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Understanding the Impact of COVID-19 on Electrical
Demand

Stephane Nichanian
18202632

Abstract

The COVID-19 pandemic has fundamentally changed our society’s behaviour.
Along with these changes, electrical consumption has also been impacted in ways
never expected before. This research has highlighted the main changes in electrical
consumption statistics during lockdown: the general decrease of up to 20% electrical
demand, the assimilation of weekend and weekdays and the shift of daily activities to-
wards later hours of the day. From a technical standpoint this study has explored two
powerful regression techniques, Generalized Additive Models and ARIMA polynomial
regression. The choice of regression techniques is justified by the control it gives over
predictor variables and the possibility for manual tuning of model parameters. An
important choice of forecasting methodology was to create a separate model for each
hour of the day, thus creating accurate representation of the complex intra-daily sea-
sonality. Additionally, the introduction of lagged demand variables was instrumental
in reducing autocorrelation as well as increasing model accuracy. The study has found
GAM models to perform slightly better on short-term forecast (24 days ahead) with
a total MAPE of 2.24 over the 5 dates considered against 2.92 for ARIMA regression.
A mid-term forecast was also implemented for a period of 3 months where the GAM
model significantly outperformed the ARIMA regression with an MAPE of 2.31 against
4.08 for ARIMA regression. We do however note, significantly longer processing times
for GAM models due to complex smoothing functions. We also note that there is
no substantial degradation of prediction accuracy from a one day ahead forecast to a
3-month forecast, which validates the usage of GAM models for the lockdown period
simulation.

1 Introduction

In December 2019, the very first case of Coronavirus Disease 2019 (COVID-19), a highly
infectious disease that affect lungs and airways, was contracted in the Chinese region of
Wuhan. The first patient consequently spread the disease at an exponential rate which
eventually reached a worldwide scale and caused a global pandemic. Each country has ad-
opted laws and restrictions to address this disease and limit its outbreak thus protecting
those who are most at risk such as the elderly and people with poor health. In multiple
countries strict measures have been adopted that put the entire population in a lockdown
state. In such instances all restaurants, bars, schools and shops are closed, and people are
only allowed to exit their homes for essential shopping. These measures although strict and
conservative are necessary to address the serious consequences of COVID-19.
One notable consequence of these measures, is the change in energy consumption from a
residential, commercial and industrial standpoint. Whilst people are asked to stay at home
more, we can expect the residential electrical consumption to increase. However, the com-
mercial and industrial premises where people would usually work are now empty, therefore
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we can expect the commercial electrical load to decrease. This paper aims to understand
how energy figures have been impacted by the Covid-19 pandemic on short and mid-term
time-frames.
By using the insights derived in this analysis, key players of the energy industry can adapt
and prepare solutions for similar instance in the future. For example, electricity production
companies can use this information to understand when peak and low electricity demand
happens (in relation to phased lockdown states) for demand side management (Ayan &
Turkay 2018). Similarly, grid level electricity companies can make better decisions on trans-
mission and distribution planning (Akbari & Moghaddam 2020). Finally, this study can be
used by energy traders, that hugely benefit in understand the peak demand of electricity at
various times and geographical locations for energy purchasing and selling (Li et al. 2019).
According to a review paper on load forecasting by Mustapha et al. (2015) and as illustrated
in Figure 1 , the prediction range can be classified into 4 categories. Very Short-Term load
forecasting (VSTLF) predicts values from seconds to an hour and is used for trading and
short term operations management, Short-term load forecasting (STLF) usually predicts
half-hourly values from one hour to two weeks and is useful for trading, operations manage-
ment and planning. Medium-term load forecasting (MTLF) usually predicts half-hourly or
daily values between two weeks to three years, whereas Long-term load forecasting (LTLF)
is for time periods longer and is used for long term financial and operations planning. It
should be noted that each of these categories benefit from different prediction methods and
vary in complexity. The objective of the prediction can also vary, in STLF typically the pre-
diction would be the half-hourly electrical consumption. In MTLF the prediction could be
hourly values or daily averages, whereas in LTLF the prediction target is weekly or monthly
peak demand. The following diagram (figure 1) shows a summary of the time frames in
electrical forecasting and how they are used in the industry as previously explained.

Figure 1: Electrical forecasting timeframe and industry application

The data used for this project is for the french region of Ile-De-France which contains
the city of Paris. In this region, strict lockdown rules were instated from March 17th 2020.
Therefore, the electrical forecast target for this project is from March 17th to June 29th 2020
(date at which the research is conducted). By forecasting the electrical consumption during
this period, we can compare the current pandemic statistics to the simulated environment
without the pandemic.
The details of the electrical forecasting are included in the methodology chapter and the pre-
dictive model uses weather, calendar and lagged variables information from 2016 to present.
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The data mining task associated with electrical load forecasting is based on work done by
Mohamed et al. (2006) which provides the data collection, pre-processing, prediction and
evaluation techniques in electrical forecasting. The measure of accuracy for the model is
Mean Absolute Percentage Error (MAPE), Percentage Error (PE) along with graphs for
visualisation.
The contribution of this paper in academic literature comes from the knowledge derived
from the application of electrical forecasting in times of catastrophic events such as pan-
demics. Due to the very recent nature of the COVID-19 pandemic there is a strong gap of
academic literature in this field and potential for scientific discovery which in turn provides
a framework for future cases of pandemic or catastrophic events.
This paper also aims to improve existing methods of electrical forecasting by providing a
novel implementation of an existing predictive analysis technique.

