.EXE prompt in the
Navigator window and following executing commands from the Anaconda tensor-
flow website. 4

2https://developer.nvidia.com/cuda-10.1-download-archive
3https://developer.nvidia.com/rdp/cudnn-archive#a-collapse765-101
4https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/
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6 Dataset Aquistion

The research was carried out by sourcing a Zenodo website open to research dataset.
This dataset consisted of different types of laryngeal tissue ragning from healthy to pre-
cancerous lesions. The dataset can be downloaded from the Zenodo website 5 by clicking
the highlighted button.

Figure 7: Dataset Download

7 Dataset Transformation

The sourced data is contained in zip file. The extracted files are structured in three
folders. Each folder containing four other folders that represent different types of tissues.
Figure 8 shows the original structuring.

Figure 8: Original folders of the dataset

import os
import shutil
import tarfile

basePath = "C:\\Users\\Harshal\\Desktop\\Project Code"
tar = tarfile.open(basePath + "\\laryngeal dataset.tar"
) tar.extractall()

tissue classes = [’He’, ’Le’, ’IPCL’, ’Hbv’]
for class name in tissue classes:

try:
os.makedirs(basePath + "\\dataset\\" + class name)

except FileExistsError as exc:
print(exc)

5https://zenodo.org/record/1003200#.XzXb7ChKhPa
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folders = ["FOLD 1", "FOLD 2", "FOLD 3"]
classes = ["He", "Hbv", "Le", "IPCL"]
for folder in folders:

for class name in classes:
if class name == "He":

new class = classes[0]
elif class name == "Hbv":

new class = classes[1]
elif class name == "Le":

new class = classes[2]
elif class name == "IPCL":

new class = classes[3]
try:

for image in os.listdir(basePath + "\\laryngeal dataset\\" + folder + "\\" + class name):
shutil.copy2(basePath + "\\laryngeal dataset\\" + folder + "\\" + class name + "\\" +

image, basePath + "\\dataset\\" + new class)
except FileExistsError as exc:

print(exc)

These images are then restructured for binary classification into two folders. ”Healthy”
representing ”he” folder images and ”Cancerous” representing ”Hbv”, ”IPCL” and ”Le”
folder images. This was automated using python script shown in the code.

8 Data Pre-Processing

The images required to be denoised using appropriate image processing technique. After
analysis of literature review, we have implemented Gaussian Filtering in our code. We
evaluated our proposed method by using BRISQUE image quality mertric. The coding
snippets below describe the required libraries and pre-processing steps.

import shutil
import cv2
import os
import glob import Augmentor
import numpy as np
import time
import matplotlib.pyplot as plt
import imquality.brisque as brisque
import matplotlib.pyplot as plt
import matplotlib.image as img
from PIL import Image, ImageFilter
from matplotlib import pyplot as plt
from pylab import array, plot, show, axis, arange, figure, uint8
from skimage import io, img as float
from skimage.restoration import denoise nl means, estimate sigma from skimage.restoration import (denoise tv chambolle,
denoise bilateral, denoise wavelet, estimate sigma)
from skimage import data, img as float
from skimage import io, img as float
from sklearn.datasets import load files
from glob import glob
from os import listdir
from os.path import isfile, join

import glob
os.chdir(basePath + "\\dataset\\")
for file in glob.glob(’**\\*.png’, recursive=True):

img = cv2.imread(file)
dst = cv2.GaussianBlur(img,(5,5),cv2.BORDER DEFAULT)
filename = file
cv2.imwrite(filename,dst)

print("BRISQUE score of Gaussian Smoothing : ",brisque.score(dst))

9 Data Augmentation

As the data is from biomedical domain the challenge of smaller dataset size had to
be overcome. This was solved using appropriate data augmentation techniques which
included different geometric transformations shown in the below coding snippet.
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import shutil
import cv2
import glob
import Augmentor
import numpy as np

he images = Augmentor.Pipeline(basePath + "\\dataset\\He\\")
ipcl images = Augmentor.Pipeline(basePath + "\\dataset\\IPCL\\")
le images = Augmentor.Pipeline(basePath + "\\dataset\\Le\\")
hbv images = Augmentor.Pipeline(basePath + "\\dataset\\Hbv\\")

he images.rotate(probability=0.7, max left rotation=10, max right rotation=10)
ipcl images.rotate(probability=0.7, max left rotation=10, max right rotation=10)
le images.rotate(probability=0.7, max left rotation=10, max right rotation=10)

