[\
— 0. =

S
N
.

National
College
Ireland

Lung Cancer Classification from Histologic
Images using Capsule Networks

MSc Research Project
Data Analytics

Bedanga Bikash Roy Medhi
Student ID: x18182127

School of Computing
National College of Ireland

Supervisor: Dr. Rashmi Gupta

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Bedanga Bikash Roy Medhi
Student ID: x18182127
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Rashmi Gupta
Submission Due Date: 28/09/2020
Project Title: Lung Cancer Classification from Histologic Images using Cap-
sule Networks

Word Count: 1651
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Lung Cancer Classification from Histologic Images
using Capsule Networks

Bedanga Bikash Roy Medhi
x18182127

1 Software and Hardware requirements

The project implementations required the use of some dedicated hardware which are
listed below:

e Processor and Generation: Intel Core i7-3612QM
e Operating System : Ubuntu 18.04.4 LTS

e Ram : 16 GB DDRS3

e Hard Disk Drive : 1 TB

The software required for the implementation are:
e Anaconda version : 4.8

e Python version 3.7

e Google colab

LibreOffice Calc

Google Chrome 84 and above
Visual Studio Code

2 Environment setup

For the implementations has been done in two phases.
e Phase 1 which it the pre-processing is done on the local system.

e Phase 2 where the model training and testing are done in the Google colaboratory
environment.

bedanga@bedanga-Inspiron-7520:~5 conda create --name tensorFl-:)wl

Figure 1: Creating environment

bedanga@bedanga-Inspiron-7520:~$% conda activate tenSDrFl-:)wI

Figure 2: Activate environment

2.1 Phase 1 : Local environment setup
e Download Anaconda 4.9
e After installing Anaconda a new environment was set up for image processing.
e The new environment has to be activated in the terminal in order to be used.
e To launch the jupyter notebook the ”jupyter notebook” has to be executed and it

will launch.

2.2 Phase 2: Colab environment setup

e For the colab environment setup we need to first setup login credentials for colab
by signing up in Google.

e Then we need to login in colab homd?|

o After successful successful login the colaboratory provides notebooks to execute
python code.

e To utilize the GPU dedicated for the session can be accessed by changing the
runtime. In order to do that we need to visit the runtime tab in the top left side of
the screen and click on it as shown in Figure [3]

Thttps://www.anaconda.com /products/individual
Zhttps://colab.research.google.com/

£ UntitledQ.ipynb

t
File Edit View Insert Runtime Tools Help Allchanges saved
— ¥ Code + Text Run all Cirl+F9
Run before Ctr+Fe
< n Run the focused cell Ctri+Enter
Run selection Ctrl#Shift+Enter
O
Fun after Cari+F10

Factory reset runtime
Change runtime type

Manage sessions

Figure 3: Change runtime

e After that click on the change runtime option and a popup will appear where we can
select the GPU option and save it. The runtime restarts with the GPU allocated
it.

Notebook settings

Hardware accelerator

None b @

MNone
GPU
TPU

tput when saving this notebogok

CANCEL SAVE

Figure 4: Setting GPU

e [t provides around 13 GB of RAM and 68 GB of disk space for a session.

3 Data Source

The data source is from the archives of Cornell Universityﬂ The dataset can be down-
loaded from the link| provided in the documentation of the dataset(Borkowski et al}
2019).

Folder structure of the dataset: Once the download is completed the images are arranged
in the following way:

e Main directory inside the compressed file is lung_colon_image set. There are two
sub directories here; lung_image sets and colon_image_sets.

e colon_image_sets: Colon cancer image set having images of colon cancers. Inside
this folder there are two more sub directories. These sub directories colon_n and
colon_aca which are the two colon cancer types mentioned in the documentation
i.e. benign colonic tissues and colon adenocarcinomas.

e lung image sets : Lung cancer image set having images of lung cancers. Inside this
folder there are three more sub directories. These sub directories lung n, lung_scc
and lung_aca which are the three lung cancer types mentioned in the documentation
i.e. benign lung tissues, lung squamous cell carcinomas and lung adenocarcinomas.

e Each sub type has 5,000 images that sums up to 25,000 images for all the five types
of cancer.

