~

N\ National
College o
Ireland

Configuration Manual: Protein Sequence
Classification using Machine Learning
and Deep Learning

MSc Research Project
Data Analytics

Shravanee
Shekhar Siddha

Student ID: x18180949

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

\

National College of Ireland N National

Project Submission Sheet College
School of Computing Ireland
Student Name: Shravanee Shekhar Siddha
Student ID: x18180949
Programme: Data Analytics
Year: 2019-2020
Module: M.Sc. Research Project
Supervisor: Dr.Catherine Mulwa
Submission Due Date: 17/08/2020
Project Title: Configuration manual: Protein Sequence Classification using
Machine Learning and Deep Learning
Word Count: 1152
Page Count: 13

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other thanmy own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shravanee Shekhar Siddha

Date: 17/08/2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). Q
Attach a Moodle submission receipt of the online project submission, to Q
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for your own Q
reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shravanee Shekhar Siddha
x18180949

1 Introduction

The configuration manual demonstrates the implementation phases of the project “Protein
Sequence Classification using machine learning and deep learning”. The main objective of this
project is to provide an efficient protein sequence classification system. In order to build the
model, a combination of techniques like Natural Language Processing for feature extraction
like TF-IDF along with machine learning algorithms such as Decision Tree and Random Forest
and Word Embedding using keras with deep learning models like Convolutional Neural
Network and Long Short-Term Memory were implemented This configuration manual
contains the required project specifications for hardware and software to implement the project
in Chapter 2. Chapter 3 explains the Data Preparation followed by Chapter 4 which describes
the implementation steps in detail and the output generated.

2 Hardware Specification

Operating System Windows 10 Home Single Language
Processor Intel(R) Core (TM) i5-8250U
Installed Memory (RAM) 8.00GB

System type 64-bit Operating System

3 Software Specification

e Installation of Anaconda and Python 3 version

;-) e
wel @ i o I
il i =1 | i ol b i

Figure 1: Anaconda Navigator

4 Data Preparation

The dataset is collected from Kaggle and was available in .csv format. The following link is to
the dataset:

https://www.kaggle.com/shahir/protein-data-set

Installing Tensorflow and importing Keras for using Deep Learning.

lconda install «c conda-forge tensorflow --yes

Collecting package metadata (current_repodata.json): ...working,.. done
Solving environment: ...working... dore

2 All requested packages already instailed.

isport keras, int{keras. version)

Figure 2: Installation of Tensorflow and importing Keras

Necessary libraries were imported before performing data pre-processing and EDA.

In [3]: # Importing all the important peckages
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from keras.utils import np utils
#matplotlib inline
sns.set style('ticks")
import plotly.offline as py
py.init notebook mode(connected=True)

Figure 3: Importing libraries for EDA

The data was in the form of csv. Initially, it was loaded in Pandas Data Frame using the read
csv function. The irrelevant columns and missing values were then removed and the required
column labels were made appropriate. The following figure 4 shows the data after cleaning:

https://www.kaggle.com/shahir/protein-data-set

structureld classification chainld sequence seq_length
67 117E HYDROLASE A TYTTRQIGAKNTLEYKVYIEKDGKPVSAFHDIPLYADKENNIENMV... 28
83 117E HYDROLASE 3 TYTTRQIGAKNTLEYKVYIEKDGKPVSAFHDIPLYADKENNIFNMV.. 288
74 11AS LiGASE A MKTAYIAKQRCISFVKSHFSROLEERL GLIEVQAPILSRVGDGTAD... 330
73 11AS LIGASE B MKTAYIAKQRQISFVKSHFSROLEERLGLIEVQAPILSRVGDGTAD... R0
7 11BA HYDROLASE A KESAAAKFERCHMDSGNSPSSSSNYCNLMMCCRKMTQGKCKPYNTF. 24

Figure 4: Cleaned data

The dataset was used for Exploratory Data Analysis (EDA), to get better understanding of the
data by using simple, creative visualizations.

Histogram of seq length

Figure 5: Length of protein sequences

o st reestion [

BPGAN DG PROTEN

ATRUCTI0A, SRR LN PN TION r

T _‘"'
RURCTLMAL Pt ‘ (e
[PPSR—

PRCITR I AN o
ase

A T _““
s —
THARAS T PRI -
v et S
sourton ("

HYDROLANT STYTINRCLAST W0 T l

wrea .