he images.zoom(probability=0.5, min factor=1.1, max factor=1.5)
ipcl images.zoom(probability=0.5, min factor=1.1, max factor=1.5)
le images.zoom(probability=0.5, min factor=1.1, max factor=1.5)

he images.flip left right(probability=0.5)
ipcl images.flip left right(probability=0.5)
le images.flip left right(probability=0.5)

he images.flip top bottom(probability=0.5)
ipcl images.flip top bottom(probability=0.5)
le images.flip top bottom(probability=0.5)

hbv images.rotate(probability=0.7, max left rotation=10, max right rotation=10)
hbv images.zoom(probability=0.5, min factor=1.1, max factor=1.5)
hbv images.flip left right(probability=0.5)
hbv images.flip top bottom(probability=0.5)

Figure 9: Data Augmentation Pipeline Output

10 Data Modelling

All the models are designed and implemented using keras library for deep learning and
Anaconda Jupyter Notebook. For implementing the two baseline models i.e. Convolu-
tional Neural Network and DenseNet121 based transfer learning models we have created
three folders named train, validate and test as shown in the below code.

dataset dir = "\\content\\data\\"
train dir = "\\content\\train\\"
val dir = "\\content\\val\\"
test dir = "\\content\\test\\"
train ratio = 0.8
val ratio = 0.1
test ratio = 0.1

10.1 Baseline 1 - CNN model

The CNN model was designed from scratch using the configuration shown in below snip-
pet. The libraries required for the model implementation is also shown in the following
code snippet.
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from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.callbacks import TensorBoard
import tensorflow

classifier = Sequential()
classifier.add(Conv2D(32,(3,3),input shape=(100,100,3),activation = ’relu’))
classifier.add(MaxPooling2D(pool size=(2,2),strides=2)) # if stride not given it equal to pool filter size
classifier.add(Conv2D(32,(3,3),activation = ’relu’))
classifier.add(MaxPooling2D(pool size=(2,2),strides=2))
classifier.add(Flatten())
classifier.add(Dense(units=128,activation=’relu’))
classifier.add(Dense(units=2,activation=’softmax’))

The model was trained using different hyper-parameters which are included in the
code below.

The CNN model was evaluated on different metrics. The evaluation code snippet
along with visualized results are shown in figure 10

from keras.optimizers import SGD
opt = SGD(lr=0.001)
classifier.compile(loss = "categorical crossentropy", optimizer = opt, metrics=[’accuracy’])

from sklearn.metrics import classification report, confusion matrix
#Confution Matrix and Classification Report
Y pred = classifier.predict generator(val set, steps = 4950)
y pred = np.argmax(Y pred, axis=1)
print(’Confusion Matrix’)
print(confusion matrix(val set.classes, y pred))
print(’Classification Report’)
target names = [’Healthy’, ’Cancerous’]
print(classification report(val set.classes, y pred, target names=target names))

cm = confusion matrix(val set.classes, y pred) total=sum(sum(cm))

#from confusion matrix calculate accuracy accuracy1=(cm[0,0]+cm[1,1])/total
print (’Accuracy : ’, accuracy1)

sensitivity1 = cm[0,0]/(cm[0,0]+cm[0,1])
print(’Sensitivity : ’, sensitivity1 )

specificity1 = cm[1,1]/(cm[1,0]+cm[1,1])
print(’Specificity : ’, specificity1)

Figure 10: CNN Model Evaluation
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10.2 Baseline 2 - Dense-Net 121 model

The transfer learning Dense-Net 121 model was designed using the keras api library 6.
The model is trained on ”ImageNet” dataset. The library and configuration parameters
is shown in figure 11

from keras.application import DenseNet121

base model = DenseNet121(weights=’imagenet’,include top=False, input shape=(100,100,3)) #imports the INception model
and discards the last 1000 neuron layer.

x = base model.output
x = Flatten(name="Flatten")(x)
x = Dropout(0.5)(x)
preds = Dense(2,activation = ’softmax’)(x) #final layer with softmax activation

densent model = Model(inputs = base model.input,outputs = preds)
#specify the inputs
#specify the outputs
#now a model has been created based on our architecture

for layer in densent model.layers[:-10]:
layer.trainable = True

print(densent model.summary())

Figure 11: Dense-Net 121 model Configuration

from keras.optimizers import SGD
opt = SGD(lr=0.001)
densent model.compile(loss = "categorical crossentropy", optimizer = opt, metrics=[’accuracy’])

fit history = densent model.fit generator(train set,
steps per epoch=step size train,
epochs = 10,
validation data = val set,
validation steps = step size val)