1.1 Research question

This research aims to answer two questions:
Q1. What are the most adapted techniques in regression for short-term and mid-term
electrical forecasting?
Q2. What is the impact of the COVID-19 pandemic on electrical consumption?

The remainder of this study will be organised as follows: Related Work, Research meth-
odology, Implementation, Evaluation, Conclusion and Discussion.

2 Related Work

Forecasting in general is a popular technique to predict the expected values of a variable
given their past historical data. This method can be applied to a wide variety of fields
such as stock market prediction, supply chain management, sales forecasting and weather
forecasting (Sharma et al. 2017).
In this paper, the proposed objective is to forecast the electrical consumption in a specific
geographical area. This is a popular study that has been implemented multiple times using
a great variety of techniques that we will analyse in this chapter. The existing work ranges
from regression techniques to time series models and neural networks.
The objective of this paper is a 3 month load forecasting of hourly electrical consumption
values, therefore it falls under the medium-term load forecasting category. However, this
paper is different than other existing studies due to the fact that we are forecasting hypo-
thetical past historical values (to compare to COVID-19 lockdown situation). Therefore, a
number of actual exogenous factors such as weather or economic variables are already known
and can be integrated in this study. Therefore, although the time-frame of the analysis is
medium-term, the resources available for the forecast are those typically used in short-term
forecasting. Therefore, we will review both short-term and medium-term forecasting liter-
ature to select an appropriate method that can be used in both cases.
A study done by Kuster et al. (2017), which is a review of existing work for electrical con-
sumption forecasting, has shown that a majority of papers use regression models (multiple
regression or multivariate regression) making up for 41% of all papers considered. Artificial
neural networks were used in 38.5% of the papers and time series analysis present in 30.8%
(some papers combine the methods). In the following subsections we shall therefore consider
all three of these techniques and select the most appropriate for this study.
An important concept to keep in mind while comparing existing paper’s results is that all
these studies use the same performance measurement metrics such as Mean Absolute Per-
centage Error (MAPE) and Root Mean Square Error (RMSE) for different time-frames or
objectives. Indeed, one study might measure the monthly peak demand whereas the other
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study might measure the half hourly consumption. Therefore the same MAPE metric can
measure two different electrical demand targets, but cannot be used to compare to each
other.
The literature review is separated in Regression techniques followed by Time-Series tech-
niques and Artificial Intelligence techniques for short-term and medium-term electrical fore-
casting.

2.1 Regression techniques

Regression techniques are a common method of electrical demand prediction and are useful
to represent the relationship between demand and external factors. They are also very use-
ful in understanding which factors contribute the most in electrical consumption and allow
consumers to make better driven decisions. The predictor’s choice depends on the target
of the prediction (single building, district level or grid level) and geographical area (cold
weather or tropical with rainy seasons). The most prominent method of forecasting in exist-
ing literature is multiple linear regression (MLR) with integration of non-linear behaviour.
It was noted in an electrical forecasting review paper by Kuster et al. (2017) that regression
techniques offer very strong performances given that the exogenous conditions are known,
however the difficulty relies in identifying the correct model that best fits the conditions of
the study.

According to Mustapha et al. (2015) the predictors in regression techniques for electrical
load forecasting can be separated in three categories: time related (hour of the day, day of
the week, season of the year), environmental (weather related) and socio-economic (income,
GDP, holidays).
The following paragraph focuses on the time related factors in electrical forecasting. Souzanchi-
K et al. (2010) have used classical Multiple Linear Regression with the main prediction
parameters being days of the week. As demonstrated in this paper, the load on weekdays
is different than the load on weekends and therefore a separation between weekdays and
weekends is essential. It has also been shown by Souzanchi-K et al. (2010) that the effect
of weekend days is so important, that it also affects the surrounding days of Monday and
Friday, which usually have electrical load profiles different than Tuesday, Wednesday and
Thursday. Therefore, for our analysis we shall consider a predictor that specifies the week-
day as a categorical variable. An interesting extension of this paper would have been to
consider separate models for weekday and non week-days and verify if the final results is
improved.

Using the same time related approach by Amral et al. (2007) the time of the day com-
ponent was separated in 3 time-frames, from 1 to 6h, from 7 to 17h and from 18 to 24h.
This separation allows to accurately reflect the load fluctuation during a typical day with
the night time load being the lowest and evening load being the highest. This approach
proved to be efficient and will be used in our paper. However, the country considered is In-
dia and could typically have different load profiles than France. Therefore, further analysis
is necessary to decide the correct hourly time-zone separation. It is interesting to note that
due to the extreme variations in meteorological conditions due to the rainy season in India,
the authors have decided to create two separate models for each season. We will study this
approach in more detail in the environmental chapter. The Mean Average Percentage Error
(MAPE) achieved in this paper is 3.52% for dry season and 4.34% for rainy season.

The next aspect to consider in time related approach is the yearly seasonal variation of
electricity consumption. As can be expected, the electrical consumption in winter would be
different than the one in summer and yearly electrical load curves show strong seasonality
patterns. Lin et al. (2018) have implemented a Least Squares Support Vector Regression
(LS - SVR) model to forecast the daily maximum electrical demand using accumulated
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weather effect. To achieve this task, multiple models were created for each season of the
year. Although this study predicts daily maximums (and not hourly values), it shows the
importance of seasonality within the year and how they can affect the prediction. Further
study is required to determine whether one hot encoding the seasons is sufficient of separate
models have to be built for better accuracy.