"

rase prs

wnae versy
ot

AT FAARE ‘ o

Figure 6: Bar plot with top 20 frequently occurring classes

300

300

Langth of saquence
‘l
&

150

100

oo

5 Implementation, Evaluation and Results of Protein Sequence

|

- z v

|

') W W -3 [o w = [*%) W (4] - “ -
o 3 < B '_‘:? (= [) B = W <9 b} - L o ¥ =2
) = 0 ~ = i = = - = > o ¢ [T
= “" 5 ? 1 @ B ‘r? o = o v "1 b o o o O
e = = e F F i T : r @& W F
E & = W & &K & K e = @ ¥ ¥ 4d 5
& 2 8 w 2 8 T & s & E w5 = @

T 2 & w2 b & 2 @ "] y = E Y
[+ 5 4 = [- 3 -
[t o = 2 = & o — | 5 £ = =
-l o o= [- (15 — 7
e = = B 7] > e @ 2
=] =) o - W &
& - & W ’ 2
S E « = = 3

xT n

W 1
< =
] 5
b= -4
[+ w
(=] o

Figure 7: Imbalanced data showing variations in the length of sequences

Classification Models

from
from
from

impo
from
from

from
from

from
from

from
from

from
from
from
from
from

sklearn.feature_extraction.text import Tfidfvectorizer
keras.preprocessing import text, sequence
keras.preprocessing.text import Tokenizer

rt tensorflow as tf
tensorflow import keras
tensorflow.keras import layers

sklearn.feature_selection import SelectKBest
sklearn.feature selection import chi2

imblearn.under_sampling import RandomunderSampler
sklearn.model_selection import train_test_split

sklearn.tree import DecisionTreeClassifier
sklearn.ensemble import RandomfForestClassifier

keras.models import Sequential

keras,layers import Dense, ConvliD, MaxPoolinglD, Flatten
keras.layers import LSTM

keras.layers,embeddings import Embedding

sklearn.metrics import accuracy_score, classification_report

Figure 8: Importing required libraries

JGAR BINOING PROTEIN

SU

PROTEN

DING

NA BIN

|

Importing the libraries required for feature extraction, feature selection, data balancing and
implementation of machine learning and deep learning models.

5.1 Transforming labels into numeric representations using Label Encoder

The labels/classes were transformed using LabelEncoder() function to categorical values.

#Using Labelencoder() to lables into numeric Labels
1b = LabelEncoder()

b fit = 1b.fit(df protein.classification)

¥ = 1lb fit.transform(df_ protein.classification)

Y = np_utils.to categorical(y)

Figure 9: Using Label Encoder

5.2 Transform Sequences into Numeric Vectors

Using TF-IDFVeectorizer() function with n-gram range (4,4) for converting sequences into
numeric representations. Transforming the features into array by using toarray() function.

funct 111dtVectorizerianalyzer y Ngram ranges (4,4), max features
funct.titiat ;-lu'-l’\' 1)

vector funct. transform(df protein 1)

Figure 9: Using TFIDF

Using tokenizer() for representing the sequences into numeric vectors which is passed as an
embedding layer using Keras. The pad_sequences is used to have fixed length

#create and fit tokenize and then represent input data as word rank number sequences
max_length = 1000

seqs = df_protein.sequence.values

tokenizer = Tokenizer(char_level=True)

tokenizer.fit_on_texts(seqs)

vectorl = tokenizer.texts to sequences(seqs)

vectorl = sequence.pad_sequences(vectorl, maxlen=max_length)

print(vectoril)

Figure 10: Using Tokenizer

5.3 Feature Selection using chi2 technique

Chi2 and SelectKBest were used for passing relevant features to the models.

Using chi2 and selectkBest for feature selection
chi select = selectkBest(chi2, k = 500)

X = chi_select.fit_transform(vector, Y)

print (X)

Figure 11: Feature selection for machine learning models

Using chi2 and selectkBest for feature selection
chi select = selectkBest(chiz, k = 508)

X = chi_select.fit transform(vectori, Y)

print (X)

Figure 12: Feature selection for deep learning models
5.4 Using Random Under-sampling for over-represented classes

The dataset was imbalanced and hence, random under-sampling was used for to lessen the
number of majority classes. The imblearn library offers the function RandomUnderSampler().

#Resampling the data using RandomUnderSampler()
undersample = RandomUnderSampler(sampling strategy="majority')
X over, y over = undersample.fit resample(X, Y)

Figure 13: Random Under-sampling for balancing the data

5.5 Implementation Evaluation and Results of Decision Tree

Decision Tree model was implemented and performed the best of all the models with an
accuracy of 78.71%. The classification report was also developed.

