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Prediction of Remaining Useful Life (RUL) of Lithium
ion (Li-ion) Batteries

Rashmikant T. Shukla
x18181236

Abstract

In recent time Li-ion battery gained popularity because of their high charge
density, portability and longer life span. It compliments the human quest for green
energy. As many of the green energy applications like Electrical Vehicle, Wind
Energy and Solar Energy use Li-ion battery as their energy storage device. So, a
better and intelligent Remaining Useful Life (RUL) prediction model will improve
the reliability of these systems. This research states that autoencoder can be used
to learn time-based battery parameter and their dimension reduction. Features
from an autoencoder are fed into another neural network which predicts RUL of
battery. NASA battery degradation data set is used for this analysis and target
data are extracted based on the geometric features. The model evaluation is based
on R-square and Mean Squared Error.

1 Introduction

We heavily rely on machines, devices and equipment in our day-to-day life. Many of these
systems have an energy storage device, battery as their integral part. Various batteries
are used in these systems, but Li-ion batteries are emerged as one of the best perform-
ing options because of its high charge density and long-life span. These machines are
meant to falter after the continuous use over a period. To ensure the smooth functioning
of battery-based equipment, maintenance is performed. It is essential to monitor the
health of batteries to ensure the proper functioning of these systems. There are different
maintenance programs like reactive maintenance, preventive maintenance and predictive
maintenance which are adopted for these systems.

Reactive maintenance is performed when equipment stops working. It is the tradi-
tional way which may leads to downtime period and there is always an uncertainty about
the current health of the equipment. In the preventive maintenance, periodic mainten-
ance is scheduled to ensure that machine does not brake while in operation. In this
process the selection of maintenance period is of utmost importance otherwise it may
result into over maintenance or under maintenance. These both scenarios are risky and
possess substantial time and economic loss. In predictive maintenance one collects the
data regarding the health of the equipment in terms of various sensor and operational
data, then accordingly maintenance of the device can be scheduled. This method is cost
effective, and it reduces the chances of downtime.

Predictive maintenance in batteries are used for their health monitoring, which in-
cludes prediction of battery’s State of Charge (SOC) and Remaining Useful Life (RUL).
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SOC indicates the current capacity of batteries in comparison to its rated capacity and
RUL indicates how much longer battery is going to last under current working condi-
tions. This research is specifically focused on the prediction of RUL of Li-ion batteries.
Accurate RUL prediction helps in overall maintenance of the system and gives the clear
idea about replacement of the batteries.

Predictive maintenance domain got a great boost by advancement of sensor techno-
logy, Internet of Things (IOT) and computational capabilities. Sensors are used to track
performance of different parts by being integrated with the devices. This generates a
substantial amount of data, which is then stored and analysed. Based on these data,
predictions are made with the help of various machine learning models. Same approach
is used in electronic devices, home appliances and industrial equipment. If we talk about
batteries, then traditionally the preventive techniques were used for maintenance this is
also due to its enclosed structure and complex electrochemical nature. This limits the
usage of sensors. Still, the earlier research has shown the potential of using internal cur-
rent, voltage and impedance profiles of batteries for health monitoring but these were
only limited to experimental levels (Vutetakis and Viswanathan; 1995).

It took some time for the world to acknowledge the potential of Li-ion batteries, but
eventually it happened. Even, 2019 Chemistry Nobel price were given to the scientists,
responsible for the emergence of the Li-ion batteries.1 Now one can see the blooming
market of the Li-ion batteries as the world is exploring new alternate energy options like
solar energy, wind energy, electrical vehicles etc and all these are using Li-ion batteries as
energy storage devices. It is projected that valuation of Li-ion batteries will be doubled
in coming five years.2 The reliability and longevity of these systems can be ensured by
enhancing the performance of the Li-ion batteries. This can be achieved by an accurate
health monitoring of the batteries. Initial research, Goebel et al. (2008), has shown how
data of the Li-ion batteries can be stored and different machine learning techniques can
be very effective in health monitoring of the batteries. Ibid has shown the potential
of using relations between capacity and impedance parameter to predict the RUL of the
battery. Even simple baseline regression models were able to make reasonable predictions.
Degradation profile of the batteries are non-linear in nature and accurate prediction can
be made by using algorithms which are good at learning non-linear parameters.

Several research papers have used Probabilistic Algorithms, Support Vector Machine
(SVM), Kalman Filters, Optimization Algorithm etc. to predict the State of Health
(SOH), SOC and RUL of the batteries. These algorithms use different internal parameter
profiles like Electrochemical Impedance Spectroscopy (EIS), open circuit voltage, voltage
under load in order to apply machine learning models (Li et al.; 2017). However, it needs
a good understanding of the internal chemistry of the Li-ion batteries based on which
appropriate profile can be chosen for the final prediction.