The last time related component in regression electrical forecasting that must be con-
sidered is the trend factor. The trend component is specifically important for mid-term to
long-term forecasts at will have a significant impact on the demand evolution. This was
highlighted by Imtiaz et al. (2006) where multiple regression analysis based on least squares
method was used to forecast electrical demand over a 10 year period. The trend compon-
ent in this study is introduced by encoding a time variable that increases by 1 for each
observation. In this paper the predictor variables were population, electricity consumption
per capita, number of electricity consumers, peak electrical demand and GDP. The study
could be further expanded by including environmental factors. Using this study, we will
implemented a time variable that will reflect the trend of the electricity consumption data.

After reviewing the time related analysis using regression techniques, we can now study
the electrical load forecasting literature which use environmental factors as main predictors
for the regression. A study by Ching-Lai Hor et al. (2005) focuses on identifying the sig-
nificant weather variable in electrical consumption using multiple linear regression. It was
established in this paper that the contributing weather variables are temperature (by far the
most significant) followed by rainfall, humidity, windspeed and sunshine. This paper also
notes that the relationship between temperature and electricity consumption is non-linear.
The final MAPE with the weather variables is 2%. Again, it should be noted that one
prediction is made for each month, therefore having a total of 36 predictions (over 3 years)
it is easier to achieve a low MAPE.

The same non-linearity issue between temperature and electricity was dealt differently
by Hong et al. (2010) where a quadratic term in the polynomial equation was introduced to
represent the temperature. The regression equation therefore becomes a polynomial equation
of degree 2 to model the temperature non-linearity. Hong et al. (2010) also introduced
interaction effects in the MLR equation which allows to achieve significant improvement in
the final MAPE figure. Along the weather effects, the authors have also included time index
and socio-economic. The final MAPE with interaction and quadratic polynomial equation
is 4.6% MAPE.

There are two remaining popular approaches to deal with the temperature and electricity
non-linearity used by Abu-Shikhah et al. (2011) and Feng & Wang (2019). The former (Abu-
Shikhah et al. 2011) proposes to apply exponential smoothing to the temperature variable
to transform it’s form to a linear component. The latter (Feng & Wang 2019) proposes to
create two separate models that each represent a linear part of the temperature-electricity
curve. The cut-off point is at 25 degrees Celsius where the non-linear behavior is appar-
ent. Abu-Shikhah et al. (2011) uses an exponential regression technique to compare linear,
polynomial and exponential regression to forecast mid-term hourly and weekly load on Jord-
anian electrical data. The authors conclude that for hourly load prediction the exponential
regression technique under-performs and suggest to use the polynomial regression method.

This chapter will focus on the Socio-economic factors in regression based techniques for
electrical forecasting. Supapo et al. (2017) have focused on mid to long-term power fore-
casting using MLR considering Socio-Economic factor. For this study, the authors have
considered the historical electricity consumption data, the consumer base and growth stat-
istics, GDP and the commercial and industrial development plans for the concerned area of
Palawan. The overall MAPE over the 5 years of prediction is 2.26%. However it should be
noted that the study makes one prediction for a full year. Although this differs from out
papers objective, it shows which predictors are to be considered the socioeconomic part of
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our study, namely population and GDP.

A last approach that should be studied was implemented by Bruhns et al. (2005) and uses
advanced regression techniques namely Generalised Additive Models (GAM) to create two
separate models for the final prediction. One model uses the non-weather related predictors
and the other model uses the weather related predictors only. The non-weather predictors
are time related predictors such as trend, seasonal factors and calendar factors (holidays).
The weather model includes all standard weather predictor and deals with the temperature
non-linearity by exponential smoothing followed by double averaging with ”apparent tem-
perature”. The distinction between both models is justified by the fact that weather related
predictors have a very different behaviour than other predictors and therefore including
them both in the same model could lead to errors in prediction. This paper is an internal
study for the EDF utility company and provides high level technical implementation built
on years of experience and experimental forecasting development. Although some of the
proposed solution seem technically complex and not viable for a Master’s thesis, the two
model approach will be considered to verify the potential improvements on MAPE. The
final MAPE of this study is 1.88%, figure which we will use for comparison to our model.
Furthermore, an hourly MAPE is also shared which we will also use to compare to our
model.

After reviewing the main regression techniques existing in literature, the popular pre-
dictors and models, we can now focus on the time series analysis and decide whether it is
appropriate for our study.

2.2 Time Series Analysis

Time series analysis created by Box and Jenkins in 1970 is one of the oldest method of
electrical forecasting. They are separated in two main classes, uni-variate and multi-variate
models. Uni-variate analysis is appropriate for forecasts up to 6 hours ahead whereas multi-
variate models can be used in any timeframe.

Due to the inherent non-linear nature of electrical load (with multiple seasonality) the
time series models also need to be non-linear models (ARMA and ARIMA). ARIMA is bet-
ter suited for data with complex non-linear behaviour and therefore are more appropriate
for electrical load forecasting (Maniatis 2017).

Angelaccio (2019) implemented an ARIMA model on Italian cities energy consumption.
The authors created a total of 6 models with varying (p,d,q) parameters ranging from (0,0,0)
to (2,2,2). The training set is from 2016 to 2018 and the data set is further separated into 5
datasets following a rule of similar months. For each model, the optimal (p,d,q) parameter
is selected. The months of January, February and March are in the same model because the
electrical consumption data is similar during those months. The final MAPE is 8.5% across
all models. This high figure is justified by the fact that the electricity consumption is done
over multiple counties all over Italy that inherently display different electrical consumption
behaviour. This paper proposes a Seasonal ARIMA time series analysis that offers good
results for a uni-variate analysis over multiple cities. The natural extension of this work, that
would lower the final MAPE figure would be to integrate exogenous variables to implement a
multi-variate time series analysis called Seasonal AutoRegressive Integrated Moving Average
eXogenous (SARIMAX).