Implementing Decision tree and printing accuracy and classification report
dtree = DecisionTreeClassifier()
dtree.fit(X train, y train)

predictions = dtree.predict(X test)

print(classification report(y test, predictions, target names=lb.classes))
DT accuracy = accuracy score(y test, predictions)

print(“"Accuracy:", DT _accuracy)

Figure 14: Decision Tree Classifier

precision recall f1-score

CHAPERONE 8.93 a.82 a.87

DNA BINDING PROTEIM 8.84 a.67 8.75
HYDROLASE B.66 @,.32 8.44
HYDROLASE/HYDROLASE INHIBITOR 8.92 9.381 8.36
IMMUMNE SYSTEM 8.94 a.77 6.84
ISOMERASE 8.92 8.82 a.87

LIGASE 8.89 a.78 2.83

LYASE 8.94 9.98 2.92

MEMERANE PROTEIN 8.85 a.71 8.78
OXIDOREDUCTASE 8.95 .88 2.91
PROTEIN BINDING 8.80 9.52 8.63
SIGMALING PROTEIM 8.86 a.62 6.72
STRUCTURAL GEMOMICS, UNKMOWN FUMCTION ©.80 e.68 a.73
STRUCTURAL PROTEINM ©.88 a.66 a.76
SUGAR BINDING PROTEIM 8.93 a.7e 8.80
TRANSCRIPTION 8.85 a.57 8.68
TRANSFERASE 8.92 a.86 2.89
TRANSPORT PROTEIN 8.91 9.76 6.33
VIRAL PROTEIM 8.91 a.78 6.84

VIRUS 8.97 a.9a 8.93

micro avg 8.92 8.79 8.85

macro avg 8.88 a.72 8.79

weighted avg 8.91 8.79 .84

samples avg 8.79 8.79 .79

Accuracy: 0.7871615422924694

Figure 15: Classification Report for Decision Tree

5.6 Implementation, Evaluation and Results of Random Forest

Random Forest Classifier was implemented and it also, achieved a good accuracy of 77.24%.
The RandomForestClassifier() was used for executing the model. The classification report
was evaluated for the multi-class labels.

Implementing Random Forest and printing accuracy and classification report

rf = RandomForestClassifier()
rf.fit(X train, y train)

predictions = rf.predict(X test)

print(classification report(y test, predictions,target names=1b.classes))

RF_accuracy = accuracy score(y test, predictions)
print("Accuracy :",RF_accuracy)

Figure 16: Random Forest Classifier

precision

CHAPEROME 9.96

DNA BINDIMNG PROTEIN 9.88
HYDROLASE a.77

HYDROLASE /HYDROLASE INHIBITOR 9.93
IMMUNE SYSTEM 9.95
ISOMERASE 9.95

LIGASE 9.93

LYASE 9.96

MEMBRANE PROTEIN 9.85
OXIDOREDUCTASE 9.98
PROTEIN BINDING 8.85
SIGMALING PROTEIM 8.91
STRUCTURAL GENOMICS, UNKNOWN FUNCTION 9.89
STRUCTURAL PROTEIN 9.90
SUGAR BINDIMNG PROTEIN 9.96
TRANSCRIPTION 9.87
TRANSFERASE 9.97

TRANSPORT PROTEIM 8.94
VIRAL PROTEIN 9.93

VIRUS 9.97

micro avg 0.94

macro avg 9.92

weighted avg 09.94

samples avg 0.77

Accuracy : 0.7724568163350896

Figure 17: Classification Report for Random Forest

5.7 Implementation, Evaluation and Results of Convolutional Neural

Network

recall fil-score

@0 000000

2009

. 88
.64
.38
.81
.76
.81
.75
.89
71
.86
A9
.59
.62
.65
.68
.56
.84
.74
.76
.98

A7
A1
A7
A7

[v B o v T v oo v TR v T v v e v TR v T v oo v w7 R v SR v S

Do @

.87
.74
.43
.87
.85
.87
.83
.92
.77
.92
.62
.72
W
.76
.80
.68
.96
.83
.84
.93

.85
.79
.84
A7

Convolutional Neural Network was built by using embedding layer and giving the numeric
representations as input. The model was compiled using categorical crossentropy and adam

optimizer. The model achieved an accuracy of 75%. The classification report for CNN was
also used as an evaluation metric.

W

Model building CNN and using embedding layer has been initailized
Printing the summary of the model

embedding dim = 8
top classes = 20

model

model.
model.
model.
model.
model.
model.
model.
model.
model.

= Sequential()

add(Embedding(len(tokenizer.word index)+1, embedding dim, input length= 529))
add(ConvlD(filters=564, kernel size=6, padding="same’, activation="relu'))
add(MaxPoolinglD(pool size=2))

add(ConviD(filters=32, kernel size=3, padding="same', activation="relu’))
add(MaxPooling1D(pool size=2))

acdd(Flatten())

add(Dense(128, activation="relu"))

add(Dense(top_classes, activation='softmax'))

compile(loss="categorical crossentropy’, optimizer='adam', metrics=['accuracy'])

print{model.summary())