In recent years, this domain has seen research papers which are using deep learning
and neural network methods for RUL prediction (Shen et al.; 2020; Qu et al.; 2019; Zhang
et al.; 2018). The performance of the deep learning methods is very promising, especially
Long Short Term Memory (LSTM) model has given the state-of-the-art results. Deep
learning models have an advantage over the traditional methods as the network itself
learns the features, so it provides leverage against the expertise in complex electrochemical
profiles of batteries which was compulsory in previous researches. Most of the research

1https://www.nobelprize.org/prizes/chemistry/2019/press-release/
2https://www.prnewswire.co.uk/news-releases/global-lithium-ion-power-battery-market-size-projected-to-reach-100-billion-by-2025-889563915.

html
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focuses on a single battery or gives different models for different kind of batteries and
usually they provide only short-term RUL predictions. To address this, a combination
of autoencoder and Deep Neural Network (DNN) is used in this research, in order to
produce prediction on multi-battery dataset. In previous research an autoencoder was
used to analyse and known to be work well with the non-linear trends which is an added
advantage over the other models.

1.1 Research Question

The research question for this paper is ”How well a hybrid model with Autoencoder and
Deep Neural Network can predict the RUL of Li-ion batteries based on their charging and
discharging cycle?”

1.2 Research Objective and Contribution

Objective of this research are,

1. A literature review on the SOC and RUL prediction.

2. To understand the charging, discharging cycle of battery in order to develop a
data-driven model to predict remaining time before the failure of the battery.

3. Feature Extraction from raw data.

4. Implementation and evaluation of model with autoencoder and neural network.

Main contribution of the paper is the use of autoencoder with numerical data as it is
mainly used with the image related problems. This research will also confirm the ability
of autoencoder in fusion of time domain data. The model in this research also tries to find
the options for the LSTM models when dealing with time related data. Uses of Li-ion
batteries in critical applications like aircraft, satellite, automobiles make this research
very critical in order to make battery health management system more intelligent and
accurate. It not only improves the overall system reliability but also prevents the mishaps
during operations. This research also tries to reduce the dimension of the original signal
in order to find minimum dimension, which will be enough to give good prediction of
RUL. The final model will be evaluated on its R-square and Mean Squared Error. The
robustness and accuracy of the model will be compared with the state of art LSTM
models.

The remaining part of this paper is organized as follows. Section 2 gives a brief account
on related works. Followed by Section 3, which discusses the used methodology through
data selection, Data Preparation, Feature Selection, Data Mining, RUL Calculation,
Data Normalization and Evaluation subsections. Followed by Section 4, which gives
Design Specification of the models. Followed by Section 5, on details of Implementation.
followed by section 6, Evaluation, Section 7, covers Conclusion and Future Work. Last
section 8 is for acknowledgement.

2 Related Work

In literature one can see that as the importance of Li-ion batteries was realised, there
were efforts to find the methods to monitor the health of Li-ion batteries. This meant to
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improve the performance and reliability of batteries, in turn improving the reliability of
critical systems with Li-ion batteries like Aircrafts and Satellites. As these applications
needed prior and accurate RUL and SOC calculations for the batteries. There are three
approaches for health monitoring of the batteries; 1) Model based, which include Em-
pirical Model, Equivalent Circuit model and electrochemical models and Filter methods;
and 2) Data driven models which includes different machine learning algorithm models
Support Vector Machine (SVM), Neural Networks etc. 3) Hybrid Model which are a
combination of model based and data driven models (see Figure 1).

Figure 1: Different Methods of Battery Health Monitoring and RUL Prediction

2.1 Model Based Methods

Model based techniques create a battery model which is equivalent to real application
battery and an estimation algorithm to predict the voltage or any other parameter. In
this method a SOC is applied to the battery model in order to get the voltage same as
the terminal voltage in real application. If one can get the exact voltage, then it can be
said that SOC is of real battery. In this technique, the assumption is made that there
is no noise in the voltage calculation, which is not possible in real applications. These
further can be categorised in three different group which are explained one by one in next
section.

2.1.1 Empirical Model

The basic empirical model represents voltage as a function of current and SOC. In order
to get better accuracy, other parameters like ambient temperature can also be used. Sa-
madani et al. (2015), uses Electrochemical Impedance Spectroscopy (EIS) for the creation
of empirical battery model. Using this non-linear relation can be plotted up to a certain
extent.

2.1.2 Equivalent Circuit Model

In equivalent circuit model battery model is created with a resistor and resistance-
capacitance circuit. It is easy to set up and get quite good result with non-linear charac-
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teristics of the battery. Sangwan et al. (2016), use a modified equivalent circuit with two
set of resistance–capacitance network to estimate SOC of the battery.