1ell University

arXiv.org > eess > arXiv:1912.12142

Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 16 Dec 2019]

Lung and Colon Cancer Histopathological Image Dataset (LC25000)
Andrew A. Borkowski, Marilyn M. Bui, L. Brannon Thomas, Catherine P. Wilson, Lauren A. DeLand, Stephen M. Mastorides

The field of Machine Learning, a subset of Artificial Intelligence, has led to remarkable advancements in many areas, including medicine. Machine Learning algorithms
require large datasets to train computer models successfully. Although there are medical image datasets available, more image datasets are needed from a variety of
medical entities, especially cancer pathology. Even more scarce are ML-ready image datasets. To address this need, we created an image dataset (LC25000) with 25,000
color images in 5 classes. Each class contains 5.000 images of the following histologic entities: colon adenocarcinoma, benign colonic tissue, lung adenocarcinoma, lung
squamous cell carcinoma, and benign lung tissue. All images are de-identified, HIPAA compliant, validated, and freely available for download to Al researchers.

Comments: 2 pages
Subjects: Image and Video Processing (eess.IV): Computer Vision and Pattern Recognition (cs.CV); Quantitative Methods {q-bio. QM)
Cite as: arXiv:1912.12142 [eess.IV]

(or arXiv-1912 12142v1 [eess.IV] for this version)

Figure 5: Dataset Source

4 Code Structure

The below section explains the code structure of the project.

e BrisqueScore directory: contains the .ipynb files for calculation of BRISQUE score
of the images.

e capsulelayers.py : The file contains the layer definitions of the capsule network.

3https://arxiv.org/abs/1912.12142
4https://github.com/tampapath /lung_colon_image_set/blob/master/README.md

e LoadCapsuleNetworkModel.py : This file contains the function where the Capsule
Network is define. It is used for instantiating the Capsule Network.

e LoadCNNModel.py : The module contains the definition of the 3 pre-trained CNN
architectures. The respective CNN models can be instantiated using this module.

e Pre_Processing_Normalization.ipynb : The .ipynb notebook is used for the stain
normalization of the images.

e pre_processing_splitting_df.ipynb : This notebook contains the code for data trans-
formation and splitting.

e CapsuleNetwork.ipynb : The notebook is used for the training and evaluation of
the Capsule Network.

e VGG19.ipynb : The notebook is used for the training and evaluation of the VGG19
model.

e RestNet50.ipynb : The notebook has the code for training and evaluation of the
ResNetb0 model.

e DenseNet.ipynb : Notebook used for training and evaluation of the DenseNet-121

model.

5 Python Libraries and versions

Table 1: Libraries and versions

Library Version Reference Installation Command
numpy 1.18 https://numpy.org/ pip install numpy
pandas 1.1.0 https://pandas.pydata.org/ pip install pandas

, .] . python -m pip install -U
Matplotlib | 3.1.1 https://matplotlib.org/ matplotlib
staintools | 2.1.2 https://pypi.org/project/staintools/ pip install staintools
tqdm 4.46.0 https://tqdm.github.io/releases/ pip install tqdm

python -m pip install -U

skimage 0.17.2 https://scikit-image.org/ scikit-image

image- - . .
quality 1.2.5 https://pypi.org/project/image-quality/ pip install image-quality
cv2

https:/ /opencv-python-

(opency- 4.2.0 tutroals.readthedocs.io/en /latest /index.html pip install opency-python
python)

sklearn 0.22.1 https://scikit-learn.org/stable/ pip install -U scikit-learn
keras 2.24 https://keras.io/ pip install keras==2.2.4
‘g;l:lsorﬂow 1.15 https://www.tensorflow.org/ Ig)g;::l{l. it; Il tensorflow
seaborn 0.10.0 https://seaborn.pydata.org/ pip install seaborn

6 Data loading, splitting and pre-processing

The following section will explain the pre-processing, splitting and loading.

