~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Stephane Nichanian
Student ID: 18202632

School of Computing
National College of Ireland

Supervisor: Dr. Rashmi Gupta

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Stephane Nichanian
Student ID: 18202632
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Dr. Rashmi Gupta
Submission Due Date: 21/09/2020
Project Title: Configuration Manual
Word Count: 2283
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 27th September 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Stephane Nichanian
18202632

1 Introduction

This document aims to provide the hardware and software information used to complete
this project. It also details and explain the code used to generate the various models,
predictions, statistics and graphics that compose the project called : ”Understanding
the impact of COVID-19 on electrical demand”

Due to the length of the code and the forecasting methodology, the coding has been
separated in 4 different files: pre-processing, dynamic forecast update, regression and
plots.

2 System Configuration

2.1 Hardware

The hardware used for this project is a Acer Helios 300 laptop with the following config-
uration:

e Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz,

Installed memory (RAM): 16.0 GB,

System Type: Windows OS, 64-bit,

GPU: NVIDIA GeForce GTX 1060,

Storage: 275 GB SSD,

2.2 Software

Microsoft Excel 2016: the popular Microsoft data file management tool has been used
to store all the data downloaded from various websites as well as to store the data gener-
ated by the code in R studio. The extension used by the Excel program is in .csv format
which is the preferred format to import and export data in R studio.

R studio: This open source tool provides an user friendly environment to code in R
language. Multiple functionalities are offered such as automatic code error detection,
function auto-completion and a visual environment for graph generation. The version of
R Studio used for this project is Version 1.3.1056.

3 Data pre-processing

This Chapter explains how the original dataset and predictor variables were obtained and
cleaned.

3.1 Original dataset

The raw dataset containing electrical consumption information is obtained from Reseaux
Transport Electricite RTE website, https://www.rte-france.com/. This company is re-
sponsible for the transportation of all electricity in France from production sites to final
usage location. They are therefore also responsible for building and maintaining the en-
tirety of the electrical grid in France along with electricity demand monitoring. Part of
a recent transparency scheme, RTE has made available all electrical data in all of the re-
gions of France. The data obtained from the RTE website, therefore contains the quarter
hourly electrical demand readings for the region of Ile-De-France from the 1st of January
2016 to the 29th June 2020.

The following code snipet figure [1] shows how the separate data files were merged in one
file. The R library used for the data pre-processing is ”tidyverse” which is an ensemble of
libraries necessary for basic data cleaning and transformation tasks in R. The following
snippet shows the corresponding code.

Figure 1: CSV files merging

Each file is loaded separately using read.csv() function followed by the combination
of each file in data frame format by row using r.bind.data.frame().
The quarterly and half hourly values are deleted by subsetting values ending with 15,
30 and 45 (see figure . It is also important to note that the time and date column
must be transformed into a time format variables, which makes the time related data
transformation and visualisation much easier. This is done using the strptime() function
whilst indicating the format of the existing time variable in the arguments. The following
snippet 2| demonstrate this important step along with the full hourly data transformation.

https://www.rte-france.com/

Figure 2: Full hour transformation and time conversion code

The missing values are handled using the moving average method, which uses the
before and after available observations and averages them. For this task the library used
is "imputeTS” which is a library containing multiple functions (mean, linear interpolation,
Last Observation Carried Forward LOCF) to compute missing values in a time series.
The following snippet [3| shows the snippet for the missing values and the library used.
na,a is the moving average method.

Figure 3: Missing values using moving average method

It should also be noted that, there were additional missing values in the windspeed and
UVindex variables which were replaced by moving average and last observation carried
forward method respectively.

3.2 Weather variables

The weather variables are imported from the Dark Sky API.

The R libraries necessary for this section are: httr for the GET request, jsonlite to deal
with the JSON format received by the API and stringr to link the different items of the
API URL. The snippet in figure (4] shows initialization code for the API settings.

Figure 4: DarkSky API initialisation parameters

https://darksky.net/dev

The time stamp is in UNIX format and therefore the initial date of January 1st 2016
at midnight in "CET” timezone becomes 1451602800 in UNIX format. The darksky url
is added along with the user API key (replaced by xxxxxx in this snippet as this is a
paying service). The longitude and latitude of Paris have been specified as this is the
most densely populated area of Ile-De-France and will have the highest electrical demand.
The following step is to create a time vector called Time_vec in figure [, that contains
UNIX time values for each day at midnight ranging from January 1st 2016 to June 29th
2020. There are 86400 seconds in one day, therefore adding this number to each previous
value will represent a new day.