2.1.3 Electrochemical Model

Electrochemical Models tries to represent internal working of the battery that is transfer
of charge from cathode to anode in term of mathematical equation usually it is represented
by partial differential equation of high order, which makes it difficult to calculate SOC
in real time but there are many papers which have given the methods to simplify these
equation in order to estimate SOC of the Li-ion battery (Meng et al.; 2018).

2.1.4 Kalman Filter

In literature one can find many applications of Kalman Filter for RUL and SOC prediction
of Li-ion battery, it’s kind of extension to the electrochemical model. In general, Kalman
filter are used to estimate unknown state of a system given the previous state data with
some system noises, they are widely used in navigation type of application and for signal
processing systems. They are popular because they are used to provide an estimation of
unmeasurable quantity based on the nearest measurable quantities.

In batteries SOC cannot be calculated directly instead it can be estimated by other
measurable parameters like internal impedance, voltage and current.Mo et al. (2016),
have used a Kalman filter with particle swarm optimization to give improvement on the
particle filter method of the RUL prediction. Kalman filter provide better results with
the noisy data and particle swarm optimization improve the particle degeneracy problem
of particle filter. The proposed model take account the internal impedance, aging rate of
batteries and number of charging discharging cycle in order to estimate the capacity of
Li-ion battery and uses 30% fade in rated capacity criteria as end of life criterion. For
the evaluation of the model performance RMSE is used, while for accuracy comparison
estimation error percentage method is used.

Yao et al. (2015), used an improved version of Kalman filter, Extended Kalman filter
for SOC estimation of Li-ion batteries. They have used concept of equivalent circuit
model to estimate the open circuit voltage. Based on this open circuit voltage SOC
is estimated, this method provides better precision with the non-linear characteristics
of the battery. To make the model more reliable under noise, Buss’s adaptive rule is
applied. Hu et al. (2012), also presented an extended Kalman filter model for the SOC
and capacity estimation of Li-ion battery. They proposed a multi-scale framework for
SOC and capacity estimation, which resulted in high efficiency and accuracy.

2.2 Hybrid Model

There are few models which uses a combination of data driven and model-based methods
to predict SOC and RUL of Li-ion batteries. Majority of these models use Kalman
Filter with another model. He et al. (2014), developed a neural network model for SOC
prediction of the battery and usage Kalman Filter to reduce the error. Zheng and Fang
(2015), also uses the unscented Kalman Filter with Relevance Vector Regression model
to make short term RUL prediction. These hybrid models improved the performance of
the standalone models.
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2.3 Data Driven Model

As technology progressed, the computing power enhanced, and sensor technology im-
proved which made possible the collection and storage of data and many applications of
data driven methods can be seen in RUL and SOC prediction of Li-ion batteries.

2.3.1 Support Vector Machine

Support vector machine is a kernel-based machine learning technique which is predomin-
antly used for classification problems, but it can be used for regression problems as well.
Battery profile is regressive in nature with linear and nonlinear part, so many papers used
this concept to apply Support Vector Regressor (SVR) for the RUL and SOC prediction.
SVR tries to map the non-linear feature in high dimension to treat it as linear. Patil
et al. (2015), had used SVM for the RUL prediction. They have used two SVM model,
first classifies the different discharging cycle into four groups and the later one is used
for RUL prediction. Classifying SVM helps to recognise the suitable discharge cycle for
RUL prediction, based on this data for the SVR is prepared. Classifying SVM uses the
radial basis function kernel while the regression one is tested on Gaussian, exponential,
hyperbolic and multilayer perceptron kernel out of which perceptron kernel gave the best
results. These models are compared with respect to their accuracy.

Li et al. (2017), also used SVM model for the RUL prediction of the Li-ion batteries.
This model uses the relation between RUL and internal resistance, capacity, derivative
voltage, terminal voltage relation for the prediction. Applied SVM model gave 95%
accuracy and it is compared with the neural network with forty neurons. The results
of the SVM are better than the neural network but this cannot be considered a fair
comparison as used neural network is very novice and if comparison is to be made it
should be with the state of art. Although SVM are performed well but they are highly
sensitive to data and their performance with unseen data changes considerably, which
cannot be considered as a robust model.

2.3.2 Näıve Bayes

Ng et al. (2014), presented a näıve Bayes model for RUL prediction. Its results are
compared with SVM model, Näıve Bayes model gives competitive results and it is more
robust to different kind of data unlike the SVM model. In this paper different set of
data is made using Bayes probability theorem and they future used for the prediction.
They have not used capacity as their target variable instead they used the number of
cycles remaining as dependent variable. So, now this becomes regression problem which
is predicted using Bayes approach. Result are almost comparable to SVM model with
majority of the cases achieving same or better RMSE value than the SVM model.