6.1 Data pre-processing

In the pre-processing the images include stain normalization and splitting of data.

e Libraries of BRISQUE score calculation:

e Function that calculates the BRISQUE score.

e For the stain normalization of the images the following libraries are used; shown.

e Code for setting the target image for stain normalization.

e Applying normalization the other images and saving them in new directory.

e Calling the executor that normalizes the images.

6.2 Data splitting

In the next phase, the images are splitted in to test, train and validation and the labels
are stored in csv.

e The libraries used in the splitting and label encoding process are shown below.

e Extracting the image names and class labels and storing in dataframe.

10

e Encoding the class labels using LabelBinarizer and stored them in a new dataframe
df_encoded.

e Appended the encoding and the image names into one single dataframe.

e Splitting the dataframe into train, test and validation sets. The ratio of split is
80:20 for train and test. For the training set 20% is split off for the validation set.

e The images from the actual source are transferred to newly created directories for
Test, Train and Validation.

e Exporting the dataframes of train, test and validation to .csv files.

e In the last step the .csv files and the directories containing the images are zipped
together. The zipped file is uploaded in google drive and will be used for training
and testing.

Test Train wval teskt.csv train.csv val.csv

Figure 6: Folder structure

Dataset Dataset.zip

Figure 7: Files zipped together

6.3 Data Loading

The dataset is loaded in to Google drive and then using the code below the drive can be
mounted to the colab environment. We need to click on the blue link shown in the figure
to generate the authentication key required for mounting.

#Mounting Google Drive
from google.colab import drive
drive.mount (’/ /content/drive’)

Key for connecting the drive with google colab is generated by the link shown below.

from google.colab import drive
drive.mount('/content/drive")

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?cl

Figure 8: Link to generate authentication key

Google
Signin
Please copy this code, switch to your application and paste it there:

4/2wG19X4111i37RPSMmMKCa - I_D
ZPGsbEFNdAQRASJyZ FKXGhSLUOZ4gRwa 14

Figure 9: Authentication key
The successful mounting can be seen on the left panel of the notebook shown in the figure

below.

13

% + Code + Text

= Files
B Ea E - def extract dataset(path):
{3 - :
#Extracting the dataset from the zip file
[+
O v [drive zip ref = zipfile.ZipFile(path, 'r'})

zip ref.extractalli{BASE PATH)

] sample_data
. ’ zip _ref.close()

from google.colab import drive
drive.mount('/content/drive")

[» Go to this URL in a browser: https://accounts.google.com

Enter your authorization code:

..........

Mounted at /content/drive

Figure 10: Drive mounted

7 Modelling and Training of Capsule Network

The following description is regarding the initialization of the Capsule Network and
training. The tensorflow and keras version used are 1.15 and 2.2.4 respectively. The
capsulelayers.py, LoadCapsuleNetworkModel.py and CapsuleNetwork.ipynb are used for
initialization and training. The three modules mentioned above are used for the training
of the Capsule Network.

e Libraries used in capsulelayers.py

14

e Libraries used in LoadCapsuleNetworkModel.py

e Both the modules are required to be loaded into Google drive which can be loaded
into the colab environment with the below command shown below.

e Libraries used in CapsuleNetwork.ipynb.

e Loading the data into numpy arrays.

e Initializing the Capsule Network model.

Layer (type) Output Shape Param # Connected to
;;;;:;-(InputLayer] (Nnn;,";;t-;;;:-;] .
conv2d 1 (Conv2D) (Mone, 128, 128, 128 3584 input 1[@][6]

batch normalization 1 (BatchNor (None, 128, 128, 128 512 convz2d 1[e][e]
convert to caps 1 (CenvertToCap (None, 128, 128, 128 @ batch normalization 1[@][0]

Figure 11: Capsule Network summary

e Initialize the optimizer and callbacks for the Capsule Network.

e Train the Capsule Network by calling fit.generator(). The augmentations are spe-
cified in the data generator for training.