Hutama et al. (2018) chose the SARIMAX method to forecast the power consumption
of the Bali island. The objective is a medium-term forecasting of daily average loads for
the 2017 year. The SARIMAX parameters are (1,0,1) and the exogenous factors coded in
the equation are: day of the week and holiday dates. The MAPE for average daily load
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was 2.68% which is a good value for this type of analysis. Again it should be noted that
average daily values are easier to predicted than hourly values implemented in our paper.
The limitations of paper lie in the restricted number of exogenous predictors chosen. How-
ever an interesting aspect of this paper, is that the authors also implemented an Artificial
Neural Network with the same data and have found the SARIMAX model to perform better.

An inherent problem with time series analysis in electrical forecasting is that with in-
creasing complex seasonal components (daily, weekly, monthly...) the time series equation
quickly increase in complexity as well and can lead to long formulas difficult to understand.
This problem is not present in regression where the relationship between predictors and
dependant variable is clearly defined and quantifiable.

2.3 Artificial Intelligence Techniques

Neural Networks are a popular method of electrical forecasting and have proven to achieve
good results in prediction accuracy of Short-Term timeframes (Sharma et al. 2017), although
they can highly vary in complexity, computational time and pre-processing time. According
to Sharma et al. (2017) the advantage of using Neural Networks for electrical forecasting
lie in the fact that there are a wide variety of neural networks that can be adapted to each
specific study and are able to capture complex variations of data. Additionally, Support
Vector Machines, neuro-fuzzy systems and Genetic Algorithms are also popular techniques
considered Artificial Intelligence techniques.

A basic Multi Layer Perceptron (MLP) Neural Network has been used by Yi et al.
(2019) with the addition of extra hidden layers to form a Deep Belief Network (DBN). The
DBN is combined with a Nonlinear Auto Regressive (NAR) dynamic neural network. The
NAR is used to forecast the time series component of the data whereas the DBN is used to
forecast and reduce the residual errors of the first model. This method not only incorporate
seasonal time components but also weather factors including, temperature, illuminance and
humidity. Although the load forecasting focuses on PC output generation, it shows that
by combining two neural networks of different structure the accuracy of the model can be
improved whilst considering weather information. This paper also puts in evidence the self-
learning capability of neural networks and how they can be used to automatically detect
seasonality in electrical load.

A comparative study of multiple Neural Networks done by Tao et al. (2019) aims to
predict the electrical load on the European Intelligent Technology Network (EUNITE). The
dataset is made of half-hourly electricity data, daily average temperatures, holiday dates
and working days. The training set is from January 1997 to November 1998 and the testing
set is over the month of December. The targeted prediction is daily average values and
therefore easier to predict than hourly values. The authors have considered four different
Neural Networks, namely Back Propagation (BP), Radial Basis Function (RBF), Elman
Network (EN), and Long-Short Term Memory (LSTM). The LSTM model was found to be
the most accurate with a MAPE of 3.46% followed by RBF with 3.69% whilst Elmann and
BP both had MAPEs higher than 5%. The limitations of this study rely in the fact that
the predictions are only made on average daily values. The extension of this work would be
to predict hourly values over a month period. As suggested in the paper, this could be done
by building 24 Neural Networks that would each predict one hour of the day.

In conclusion, Artificial Intelligence techniques are well adapted for electrical load fore-
casting as they can incorporate exogenous factors as well as capture complex variations of
data. Neural Networks are considered to achieve to lowest MAPEs in STLF. As shown
by Kuster et al. (2017) Artificial Intelligence techniques in existing literature mostly focus
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on STLF with very few implementations on MTLF which are mainly done by regression
techniques.

Regression techniques are the preferred forecasting method for our papers because unlike
black-box systems (Neural Networks and SVM) it allows us to control the predictor vari-
ables and understand their relationship with electrical demand. MLR will also allow us to
specifically analyze the causes of electrical consumption variation in relation to COVID-19
and other exogenous factors such as temperature, rainfall, holidays... The final choice of
the model that achieves the lowest MAPE will be explained in the methodology section and
various models will be considered with their outputs. The literature review summary table
can be found in Appendix C.

3 Methodology

The research done in this study follows the Knowledge Discovery Database (KDD) meth-
odology. This Chapter aims to explain the various tasks and processes followed within the
KDD methodology for the implementation of electrical forecasting.

3.1 Original dataset

The electrical consumption dataset is obtained from the french website of the company
RTE, https://www.rte-france.com/.The data obtained from the RTE website, contains the
quarter hourly electrical demand readings for the region of Ile-De-France from the 1st of
January 2016 to the 29th June 2020. The RTE website shares their data in separate excel
files for each year. Therefore, the initial data pre-processing task was to convert those files
to separate csv files and merge them by row in R studio.
The next task is to transform the data into hourly values (as quarter hourly readings offer
a level of detail that is not necessary for the study). This is done by simply omitting the
observations that are not full hourly observations. The final task for data cleaning of the
original dataset is to detect and replace missing values. There were a total of 12 missing
values. We will use the Moving Average method, that uses the before and after observations
and averages them (with a window size of 2). This is an acceptable solution as we expect
the electricity consumption to evolve linearly between two times of a day.
Figure 2 shows the electrical consumption graph from 2016 to 2020 obtained from the original
dataset.