2.3.3 Neural Networks

Neural networks have gained popularity in machine learning and data analytics domain
because of its self-learning capabilities. In academia there have been many papers which
present different kind of neural nets to predict SOH and RUL of the Li-ion batteries.

Chemali et al. (2018), presented a DNN model with three layers to estimate the SOC of
the Li-ion battery. It gives quite competitive result. The focus of this paper is to develop
a model which can be used in electrical vehicles, the model initially requires considerable
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time for training but once the model is trained, that is it has found the weights then
it can be very fast in prediction of SOC and RUL with appropriate hardware and this
can be used in online methods too. It has used the early stopping method to avoid
the overfitting. This research focused on one battery and take care of different ambient
temperature that means model is robust to different temperature, other than this they
have introduce noise into the data which make final model robust to noise, which may
be entered during to different operating conditions. This does not provide a generalize
model which can be used with different batteries. Other than this, it shows that neural
network can be a good choice for health monitoring of the batteries.

Zhang et al. (2018), used Long Short-Term Memory Recurrent Neural Network (LSTM
RNN) for RUL prediction of batteries. In this they have generated data under different
ambient temperature and as the goal is to plot degradation characteristics of battery, they
have used different current rate for discharging. For 25◦ C ambient temperature dischar-
ging current rate is 1C and 2C while for 40◦ C current rate is 1 C and 3.5 C. Presented
model have gated LSTM RNN architecture with root mean square prop backpropagation
method and a Monte Carlo simulation unit to introduce noise to make model resilient to
different type of noises. This model performed better than previous SVM models Particle
Filter models. As data travels sequentially in LSTM RNN network so there is always
a chances of vanishing gradients which is solved by gated architecture but still research
have shown that attention-based model can outperform these networks.

Many research have used NASA battery dataset with different neural networks and
achieved good results for the RUL and SOH of Li-ion batteries. This gives a boost to the
decision of selecting NASA battery dataset for this research. Shen et al. (2020), uses Deep
Convolutional Neural Network (DCNN) for health prognostics of Li-ion batteries. They
used transfer learning method to ensure that even partial charging cycle data should be
enough to make the prediction on unseen data. They have used data from multiple Li-ion
batteries to build a DCNN model, then weight learned from this pretrained model is used
for transfer learning, in this there are three different DCNN Transfer Learning models
which are ensembled to make the final prediction about the capacity of the battery. So,
this ensemble model is trained on relatively smaller target data and based on this, the final
capacity prediction is made on NASA dataset. Finally, they compared the result from
DCNN-ETL with random forest regression model, Gaussian process regression model and
other DCNN models based on their RMSE values, results from DCNN-ETL models are
better than others. This model emphasises on online prediction for Li-ion batteries, but
it needs enormous diverse data for pre-training, which is quite difficult to get even after
that the final prediction may be very subjective.

Qu et al. (2019), presented a LSTM based model for SOH and RUL prediction, there
approach is to identify shortcomings of previous LSTM models and come up with the
solution for each and finally make a model in combination with these components which
helps to improve the performance of LSTM model. In LSTM models sliding window
approach is used to make the prediction so one can say that only a particular set of
features are involved in prediction to further generalise this process attention mechanism
is used which improved the LSTM performance, they also have used particle swarm
optimization and to cater the noise in battery data Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) is used, which take care of noises
introduce due to different operating environment. For this they have used NASA battery
dataset and results are better than Simple Recurrent Neural Network (RNN), simple
LSTM models and Relevance Vector Machine, evaluation are made based on RMSE.
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Wang et al. (2018), also presented a LSTM model on the NASA dataset. This paper uses
Spearman Correlation based Li-ion battery health indices to extract the features from the
charging and discharging cycle. It uses a memory cell structure to address the problems of
vanishing gradient and exploding gradient. Proposed Dynamic Long Short-Term Memory
(DLSTM) model is evaluated based on the RMSE value.

From the literature one can say that DNN, CNN and LSTM are the common neural
networks for the prediction of RUL of Li-ion batteries. However, these all methods have
some limitations like DNN models are specific to a battery that limits its uses in real life
applications. CNN requires large data and often suffers from the overfitting while LSTM
model have critical window selection task which is very research specific. Other than
this battery’s nonzero relaxation time makes implementation of LSTM difficult due to
capacity regeneration phenomenon. So, using Autoencoder one tackles the complex gate
structure of LSTM, capacity regeneration problem in recurrent neural networks and time
vector data fusion with other parameter of batteries (Qin et al.; 2016).PA-LSTM and
DLSTM are the best performing model when compared with the other neural network
based techniques (Qu et al.; 2019; Wang et al.; 2018).