Figure 18: Convolutional Neural Network using Embedding Layer

precision recall fi1l-score

CHAPERONE 9.96 9.80 .87

DNA BINDING PROTEIN 9.88 9.64 0.74
HYDROLASE 9.77 9.30 0.43

HYDROLASE /HYDROLASE INHIBITOR 9.93 9.81 0.87
IMMUNE SYSTEM 9.95 8.76 .85
ISOMERASE 9.95 8.81 .87

LIGASE 9.93 8.75 .83

LYASE 9.96 8.89 0,92

MEMBRANE PROTEIN 9.85 8.71 e.77
OXIDOREDUCTASE 9.98 9.86 ©.92
PROTEIN BINDIMNG 9.85 9.49 0.62
STIGNALING PROTEIN 89.91 8.59 0.72
STRUCTURAL GENOMICS, UNKMNOWN FUNCTION 9.89 9.62 0.73
STRUCTURAL PROTEIN 9.90 9.65 0.76
SUGAR BINDIMNG PROTEIMN 9.96 9.68 0.80
TRANSCRIPTION 9.87 8.56 .68
TRANSFERASE 9.97 9.84 0.90
TRANSPORT PROTEIN 9.94 a.74 0.83
VIRAL PROTEINM 9.93 9.76 0.84

VIRUS 9.97 9.98 ©.93

micro avg 0.94 0.77 ©.85

macro avg 9.92 8.71 0.79

weighted avg .94 .77 ©.84

samples avg 0.77 .77 8.77

Accuracy : B.7724568163350896

Figure 19: Classification Report for Convolutional Neural Network

5.8 Implementation, Evaluation and Results of Long Short-Term Memory

The Long Short-Term Memory was implemented by using embedding layer. This model used
a single LSTM layer and dense layer as output layer. The model did not perform well and
showed poor accuracy of %. A classification report for LSTM was also generated to
investigate values for multi-class labels.

e L S s S SO T a R e
em0eaGing Layer nas been nitgiiizea

embedding
Istm out =
batch size = 128
top classes = 28

w
"

sodell = Sequential()
nodell.add(Embedding(len(tokenizer.word index)+1, 8)
modell.add({LSTM{128, dropout=9.2, recurrent dropout=2.2))
modell.add(Dense(top_classes,activation="softmax"))
modeli.compile(loss = "categorical crossentropy’, optimizer='zdam’,metrics = ['accuracy’])
print(modell.summary())

Figure 20: Long Short-Term Memory using Embedding Layer

precision recall fi1-score

CHAPEROMNE 0.63 ©.48 .55

DMA BIMDING PROTEIN 2.51 .14 Q.22
HYDROLASE .58 8.1 .63

HYDROLASE /HYDROLASE IMHIBITOR 8.76 B.67 0.71
IMMUNE SYSTEM .61 .79 2.69
ITSOMERASE 8.59 8.18 B.28

LIGASE .64 8.1e e.17

LYASE 8.54 8.35 2.42

MEMBRAMNE PROTEIN B8.56 B.23 B.33
OXTIDOREDUCTASE 0.56 8.72 2.59
PROTEIN BINDIMNG .18 ©.85 a.a7
SIGMALING PROTEIN 8.28 8.1 8.15
STRUCTURAL GEMOMICS, UNKMOWN FUNCTION 9.20 .02 2.83
STRUCTURAL PROTEIN 8.61 @.2e 8.368
SUGAR BINDING PROTEIN 8.52 8.52 B.52
TRANSCRIPTION .27 9.36 2.31
TRANSFERASE .46 a.7ae B.55

TRAMNSPORT PROTEIN 0.49 8.27 B.35
VIRAL PROTEIN .57 .52 2.54

VIRUS 8.83 8.75 8.79

accuracy .51

macro avg 8.51 B.36 B.38

weighted avg 9.52 9.51 .48

Figure 21: Classification report for LSTM

6 Comparison of the machine learning and deep learning models

The comparison of the developed models is done by using visualization in python. It is clearly
seen that Decision Tree and Random Forest performed better than Convolutional Neural
Network and Long Short-Term Memory. Hence, machine learning models with TF-IDF are
efficient than deep learning models with Word Embedding.

a6

Qo0 Y . —

n Tree
orast

Random F

g Short-Term Memory 4

Long

Convolutonal Neural Network

Figure 22: Comparison between the developed models

7 Conclusion

Both Machine Learning models performed well. But, Decision Tree out-performed all the
models. Random Forest also achieved good performance. Convolutional Neural Network
achieved accuracy slightly less than Random Forest and Long Short-Term Memory showed
lowest accuracy of all the models.

Thus, Machine Learning models performed well with TF-IDF as feature extraction technique
than the Deep Learning models.

References

Mullane, S., Chen, R., Vemulapalli, V., Draizen, E., Wang, K., Mura, C. and Bourne, P. (2019).
Machine Learning for Classification of Protein Helix Capping Motifs, Systems and Information
Engineering Design Symposium (SIEDS), DOI:10.1109/SIEDS.2019.8735646