After initializing the setting, we can now call the API and store the information in data
frames as shown in figure [f

Figure 5: DarkSky API call loop

The API call link is created by stringing together the various components of the URL
. We then create a loop that iterates through each day (coded in UNIX time in Time,ec
variable) and places a separate request for each day. The Darsky API returns the weather
information, in JSON format and UTF-8 coding, for each day (which is contain in the
fifth item of the response variable). We then store this information in a data frame called
WeatherpF'.
It should be noted at this point that the first 1000 API requests are free, however any
call made after that is charged at 0.0001$ per call. Therefore, the data is stored into a
local file and any other task done after this point loads the local file instead of creating
a new API call.
Due to the lengthy pre-processing task for this project, the method of storing files locally
and re-loading them is used multiple times through the code, The following code snippet
displays how the local file is saved and reloaded for processing.

Figure 6: Local file saving and loading

write.csv() and read.csv() are used to respectively write and store the data frame in
a csv file, whilst setwd() is used to set the directory.

3.3 Time variables

The time related variables must be coded manually and added to the dataset. The
snippet in figure [7| shows how the day of the week is added. This is done by using the
weekdays() function which takes as input a date (at the correct date format) and returns
the corresponding day of the week. This is then added as a multiple level factor in the
data frame.

Figure 7: Weekday code

The remaining of time related components are coded in a similar way.

3.4 Lagged demand and temperature variables

The lagged temparature variables are also coded manually. The snippet in figure
demonstrates how the minimum temperature is added to the data frame.

Figure 8: Minimum temperature

We simply create a loop that iterates through each row and checks for the last 23
available temperatures and selects the minimum value.
Coded similarly, the lagged temperature variables contain the following variables: tem-
perature 24 hours ago, temperature 48 hours ago, minimum temperature in last 24 hours,
maximum temperature 24 hours ago, average temperature in last 7 days.

The lagged demand variables are then created. For example, figure [J] shows the code
to create the last observed electricity demand 24 hours ago.

Figure 9: Last electrical value, 24 hours ago

Coded similarly, the lagged demand variables contain the following variables: demand
24 hours ago, demand 48 hours ago, minimum demand in last 24 hours, maximum demand
24 hours ago, average demand in last 7 days.
In figure we demonstrate that the dataframe does not contain any missing values,
using the sapply() function combined with the is.na() function that return true when an
observation is NA.

Figure 10: Missing values check

3.5 Dynamic forecast data update

The dynamic forecast update is implemented by calling a different R script, every time
a prediction is made. This script updates the lagged variables and replaces them in the
existing data frame. The snippet in figure[l1|demonstrates the call to the dynamic update
script from the main R code.

Figure 11: Dynamic update script call

4 Predictive Models

4.1 General Additive Model (GAM)

Figure [12 shows the GAM model in R. The main function is gam() obtained from the
"mgvc” package created by Simon Wood a professor of Statistics at Bristol University

and author of multiple books on statistics and generalized additive models. Figure
shows the code to create the GAM model at midnight.

Figure 12: GAM model in R

As explained in the methodology chapter of the main report, there are 24 different
GAM models which each represent one hour of the day. In the R code, this is done by
creating a loop that iterates through each observation of the testing set and creates the
GAM model for the specific hour of the observation.

The response variable is Electricity which follows a Gaussian distribution and a logar-
ithmic link function. The Holiday and Bank Holiday predictors are categorical factors
and as such do not require to be integrated in smoothing function and are left in their
original form. The terms contained in the s() function are all transformed via smooth-
ing functions. We note that the trend evolution is not linear, therefore we include the
trend variable in the smoothing function s(). Similarly, the lagged demand and lagged
temperature terms which all display non-linear behaviour are also included in smoothing
functions. The method bs = "ps” indicates that the Smooth Splines method has been
used.

Finally, the select = TRUE argument is used for feature selection and eliminates any
variable that does not contribute to the model.