3 Methodology

In presented research, Knowledge Discovery in Database (KDD) methodology is followed
for prediction of RUL of Li-ion battery (Fayyad et al.; 1996). However, SEMMA and KDD
are almost equivalent, but steps of KDD are more suitable for this research (Azevedo and
Santos; 2008). Other data mining methodology is Cross Industry Standard Process for
Data Mining (CRISP-DM), it’s initial phase is focused on understanding the objective and
requirement of the project from business point of view and in final stage full deployment in
included but this project understood the objective from academic point of view while also
knowing its business implication. This project does not provide an account on deployment
of used models on some IT system in business setup, but it derives the knowledge which
show it is useful way to predict RUL and it has applicability in real systems.

3.1 Data Selection

In order to predict RUL of any device or systems usually uses three kind of dataset

1. Dataset have reading from entire life span of the system.

2. Dataset have only failure reading.

3. Dataset have few readings and their threshold is already defined.

This research uses the NASA AMES Centre battery dataset (Goebel et al.; 2008). This
dataset has four battery reading B005, B006, B007 and B0018. Each battery has charging,
discharging and impedance profile of multiple cycles and given threshold condition is
reduction in battery capacity by 30% of its rated capacity. Batteries in the dataset
are 18650-size Li-ion cells that which are used in studies at Idaho National Laboratory.
These tests were done under controlled ambient temperature. These files are in MATLAB
format which are converted into json format for better readability and usability in python.
The selection of this dataset is also motivated by the fact that this is one of the most
used datasets for different deep learning network like LSTM, DNN for health monitoring
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of the Li-ion battery. That means it can be used for neural network although it is very
small but other paper have achieved good result on the same data. Other than this this
dataset comes from one of the renowned institution NASA and it is publicly available,
so there is not much ethical issue regarding it.3 The dataset is of batteries, there is no
personal type of information, so it does not raise any question under GDPR. Description
of Charging, Discharging and Impedance cycle of Li-ion battery in selected dataset.

• Charging Cycle: Li-ion batteries are rechargeable so they are recharge by constant
voltage or constant current source. In this dataset Charging of the batteries are
done under constant current of 1.5A until the voltage reached to 4.2V (single battery
cell’s maximum voltage) and then it is continued under this voltage until current
dropped to 20mA.

• Discharging Cycle: The process of using stored energy in Li-ion battery is called
discharging cycle. In this dataset discharging is done at constant current of 2A until
battery voltages of B005 reached 2.7V, B006 reached 2.5V, B007 reached 2.2V and
B0018 reached 2.5 V.

• Impedance Cycle: Impedance measurements are taken by Electrochemical Im-
pedance Spectroscopy (EIS) and selected frequency are from 0.1 Hz to 5kHz.

Table 1: Different Batteries and their Number of Cycle.
Batteries Number of Cycles

B005 168
B006 168
B007 168
B0018 132

3.2 Data Preparation

Original dataset is in .mat format, in which data is stored in hierarchical format. For the
easy usage and make it readable in python, it is converted into json file by enumerating
data from MATLAB file to dictionary using loadmat from the SciPy library. For charging,
discharging cycle separate json file is created which have cycle as key and inside each cycle
various reading are captured regarding that particular cycle. Data is captured till the
battery’s capacity reached to the threshold condition.

3.3 Feature Selection

The dataset contains multiple charging and discharging cycle and each cycle have different
datapoints. They cannot be used directly for the model creation, instead feature needs to
be equal in each cycle. To address this, one option is to take some points randomly form
each cycle, but it always has risk of losing the important data, so the approach needs
to be backed up by the behaviour of the Li-ion battery. Feature extracted must retain
the battery’s behaviour so that a good prediction can be obtained from the data. Other

3https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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than this, these extracted features requires to remain reliable for all operating condition
and for other similar batteries, then only the batteries appropriate degradation can be
mapped.

To ensure that all these conditions are met, Lu et al. (2014) described the concept
of geometric metric to estimate the capacity of battery based on their voltage, current
and temperature profile. If the capacity estimation is correct one can say that the set
of extracted features are accurately representing the charging and discharging of Li-
ion battery over their lifetime. Ibid have used same NASA battery dataset to define
Geometric features of the Li-ion battery. These features were successful in mapping the
capacity degradation. The geometric feature were also used in other published work
(Ren et al.; 2018). These features can be interpreted as time when voltage reached its
maximum value, in our case it is 4.2V, time when current started to drop and time when
max temperature reached under operating ambient conditions. These geometric features
were able to depict the capacity degradation of Li-ion battery under various operating
and aging condition. Thus, based on this concept data point is extracted from each
charging and discharging cycle and collated to make the final data for feature fusion in
autoencoder.