We can observe the general spikes and lags in the data which represent the summer and
winter months, where electricity is mainly affected by temperature. We also note a downward
trend in the last two years during the summer months. This is again due to temperatures
being lower than previous years and therefore reducing electrical consumption.

3.2 Explanatory variables

The explanatory variables are the following: Weather variables, time variables and lagged
variables. The weather variables are obtained from an API called Dark Sky API. The in-
formation sent by the API contains a total of 20 weather variables which will be reduced by
feature selection. It was found that 3 entire days were missing from the API weather data
(March 15th 2016, November 30th 2017 and August 17th 2019). Those missing values are
dealt with the last observation carried forward (LOCF) technique.

The time related variables must accurately represent any behaviour of electrical demand
that has a seasonal variation. For example, we know that electrical demand on weekends
is different than electrical demand on weekdays. Therefore, we will create a variable that

8

https://www.rte-france.com/
https://darksky.net/dev


Figure 2: France total electrical consumption

specifies the day of the week. The month of the year is also used as a predictor variable.
Similarly, a holiday or bank holiday dates have a strong impact on the electricity consump-
tion, therefore we import a csv file, which contains all the holiday dates (coded as 0 and 1)
for the Ile-De-France region from 2016 to 2020. The trend component, which represents the
long term evolution of electrical demand is represented by a variable that increases gradually
over time with 1 incremental for each hour. It should also be noted, that it is not necessary
to add a variable that represent the hour of the day (as this would normally contain high
seasonality) because a separate model for each hour of the day is created.

The relationship between temperature and electricity is not only non-linear but also af-
fected by inertia. As explained by Mustapha et al. (2015), due to the fact that heat takes
a while to dissipate, a lag is created between temperature and electricity demand. We
therefore introduce lagged temperature variables, that link the current electrical consump-
tion to past temperature values. The lagged temperatures variables include the following:
maximum temperature in the last 24 hours, minimum temperature in the last 24 hours,
last temperature observed 24 hours ago, last temperature observed 48 hours ago, mean
temperature over the last 7 days and the temperature differential from hour to hour. The
minimum and maximum temperature represents the lagged behaviour and shows the extent
to which heating or cooling had to be used to deal with the temperature extremas. The
last temperature observed 24 and 48 hours ago is necessary since we create one model for
each hour. The mean temperature over the last 7 days gives a measure of the total thermal
inertia accumulated over the course of the past week. Finally, the temperature differential
describes the changes in temperature which is associated with people heating or cooling
their houses.

Time series data is known to create auto-correlation in the forecast residuals. One way
to deal with this is to introduce lagged demand variables, which will be used as a baseline
for the following observation forecast and therefore minimize correlated behaviour of errors.
Using lagged demands also increases the accuracy of the prediction by allowing the model to
base it’s current prediction on previously known values (important for time series analysis).
The lagged demand variables include: maximum demand in last 24 hours, minimum demand
in last 24 hours, last demand observed 24 hours ago, last demand observed 48 hours ago
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and mean demand in last 7 days.

3.2.1 Dynamic forecast update

An important task for this project is the dynamic update of lagged demand variables at
each step of the prediction. This task requires the lagged demand variables to be updated,
each time a prediction is done by the model. By doing so, the lagged demands calculations
are made on the forecasted values and not the actual observed values. This is particularly
important when the range of the forecast is long (3 months in our paper) and after a few
predictions, the lagged demand observations are entirely based on forecasted values. If this
step was not implemented, the model would base it predictions on lagged demands of actual
values, which would not normally be available. This type of forecasting is called simulated
forecast where future predictions are based on past predictions and building up as a step
by step forecast. In R, this is done by calling a dynamic updating function, each time a
prediction is made by the model. This function updates the lagged demand values in the
table (according the the newly made prediction) and returns the updated table for the next
prediction.

Both predictive models used in this project do not require the predictor variables to be
normally distributed or evenly distributed in the case of multi-level categorical variables.
No feature scaling tasks (such as normalization) are required as both predictive methods use
statistical models and are mathematically robust. Finally, The factor variables (categorical)
can be used by the GAM model without transformation, however the ARIMA regression
requires categorical variables to be one hot encoded into 0 and 1 format.

3.3 Predictive models

As justified in the related work section 2, this study focuses on regression techniques in
electrical forecasting. We have therefore applied two regression models; General Additive
Model (GAM) and ARIMA regression which will be explained in this chapter.

3.3.1 General Additive Model (GAM)

Generalised Additive Model (GAM) (Hastie & Tibshirani 1986) are the semi-parametric
extensions of Generalised Linear Models (GLM). GAMs have the advantage over linear
models of allowing complex non-linear relationship between the response and explanatory
variables (as we have established the non-linear relationship of electricity and temperature).
As observed in the report, many of the interactions between dependant and independent
variables happen to be non-linear (such as temperature and demand). Therefore, the final
regression model, must incorporate non-linear components. These variables are included by
using smoothing functions (see Chapter 4.1.1). However, some of the other independent
variables do have linear relationship with electrical demand and can be represented as a
simple identity function. Therefore, the final model for the prediction will include a mix of
identity functions and smooth functions which composes the general additive model (GAM)
used for the prediction. To ensure that the model does not overfit the data a Generalized
Cross Validation process as been used to create the GAM model (see Chapter 4.1.3).