8 Modelling and Training of CNN models

Tensorflow and keras libraries are used for defining the CNN models. The initialization
of the pre-trained CNN architectures are done in the following steps:

e Loading the LoadCNNModel.py this module contains all the definitions of the CNN
models. The model definitions are specified in different functions, that can be
invoked by passing the input size and number of output classes with the ”imagenet”
weights.

e Libraries used in the LoadCNNModel.py module that loads the model for training.

e The RestNet-50,VGG19 and DenseNet121 model are defined in the loadRestNet-
Model(),loadVGG19Model() and loadDenseNetModel() function that takes the in-
put size of the image and the number of output classes.

e There are three .ipynb files used for training of the CNN models. In each file the
libraries used for training of each model are shown below.

e Before initializing the models the module LoadCNNModel has to be imported for
the CNN models to be initialized.

e Initialization of the three CNN models.

e Initialization of data generator for training of the CNN models using augmentation.
The augmentations to be done on the images are specified in the data generator
function itself.

e In the last step we initialize the optimizer, the callbacks and execute the training
for the models.

9 Evaluations

The evaluations for the models considered in the sutdy are For the evaluations the fol-
lowing libraries and are used:
e To evaluate the model with MCC and the confusion matrix the module can be
imported using:

e To estimate the Matthew’s Correlation Coefficient of a model.

e Plotting the train and validation loss and accuracy curve.

22

Capsule Network training and validation accuracy

10 1

0.9 A

= Taining Accuracy
0.4 1 m— \alidation Accuracy

0 5 10 15 20 25 30
epoch

Figure 12: Train and validation accuracy curve

Capsule Metwork training and validation loss

0.40 1

0.35 1

0.30 1

0.25 1

0.20 1

accuracy

0.15 1

0.10 1

0.05 1

0.00 1

mmm Taining Accuracy
m— Validation Accuracy

] 5 10 15 20 25 30
epoch

Figure 13: Train and validation loss curve

23

e The execution of the below code plots the confusion matrix.

#Plotting the confusion matrix
plt.figure(figsize=(10,8))

ax= plt.subplot ()

sns.heatmap (confusionmtx.T, annot=True, ax =

ax, fmt="g’,annot_kws="size": 17)

ax.xaxis.set ticklabels (list (label _encodings[’CancerType’
1))
ax.yaxis.set_ticklabels (list (label_encodings|[’CancerType’
1))

ax.xaxis.label.set fontsize (15)

ax.yaxis.label.set fontsize (15)

ax.set_xlabel ("Actual Class’)

ax.set_ylabel ('Predicited Class’)

plt.xticks (fontsize=14)

plt.yticks (fontsize=14)

plt.show ()

- 1000

- 800

lung_aca

[¥;]
(7]
o - 600
(W]
=
[L
= u
8 v
=
Dh_ = - 400
- 200
CI
zn
=
=
; ! , Lo
lung_aca lung_scc lung _n
Actual Class
Figure 14: Confusion matrix
References

Borkowski, A. A., Bui, M. M., Thomas, L. B., Wilson, C. P., DeLand, L. A. and Mastor-
ides, S. M. (2019). Lung and colon cancer histopathological image dataset (1c25000).

24

	Software and Hardware requirements
	Environment setup
	Phase 1 : Local environment setup
	Phase 2: Colab environment setup

	Data Source
	Code Structure
	Python Libraries and versions
	Data loading, splitting and pre-processing
	Data pre-processing
	Data splitting
	Data Loading

	Modelling and Training of Capsule Network
	Modelling and Training of CNN models
	Evaluations