6https://keras.io/api/applications/densenet/
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Figure 12: Dense-Net 121 model Training

The Dense-Net 121 model was trained based on the hyper parameters shown in the
code snippet 12. Every epoch monitors the accuracy and loss for training and validation
set.

from sklearn.metrics import classification report, confusion matrix

#Confution Matrix and Classification Report
Y pred = densent model.predict generator(val set, steps = 4950)
y pred = np.argmax(Y pred, axis=1)
print(’Confusion Matrix’)
print(confusion matrix(val set.classes, y pred))
print(’Classification Report’)
target names = [’Healthy’, ’Unhealthy’]
print(classification report(val set.classes, y pred, target names=target names))

cm = confusion matrix(val set.classes, y pred)
total=sum(sum(cm))

#from confusion matrix calculate accuracy
accuracy1=(cm[0,0]+cm[1,1])/total
print (’Accuracy : ’, accuracy1)

sensitivity1 = cm[0,0]/(cm[0,0]+cm[0,1])
print(’Sensitivity : ’, sensitivity1 )

specificity1 = cm[1,1]/(cm[1,0]+cm[1,1])
print(’Specificity : ’, specificity1)

Figure 13: Dense-Net 121 model Evaluation

The Dense-Net 121 is evaluated using the code snippet shown in figure 13
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10.3 Attention-based Multiple Instance Learning

This section explains the implementation for our novel method in detection of laryngeal
cancer. We have designed this code by referring to (Ilse et al.; 2018; Wang et al.; 2018).
The code is arranged using modular design using functions and classes wherever appro-
priate. This will help the user in reproducing the results in easy manner. The main class
contains the basepath of the dataset and K-fold cross validation parameters. The main
function calls two methods. First method loads the data and second method trains, tests
and returns the model evaluation. The snippet below summarizes the main method.

import numpy as np

if name == " main ":
input dimensions = (64,64,3)
run = 1
n folds =3
acc = np.zeros((run, n folds), dtype=float)
data path = "E:\\Laryngeal Dataset\\MIL-dataset"
for irun in range(run):

dataset=load dataset(dataset path=data path, n folds=n folds, rand state=irun)
for ifold in range(n folds):

print (’run=’, irun, ’ fold=’, ifold)
accuracy[irun][ifold] = model training(input dimensions, dataset[ifold], irun, ifold)

print (’minet mean accuracy = ’, np.mean(accuracy))
print (’std = ’, np.std(accuracy))

The coding snippet denote the libraries that were used for implementation of our novel
MIL technique. They comprise of standard python libraries, keras libraries, file handling
libraries and visualization libraries.

import os
import cv2
import sys
import time
import glob
import random
import imageio
import argparse
import threading
import numpy as np
import scipy.misc as sci
import tensorflow as tf
import matplotlib.pyplot as plt
from random import shuffle
from keras import backend as K
from keras.models import Model
from keras.layers import Layer
from keras.optimizers import SGD,Adam
from keras.regularizers import l2
from keras.utils import multi gpu model
from keras import activations, initializers, regularizers
from keras.layers import Input, Dense, Layer, Dropout, Conv2D, MaxPooling2D, Flatten, multiply
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping
import keras
from sklearn.model selection import KFold

Based on the K-fold cross validation the data from Healthy and Cancerous image
folders are shuffles into train and test set. Different images in each set during every fold
execution shown in the following code. Here we have used 3-fold cross validation.

def load data(dataset path, n folds, random state):

p path = glob.glob(dataset path+"\\Healthy\\*.png")
n path = glob.glob(dataset path+"\\Cancerous\\*.png")

p num = len(p path)
n num = len(n path)

all path = p path + n path
kf = KFold(n splits=n folds, shuffle=True, random state=random state)
datasets = []
for train idx, test idx in kf.split(all path):

dataset =
dataset[’train’] = [all path[ibag] for ibag in train idx]
dataset[’test’] = [all path[ibag] for ibag in test idx]
datasets.append(dataset)

return datasets

The model training() function in the depicted code snippet handles the code execution
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from creating train and test bags, batch generation for each phase, model training and
testing to result generation.

def model training(input dim, dataset, irun, ifold):

train bags = dataset[’train’]
test bags = dataset[’test’]

# convert bag to batch
train set = generate batch(train bags)
test set = generate batch(test bags)
model = cell network(input dim, useMulGpu=False)
# train model
t1 = time.time()
num batch = len(train set)
#for epoch in range(10):
model name = train eval(model, train set, irun, ifold)
print("load saved model weights")
model.load weights(model name)
test loss, test acc = test eval(model, test set)
t2 = time.time()
print (’run time:’, (t2 - t1) / 60.0, ’min’)
print (’test acc=:.3f’.format(test acc))

return test acc

We create image bags for training based on the class label of the image. The function
in the below code returns bag of image containing image data and labels.