The general equation for the GAM model can be written as:

g[E(Y )] = β0 + f1(x1) + f2(x2) + ...+ fn(xn) (1)

where:
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E is the family of distribution of the response variable, Y is the response variable, in this
case electrical demand, x1 to xn are the independent variables, the g() is the link function
(such as a log transformation), the f1 to fn functions are the independent variables trans-
formation function and can be non-parametric, semi-parametric or parametric.

This regression is composed of 24 GAM models with different predictor coefficients and
gam equation, for each hour of the day.

3.3.2 Regression with ARIMA errors

Classical regression methods, when applied to time series analysis are known to violate
assumption of independent and identically distributed errors. Although measures in the
previous GAM model have been taken to minimize this violation of regression assumptions,
due to the high collinearity of observations (one per hour for our dataset) we cannot ensure
complete lack of autocorrelation in errors. Therefore, a second model is considered which
specifically addresses this issue by applying an Auto Regressive Integrated Moving Average
(ARIMA) model on the regression errors. Therefore, the classical regression equation given
by:

yt = β0 + β1x1 + β2x2 + ...+ βnxn + ηt (2)

where:
β0 is the intercept, β1...βn are the regression coefficients, x1 to xn are the independent
variables, ηt is the error term with auto-correlation,

In this case the error term ηt is allowed to be auto-correlated. The ARIMA model then
is applied on the error term ηt and in the instance of a ARIMA(1,1,1) is given by:

(1 − φ1B)(1 −B)ηt = (1 + θ1B)εt (3)

where:
B is the backshift operator, φ1 is the auto-regressive (AR) coefficient, θ1 is the Moving Aver-
age (MA) coefficient, ηt is the regression error term with auto-correlation, εt is the ARIMA
error term with no auto-correlation.
We can therefore see how by applying a ARIMA model on regression residuals, we elim-
inate any autocorrelation in the model. Therefore the electrical forecast regression can be
considered to be the Best Linear Unbiased Estimator (BLUE). It should also be noted that
each hour of the day will have a separate ARIMA regression, and the parameters (p,d,q) of
the ARIMA process will be different for each hour.

3.4 Testing and evaluation methodology

3.4.1 Training and testing sets

In order to evaluate both models fairly, five different testing sets of one day each evenly
spread through the year 2019 have been considered. Each models will make predictions for
all five dates and the results will be compared to understand which model performs better
throughout these different times of the year. This is particularly important as various times
of the year have specific characteristics such as cold or hot weather, falls in holiday dates or
may be a weekend day or not.
Additionally, the final objective of our study is electrical forecasting over a 3 month period
from March to June 2020. Therefore, an additional testing set of 3 complete months from
March to June 2019 shall also be considered to understand how well the model predicts over
this longer period of time.
The training set ranges from the first observation (January 1st 2016 at midnight) until the
last observation before the testing set.
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3.4.2 Evaluation methodology

In order to compare nested GAM models, the Akaike information criterion (AIC) statistic
is used to measure the quality of the model and the adjusted R squared statistic is used
for goodness of fit. To ensure no overfitting on the training data, a Generalized Cross
Validation method is used whilst building each GAM model and the corresponding GCV
score is reported. The lowest GCV model is selected which ensures that the smoothing
functions do not overfit the training data (see Chapter 4.1.3)
The Durbin Watson statistic is used to test for auto-correlation within each model. Finally,
each prediction on the testing set is measured through Mean Absolute Percentage Error
(MAPE). This is the most common metric in electrical forecasting and can be used to easily
compare with other relevant papers. However, it should be noted that the MAPE stastics
fails to capture in which direction the error is made (underestimate or overestimate electrical
consumption),to counteract this issue, we will also visualize results on graphs which show
the direction of the error (over or under the actual curves). Furthermore, when comparing
different papers, the MAPE statistic can be misleading as a percentage of a small value
would be penalized more than a percentage of a higher value.

3.4.3 Methodology summary

The diagram in figure 3 provides a high level summary of the project methodology described
in the methodology chapter 3.

Figure 3: Process diagram of project methodology

4 Implementation

This Chapter describes how the predictive models were built, the essential checks on model
assumptions and feature selection process for both models.

4.1 General Additive Model (GAM) implementation

As explained in Chapter 3.3.1, the GAM is composed of non-linear smoothing functions,
linear identity functions and categorical variables. We will therefore first study how the
smoothing functions were chosen (Chapter 4.1.1) and optimized, followed by feature selection
(Chapter 4.1.2) as the model has more than 35 variables and finally we will verify the GAM
assumptions (Chapter 4.1.3) in regards to our data.
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4.1.1 Smoothing Functions

Non-linear predictors are applied to smoothing functions and are then included in the GAM.
Smooth splines, propose an automated smoothing application where the user only needs to
input a parameter λ for penalty of the least squares regression residuals. The λ parameter,
determines the wiggliness of the interpolation regression curve and therefore is also referred
as the smoothing parameter. There are a number of other smoothing functions compatible
with GAMs, such as thin plate regression splines, P-splines, Markov Random Fields which
provide additional methods of non-linear data approximation. Each have been tested using
a Generalized Cross Validation process and the Smooth Spline technique has achieved the
best results. The following figure shows the smooth spline function interpolation of the
temperature data points with 5% confidence intervals.