These geometric features can be seen, tracking the time-based relationship between
internal parameters of battery with each charging discharging cycle. In Figure 2(1), one
can see that during charging the maximum voltage get delayed as the number of cycle
increases. Similarly, for temperature as the battery get old it takes more and more time
to reach same maximum temperature. During discharging similar trend is followed for
voltage and current as the battery get old discharging process become quick. This is can
be seen for all the parameter as shown in Figure 2.

All the feature were extracted based on below equations.
For Charging Cycle,

Batteries terminal voltage is according to equation (1):

(ti, vi), s.t. vi ≥ 4.2V i = 1, 2, 3, 4 . . . n (1)

In the above equation (t) is a time when the battery voltage reaches the max-
imum value for the first time and (v) is the maximum voltage achieved by the bat-
tery during charging cycle, (i) is no of cycle up to (n), which represent sample size.

Batteries terminal current is according to equation (2):

(ti, Ai), s.t. Ai ≤ 1.5Amp i = 1, 2, 3, 4 . . . n (2)

In the above equation (t) represent the time when the current started to drop.(A) is the
value of the current when it started to drop.(n) is total sample size.

(ti, Ti) = ti, Ti at maxTi i = 1, 2, 3, 4 . . . n (3)

In the above equation, (t) is the time when the temperature reaches the maximum value.
(T) is the maximum temperature of the battery during charging. max T is the maximum
temperature. (n) is sample size.

Batteries current at load is according to the equation (4):

(ti, Ai), s.t. Ai just before it drops i = 1, 2, 3, 4 . . . n (4)
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Figure 2: Changes in Different Battery Parameter over the different Cycles
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Where, (t) is time just before current starts to drop. (A) is value of current in Amp when
it started to drop. (n) is sample size.

(ti, vi) = (ti, vi) at vimax i = 1, 2, 3, 4 . . . n (5)

Where, (t) is time at which voltage at load reaches maximum value. (v) is value of
maximum voltage at the load. (n) is number of samples.

For Discharging cycles,
Batteries terminal voltage is according to equation (6):

(ti, vi) = (ti, vi) at vimin i = 1, 2, 3, 4 . . . n (6)

Where,(t) is time when batteries voltage reaches its minimum value. (v) is minimum
voltage of battery during discharging. (n) is sample size.

Batteries terminal current is according to equation (7):

(ti, Ai), s.t. Ai > −2A i = 1, 2, 3, 4 . . . n (7)

Where,(t) is time when the terminal current gradually start increasing. (A) is value of
current when it start increasing. (n) is sample size.

Batteries Temperature is according to equation(8):

(ti, Ti) = ti, Ti at maxTi i = 1, 2, 3, 4 . . . n (8)

Where, (t) is time at which temperature reaches its maximum value. (T) maximum
temperature value achieved by battery during discharging. (n) is sample size.

Batteries current at load is according to equation (9):

(ti, Ai), s.t. Ai > −2A i = 1, 2, 3, 4 . . . n (9)

Where,(t) is time when the current at load gradually start increasing. (A) is value of
current measured at load when it start increasing. (n) is sample size.

Batteries voltage at load during discharging is according to equation (10):

(ti, vi) = {(ti, vi) at min(vi) s.t. vi 6= 0} i = 1, 2, 3 . . . n (10)

(t) is time when voltage is minimum but not zero. (v) non zero minimum voltage
value. (n) is sample size.

This give 20-dimensional dataset, corresponding capacity of batteries also added into
this so the final data is 21-dimensional.

3.4 Data Mining

This paper predicts the RUL of Li-ion battery in term of remaining cycle. Battery
used are mostly having 168 cycle as their end of life cycle. So, it is a regression kind
of problem where a number will be predicted for the RUL of battery. For this paper
has used autoencoder which will firstly reduce the dimension along with the fusion of
features. Data from the autoencoder is then used in another simple neural network for
RUL prediction.
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3.5 RUL Calculation for Training of the Prediction Model

Before passing the data to prediction model, calculation of RUL is required, this dataset
have reading till the battery reaches to their end of life criteria. For example B005 has
168 cycles let’s call it (n), let’s say battery for prediction is currently in ith cycle, RUL
can be calculated as

RULi = n + 1− i Where, (0 < i < n) (11)

At this stage final data for prediction model is converted into supervised dataset with
corresponding reading of RUL of the battery using equation (11).

3.6 Data Normalization

In process of model creation often feature have different ranges, which may introduce
some error into the result. To avoid this paper uses data normalization technique, where
all the data is normalized in the range of 0 to 1 using minimum maximum normalization
technique (Galea and Capelo; 2018).