A manual feature selection process was also implemented to understand the contribution
of lagged temperature and lagged demand variables. Three separate models were created
with a subset of variables. The code in figure [13| demonstrates all three models as coded
in the project, along with the ANOVA test to create the comparison statistics.

Figure 13: GAM models for feature testing

We can see all three models created at 22h with the subsetted predictor variables.

Once the model is created for the specific hour, the prediction is made on the testing
set using the predict() function, the resulting forecast is then added into the original
dataframe in the ”Forecast” column. The electricity variable is brought to the power of
10 due to the logl0 transformation done for the GAM model. See Figure

Figure 14: Model prediction

4.2 GAM assumptions

Once the model is created, the GAM assumptions are checked by generating visuals of the
residuals using the gam.check() function from the mgve package in R. This method returns
all the standard graphs namely: histogram of residuals, residual vs linear predictor,
response vs fitted values and QQplot. See figure [15] for the corresponding code. The par
2x2 indicates the number of graphs to display in the output window.

Figure 15: Residual plot code

The Durbin-Watson (DW) statistic is computed using the durbinWatsonTest() func-
tion from forecast package. This function returns the DW test statistic as well as p-value
for the test. The argument for this function is the residuals of the GAM model.

The AIC and R squared statistic used to compare the performance of nested GAM
models are generated by applying a ANOVA method to the GAM models. Figure
demonstrates the code for the ANOVA function.

5 ARIMA Regression

The second model ARIMA Regression is created using the auto.arima() function from
the forecast package. The predictor variables (called regressors in this model) are passed
in the argument of the auto.arima() function. The code to create the ARIMA regression
model for midnight is shown in figure

Figure 16: Model creation

Similarly to the GAM model, one model is created for each hour of the day through
a loop that iterates through each observation and subsets the corresponding hour data.
The prediction is done by using the forecast() function from the forecast package. The
regressors for the corresponding observation are added in the arguments and prediction
is made using the model just created. Figure 17| shows the prediction code

Figure 17: Model prediction

5.1 Arima regressors

The ARIMA regressors are the same as the GAM regressors. However the auto.arima()
function requires categorical variables to be in 0 and 1 format. Figure |18 shows the one
hot encoding code to transform categorical variables into binary variables.

Figure 18: One hot encoding

The function one_hot() from the mitools package in R is used and subsequently trans-
formed into data frame format.
Finally, the ACF plots to graphically verify residuals auto-correlation is with the Acf()
function from the forecast package.

6 Evaluation

The training and testing set are manually set to the dates chosen by the user. As specified
in the Evaluation section of the main report, we first create the model on 5 single day
dates spread throughout the year, we then create a 3-month testing set and finally another
3-month set during lockdown. The code in figure 19| demonstrates the training and testing
periods.

Figure 19: Training vs testing of all cases

As we can see the training and testing dates are specified by indexing the row of the
main data frame which corresponds to the desired date (at midnight).

The evaluation methodology for this project is done through Mean Absolute Percent-
age Error (MAPE) and graphs. Once the model is created and the testing set values are
forecasted, we store all variables in a data frame and compute hourly and daily MAPE
statistics. Figure [20| shows the corresponding code.

Figure 20: Results dataframe

The MAPE statistic is computed using the accuracy() function from the forecast

10

packege. The MAPE statistic is returned in the fifth position of the accuracy function.
The daily MAPE is computed by calculatin the mean of each hourly observation when
23h is reached.

The graphs in the evaluation section are composed of multiple types such as bar
graphs, line graphs or scatterplots. The ggplot2 package is used to generate all the
graphs. Figure shows the code used to generate the bar graph of Daily percentage
change during lockdown.

Figure 21: Results dataframe

The aes argument captures the content of the x and y axis, in this case the time
variable is in the x axis and the percentage change is in the y axis. The dataframe
considered for the plot is called DF_Daily, the geom_bar function indicates the usage of
a barplot, the lab() functions allow us to rename the x and y axis and ggtitle() adds a
title to the plot.

11

	Introduction
	System Configuration
	Hardware
	Software

	Data pre-processing
	Original dataset
	Weather variables
	Time variables
	Lagged demand and temperature variables
	Dynamic forecast data update

	Predictive Models
	General Additive Model (GAM)
	GAM assumptions

	ARIMA Regression
	Arima regressors

	Evaluation