Figure 4: Smooth Spline of Temperature variable

4.1.2 Feature selection

The GAM function used in this project from the mgvc package doesn’t offer a front, back
or stepwise feature selection function as is common with normal linear models. Therefore,
to find the optimal subset of predictors required for the analysis we refer to work done by
Marra & Wood (2011). In their work, they suggest that by introducing an additional pen-
alty parameter, the wiggliness of the variables which have no effect on the model are shrunk
to 0 and are effectively left out of the model.
Additionally, a manual feature selection process was implemented, to understand the im-
portance of the variables considered. Table 1 was obtained.

Table 1: Manual feature selection statistics

We read from the table that the model without lagged temperature variables has a 0.2%
lower R square score compared to the full model. The interaction terms also contribute
similarly with an increase of 0.2% R square. The lagged demands have a very strong impact
on the model, where the model with no lagged demand has a 0.9% lower R square and a
significantly lower Durbin-Watson statistic. Therefore we conclude that lagged demands are
essential to lower auto-correlation and for model accuracy.
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4.1.3 GAM assumptions

As seen in Chapter 3.3.1 the GAM function requires the selection of a distribution and link
function of the response variable. In order to approximate the response variable ”electricity”
to a normal distribution, we first perform a log base 10 transformation and then check the
distribution of the new variable. We have obtained the plots shown in figure 5 in regards to
the distribution of log(Electricity).

Figure 5: Distribution of response variable

As we can observe from figure 5, the log transformation of the response variable is
approximately normally distributed. This justifies the choice of the Gaussian distribution
and log transformation for the link function in the GAM formula 1.
The assumptions of a GAM model follow the regular assumptions about residuals for any
regression models. These assumptions are particularly sensitive in a time series problem
such as the one intended in this study. In order to ensure the results of the model are
correct we must first ensure the following assumptions about the residuals of the model:
Independence, constant variance and normality. These assumptions can be verified with the
residuals plots for the model created at 22:00h shown in figure 6.

As the qqplot and histogram of the residuals show, they are normally distributed. The
residual vs linear prediction graph shows a scatterplot of values which is centered around
the zero line with randomly distributed residuals which follow no particular pattern. Figure
6 leads us to believe that the GAM assumptions are met. The Durbin-Watson test is used to
check for autocorrelation of residuals. The Durbin-Watson test statistic for the GAM model
at 22:00h is 1.66 (the DW statistic of all 24 models are reported in the evaluation Chapter
5). A result showing no auto-correlation at all should be around 2, therefore, this model is
showing signs of auto-correlation of residuals. However, due to the highly correlated nature
of the data (1 pbservation per hour) a DW statistic of 1.66 is an acceptable figure. We
also check for influential points by computing Cook’s distance and verifying the distance is
always under 1.

4.1.4 Interaction terms

As shown by Hong et al. (2010) the inclusion of interaction effects in regression models for
electrical forecasting can have a drastic improvement on the prediction accuracy. In the
context of our study, we observe that each month of the year has a different temperature
to load profile and the direction of this relationship changes with the month of the year.
Therefore, it is necessary to include the interaction term of month with temperature. There
is furthermore interaction between temperature and hour of the day, however, this is already
captured by having one model for each hour.
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Figure 6: Residual plots of the GAM model

4.2 Arima regression implementation

In order to address auto-correlation issues observed in the GAM model, we propose to con-
sider a second predictive technique ARIMA regression. By applying ARIMA method on the
residuals of a standard regression we intend to reduce the autocorrelation and approximate
the residuals to white noise. We fit a separate ARIMA regression model for each of the 24
hours in the day. By using this method a specific (p,d,q) parameter are fitted for all 24
models.

4.2.1 Arima regression predictors

The variables used for the ARIMA regression are the same as the GAM model and the
dynamic forecast update method is also applied. We have introduced a quadratic term
for every predictor variable that possess a non-linear behavior. Therefore, the regression
technique is a polynomial regression.

4.2.2 Arima regression residuals

Figure 7 shows the acf plot from the polynomial regression model on the left and the acf
plot of the ARIMA model applied on the residuals of the polynomial regression on the right.
This acf plot was obtained from the 22:00 hour model with the corresponding ARIMA order
of (1,0,1).

The ARIMA model on the residuals has clearly reduced the auto-regressive spikes. Fi-
nally, a Durbin-Watson (DW) test was made on both model and showed an improvement
from 0.4 for the polynomial regression to 2 for the ARIMA regression. The DW statistics

15



Figure 7: acf plots of regression vs ARIMA regression models for 22h

for each hour model are shown in the evaluation section 5.

5 Evaluation

5.1 Day Ahead Forecast / Case Study 1

Both models as detailed in the implementation Section 4 were applied to five dates evenly
spread throughout the year of 2019: January 1st, March 15th, May 30th, July 15th and
October 1st. For conciseness, only the table for October 1st is included with MAPE score
and Durbin Watson statistic (Appendix A), the remaining forecasts are summed up in table
2. An internal study for the EDF utility company done by Rob J Hyndman and Shu Fan
Bruhns et al. (2005) are used as the state of the art reference level for MAPE values. This
paper is used because the authors forecast one day ahead values of electrical consumption
with GAM models, which is exactly in line with this paper’s objective.
We can observe in Appendix A that GAM and ARIMA regression models perform well and
achieve a final MAPE of 1.08% and 1.37% respectively. This is a good result which is more
accurate than the reference paper. The performance of the GAM model in our paper over
the reference paper can be explained by multiple factors: we have proposed to introduce
interaction terms in the GAM equation as well as smoothing spline instead of cubic splines
as done in the reference paper. The trend variable is also modelled as a non-linear variable
which was not the case in the reference paper.
The Durbin Watson statistics table in Appendix A shows that the ARIMA model has values
much closer to 2 than the GAM model. Whilst the ARIMA regression has taken care of
auto-correlation issues, these results have shown that this does not necessarily translate into
more accurate predictions. We can therefore conclude that the auto-correlation of error
assumption is somewhat flexible and Durbin-Watson statistics of 1.5 (out of 2) can still
translate into accurate predictions.
Table 2 reports the results obtained from both models at each 5 dates.