Xnormalized =
x− xmin

xmax − xmin

(12)

It is widely used normalization techniques it ensures that all the data are in same
scale on other hand it is less effective with the outlier but in present case outlier are not
the concern.

3.7 Evaluation

As the problem in hand is regression type, so to evaluate the performance of the model R-
square and Mean Square Error (MSE) are taken and based on this caparison will be done
with other models. R-square indicate the variability explained by the features selected for
the model. It ranges between 0 to 1. Otherwise this value is converted into percentage.
MSE indicate the quality of the prediction. Smaller the MSE better the prediction.

4 Design Specification

Process flow of this paper is presented in figure 3. The entire model developing process
divided into three parts viz. Feature Extraction, Feature Fusion and RUL prediction.

4.1 Feature Extraction

In this part battery data is converted into json data format. From json file based on
the concept of geometric feature of the Li-ion batteries a set of 21 feature are extracted
from the data. It has observations of voltage, current and temperature for each charging,
discharging cycle with their corresponding time values. These time-based features are
the reason for the use of LSTM and RNN model for SOC and RUL prediction, which
are suffered by capacity regeneration and complex gate selection methodology. This is
avoided in presented research by use of the autoencoder in the feature fusion section.
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Figure 3: Process Flow for RUL Prediction

4.2 Feature Fusion

In this part paper uses Autoencoder which solves multiple complications like it reduces
the dimension of data, it learns the time-based representation of the features, it does not
get affected by non-zero relaxation time of the Li-ion batteries. Autoencoder are unsu-
pervised techniques which means they do not need labelled data to learn the feature with
appropriate architecture they can learned the feature from the data itself (Goodfellow
et al.; 2016). Autoencoder have symmetrical structure that is input, and output layer
are similar. They are designed in such a way that their central layer is smaller than the
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encoder and decoder (as shown in Figure 4). When the output from the decoder is same
to the input at encoder layer then the network have learned the weights and this central
layer can be used for further analysis.

Figure 4: Autoencoder Architecture

Autoencoder used in this paper have (Rectified Linear Unit) ReLU at encoder side
and sigmoid at the output size as activation function. When autoencoder is used as
dimensionality reduction it can be compared with the Principle Component Analysis
(PCA) only difference is activation function. PCA uses Gaussian distribution which
extract linear features while in this case ReLU and Sigmoid extract linear as well as
nonlinear characteristics. Performance of the autoencoder in dimensionality reduction
with non-linear data is better than other commonly used methods (Goodfellow et al.;
2016). It fit the purpose as batteries have nonlinear nature. To control the encoder and
decoder layer Mean Squared Error is used as loss function and adadelta as optimizer.
From the hidden layer 15-dimensional data is extracted when the networks encoder and
decoder are very close. We do not want exact replica as that will mean that network has
overfit.

4.3 RUL Prediction

After getting 15-dimensional data from the Autoencoder which is fused with time char-
acteristic of battery parameters. Data is converted from unsupervised to supervised by
adding the RUL data. RUL is number of cycle battery going to last before it becomes
dis-functional.For this a simple deep neural network is used which have three dense layer
input layer has 512 neurons with ReLU as activation function, then next layer is dropout
layer and output layer has one neuron with sigmoid activation function.This final layer
gives the RUL value for corresponding input features.
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5 Implementation

This parts support document is mentioned in the design manual of the paper. For entire
research coding is done in python using jupyter notebook and google colab.

5.1 Data Processing

First thing was to convert MATLAB file into json file so that it can be opened in Python.
All the data related work is done in Jupyter Notebook.

After this feature were extracted based on the equations in section 3.3. From each
cycle data was stored in different list, each equation provided two set of features, in total
20 feature were collated from the data and converted into csv file one for each battery.
This step was tedious as generalizing each cycle required lots of testing with different
cycle. This was done based on trial and errors and finally condition was derived for the
loop coding during the feature extraction process. Last feature is derived by multiplying
maximum terminal voltage and current. This represents corresponding capacity of the
battery. So, paper uses these 21-dimensional data for the model creation.

5.2 Model Training and Testing

This step is performed using google colab which help in quick training and testing of
model. Autoencoder and neural network is created based on architecture discussed in
section 4.2. Files from all the battery joined to make a single file. At this stage data is
split into training and testing set. The splitting ratio is selected as 90% for training and
10% for testing. High percentage of data was allotted to training as the used dataset is
very small and target was to train the model on maximum data. Then Autoencoder is
trained on the data of batch size of 12 for 1000 epoch when the loss hit the approximate
constant state then training is stopped, and 15-dimensional feature are extracted from
the hidden layer of autoencoder.