def generate batch(path):
bags = []
for each path in path:

name img = []
img = []
img path = glob.glob(each path)
num ins = len(img path)
label = each path.split(’\\’)[-2]
if label == ’Healthy’:

curr label = np.ones(num ins,dtype=np.uint8)
else:

curr label = np.zeros(num ins, dtype=np.uint8)
for each img in img path:

img data = cv2.imread(each img, cv2.IMREAD UNCHANGED).astype(float)
scale percent = 50
width = 64
height = 64
dsize = (width, height)
#resize image
img data = cv2.resize(img data, dsize)
img data[:, :, 0] -= 123.68
img data[:, :, 1] -= 116.779
img data[:, :, 2] -= 103.939
img data /= 255
img.append(np.expand dims(img data,0))
name img.append(each img.split(’\\’)[-1])

stack img = np.concatenate(img, axis=0)
bags.append((stack img, curr label, name img))

return bags

12



def cell net(input dim, useMulGpu=False):

lr = 1e-2
weight decay = 0.005
momentum = 0.9

data input = Input(shape=input dim, dtype=’float32’, name=’input’)
conv1 = Conv2D(36, kernel size=(4,4), kernel regularizer=l2(weight decay), activation=’relu’)(data input)
conv1 = MaxPooling2D((2,2))(conv1)

conv2 = Conv2D(48, kernel size=(3,3), kernel regularizer=l2(weight decay), activation=’relu’)(conv1)
conv2 = MaxPooling2D((2,2))(conv2)
x = Flatten()(conv2)

fc1 = Dense(512, activation=’relu’,kernel regularizer=l2(weight decay), name=’fc1’)(x)
fc1 = Dropout(0.5)(fc1)
fc2 = Dense(512, activation=’relu’, kernel regularizer=l2(weight decay), name=’fc2’)(fc1)
fc2 = Dropout(0.5)(fc2)

alpha = Mil Attention(L dim=128, output dim=1, kernel regularizer=l2(weight decay), name=’alpha’,
use gated=False)(fc2)

x mul = multiply([alpha, fc2])

out = Last Sigmoid(output dim=1, name=’FC1 sigmoid’)(x mul)

model = Model(inputs=[data input], outputs=[out])

if useMulGpu == True:
parallel model = multi gpu model(model, gpus=2)
parallel model.compile(optimizer=Adam(lr=lr, beta 1=0.9, beta 2=0.999), loss=bag loss,
metrics=[bag accuracy,
tf.keras.metrics.TruePositives(),tf.keras.metrics.FalsePositives(), tf.keras.metrics.FalseNegatives()])

else:
model.compile(optimizer=Adam(lr=lr, beta 1=0.9, beta 2=0.999), loss=bag loss, metrics=[bag accuracy,
bag loss], tf.keras.metrics.TruePositives(), tf.keras.metrics.FalsePositives(),
tf.keras.metrics.FalseNegatives()])
parallel model = model

return parallel model

The function cell network() in the code defines the MIL model architecture consisting
of the attention-based MIL pooling. All the hyper-parameters are set in this function.

The MIL attention class consists of multiple functions that perform the transforma-
tions defined in the pooling mechanism. Based on the hyper-parameter values and kernel
configuration the constructor function initializes the data variables. The build function
averages the weights generated by the convolutional network. The call function introduces
the “tanh” product based on the attention mechanism.
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def bag accuracy(y true, y pred):
y true = K.mean(y true, axis=0, keepdims=False)
y pred = K.mean(y pred, axis=0, keepdims=False)
acc = K.mean(K.equal(y true, K.round(y pred)))
return acc

def bag loss(y true, y pred):
y true = K.mean(y true, axis=0, keepdims=False)
y pred = K.mean(y pred, axis=0, keepdims=False)
loss = K.mean(K.binary crossentropy(y true, y pred), axis=-1)
return loss

The code shows the custom function used to evaluate the train/validation accuracy
and loss for each fold.

Figure 14: Excel for Metric Calculation

The figure 14 shows the collection of True Positives, True Negatives, False Positives
and False Negatives from each epoch in a tabular format in excel. They were used to
calculate sensitivity, specificity and F1 score.

The code for our proposed MIL architecture is referred from the GitHub 7.
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