Figure 5 shows the model loss of autoencoder, validation loss closely follows the train-
ing loss and becomes approximately constant at the later stage of the epochs. This means
data is not overfitted or underfitted.

After this prediction phase starts; before starting the prediction, data is normalized
as discussed in section 3.6. RUL feature is added as target variable for the training of
Neural Network as explained in section 3.5. Neural Network architecture is created as
explained in section 4.3. This neural network uses ’Mean Squared Error’ as loss function
and ’adam’ as optimizer, batch size is 16 and trained for 500 epoch. Loss function of the
model becomes constant at the later stage of the operation (see Figure 6).

From this trained model final prediction is done on the test data. R-square and Mean
Squared Error is calculated for the finally predicted RUL value.

6 Evaluation

As the RUL prediction is a regression problem so the evaluation can be done on the basis
of the Mean Square Error (MSE) and R- Square values. MSE represent the deviation
between predicted value and actual value, smaller the test MSE better is the prediction
(James et al.; 2013a). R-Square explains the proportion of variation within predicted
value (Y) explained by the independent set of features (James et al.; 2013b). It always lies
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Figure 5: Training Model Loss of Autoencoder

Figure 6: Prediction Model Loss

between 0 to 1, if its value is near to 1, that means maximum proportion of variability in
predicted value is explained by the used model. In this paper used model gave maximum
R-squared 95.7% and MSE is 0.0038 as shown in Table 2.

R-square and MSE is calculated for different set of test data and minimum R-squared
87.05% and MSE is 0.0105. So, based on this one can say it is quite robust to different
set of testing data.

These results were also compared with the previous models on the same dataset.
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Table 2: Evaluation of Prediction Model
Evaluation Parameter Minimum Value Maximum Value

R-square 87.05% 95.70%
MSE 0.0105 0.003

6.1 Linear Regression Model

After extracting 15-dimensional data from the Autoencoder paper tried to use a simple
regression model for the RUL prediction it achieved competitive R-Square of around 90%,
judging from the point of complexity and interpretability of the model it is quite good
result.

6.2 Discussion

For RUL prediction earlier best-performing model was improved LSTM since the batteries
charging, discharging cycles have time dependent features, so the choice of LSTM was
obvious in order to retain the time data. This paper had argued how autoencoder can
be used with the time dependent features and the results shows it has been successful
up to a certain level since the results from the proposed model is comparable with the
best performing models of PA-LSTM, DLSTM and better than the ANN model ((Qu
et al.; 2019; Wang et al.; 2018). From Table 3 one can say that presented model is almost
as good as the model with the best MSE. So, the autoencoder successfully learned the
time feature and compressed them into smaller dimension. As the dataset was small, so
there is always chances that autoencoder do not converge, that’s why data was used in
very small batches in training phase. Other than this used dataset has only one ambient
temperature, so the final model will not be robust against different working temperature.
This issue can easily be resolved by using data from different ambient temperature.

Table 3: Comparison Between State of Art RUL Prediction Deep Learning Model and
Autoencoder-DNN Model

Model Mean Square Error
Autoencoder+DNN 0.003

PA-LSTM 0.003
DLSTM 0.002

ANN 0.009

This research was able to meet all objectives set during the starting phase of the
research. Literature review section gives a brief historical evolution of RUL and SOC
calculation in batteries. Then in later part it focuses on current methods of deep neural
networks like ANN, LSTM etc. The big chunk of time was devoted to the data point
selection which is discussed in 3.3 great detail with the help of various mathematical
equations.

7 Conclusion and Future Work

This research was started with the aim of making an accurate prediction for RUL of Li-ion
batteries, which will make the battery health monitoring more reliable and intelligent.
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This will help the electrical automobile industry, renewable energy plants etc. to main-
tain environmental sustainability and progress towards the clean energy goal. Almost all
the objectives from this research are fulfilled. This research proves that it is possible to
recognise, monitor and analyse the voltage, current, temperature and all other geomet-
ric parameters. In this research, the geometric parameter of Li-ion batteries was used
successfully to predict RUL with the time-based feature fusion using autoencoder. It
shows that autoencoder can be an effective tool to deal with numerical data or regression
problems.

The used method has the comparative result with the state of art DLSTM and PA-
LSTM models. It confirms the effectiveness of autoencoder in extracting non-linear char-
acteristics. The extracted feature gave quite good results even with simple regression
prediction model which again validate the quality of the extracted feature.

Dataset used, has only one ambient temperature, so to make model more robust it
needs to be trained on dataset of other ambient temperatures. This research obtained
the prediction only for the single cell of battery, while in real application usually a set of
cells are used. Hence, there is a room to further extend this methodology to predict the
RUL of entire battery pack.
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