Overall, the GAM model performs slightly better than the ARIMA model over the 5
dates. For the date of July 15th the ARIMA model has an MAPE of 5.23 whilst the GAM
model has an MAPE of 1.62. This is due to the fact that GAM model’s smoothing functions
are better adapted at representing high temperature’s complex non-linearity than the simple
polynomial regression used in the ARIMA model. We also note that the predictions made
for the date of January 1st 2019 have high MAPE values for both models. This is due to the
fact that during this day the electrical consumption is highly perturbed due to New Year
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Table 2: GAM and ARIMA regression results

celebration.
The GAM model in this paper outperforms the reference paper in 4 out of the 5 dates
selected (with the exception of January 1st).

5.2 Three months forecast / Case Study 2

The models as described and created in the implementation Chapter 4 were applied to a 3
month period ranging from March 17th 2019 to June 29th 2019. These dates are selected
because they represent the same dates as lockdown period, one year before.
Appendix B shows the lineplot of GAM and ARIMA MAPEs for this period. We observe
that the GAM model MAPE is constantly lower than the ARIMA regression MAPE curve.
Moreover, the ARIMA regression makes more extreme errors with a maximum MAPE of 11%
whilst the GAM model has a maximum MAPE of 6%. A very encouraging observation, is
that both models do not display an increase of MAPE over time, which shows the robustness
of both predictive models in short term forecasting and medium term forecasting as well as
a correct choice of methodology for the forecast.
Table 3 shows the overall MAPE of both models for the 3 month period and model building
times.

Table 3: MAPE and time statistics for 3 months forecast of GAM and ARIMA models

The MAPE of GAM is significantly lower than the ARIMA model which means that
GAM model is better suited for medium term forecasting. The processing time to build
the ARIMA model is 1 hour and 13 minutes while the processing time to build the GAM
model is 2 hours and 5 minutes. The gam() function from mgvc package in R is more
computationally demanding than auto.arima() methods as each variable is fitted with a
complex smooth spline function which takes longer to compute.
In accordance with the results obtained from and table 3, we will use the GAM model for
the 3 months forecast of COVID-19 lockdown.
Figure 8 shows the three month forecasted values against the actual values of electricity for
the GAM model.

Generally, we observe the predictions to be closely following the actual values. The lows
between each period are the weekends where electrical consumption is at a lower value. It
is also interesting to note how the electricity drastically decreases from march to may. This
is due to the change of temperature going from the cold months to the hotter months where
less electricity is used. Finally we observe an irregular pattern in actual values in early May
where electrical consumption doesn’t resemble any other weeks. This is due to the fact that
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Figure 8: GAM model actual vs forecast 3 months forecast

May 8th and May 10th are both bank holidays in France which has a strong impact on
electrical consumption. We note that the GAM model does somewhat capture these bank
holidays by predicting lower values for May 8th and 10th (represented by the up and down
spikes during those dates).
Considering the MAPE achieved during the 3 month period of 2% along with the satisfying
actual vs predicted graph, we can conclude that our model is well adapted for the pandemic
lockdown electricity prediction and can be applied in the last case study.

5.3 Lockdown simulation / Case Study 3

The GAM model has been applied from March 17th 2020 to June 29th 2020. The forecast
values are plotted against the actual values and we report the graph in figure 9.

Figure 9: Barchart of lockdown vs simulated no lockdown percentage difference

The first observation is that the difference between lockdown and no lockdown statistics
is almost exclusively negative, this means that the power consumption during lockdown has
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decreased. We also note the percentage difference was at a maximum (20% difference) at
about half a month after the lockdown start date and gradually returns to normal values
in the next two months. Weekend days display lower percentage differences (marked by
recurrent two day dents in the barplot) due to the fact that in normal conditions the electrical
consumption is naturally lower (therefore the difference is also lower). Finally, on April 12
and 13 the power demand is actually higher than under normal conditions. These dates
correspond to Easter Sunday dates, where during normal conditions the power would be
significantly lower due to people staying at home.
Figure 10 shows the daily electrical consumption of two days in April against its forecasted
normal condition.

Figure 10: Daily Electrical demand of weekday and weekend day in April

Figure 10 shows that weekdays are marked with a strong decrease of electrical demand
whilst weekend days are somewhat similar.
We also note that, during weekdays the actual curve (with lockdown) seems to be generally
shifted towards the right (later hours of the day). In the morning there is a 1 hour shift
which means people usually wake up later and start their daily activities 1 hour later. The
normal daily maximum is usually around 9pm whereas under lockdown conditions it happens
around 12pm, which again signifies a delay in standard daily activities. The weekend graph
however does not show any shifting which means the weekend activities have not changed
in lockdown phase.
Finally, an interesting observation is that the maximum electrical power demand during
weekdays (7000MW) and the maximum electrical demand during weekend days (6000MW)
during lockdown are very close. This is a significant change than normal conditions where
weekday power is usually much higher than weekend power. This is due to the fact that
during lockdown the population is asked to stay at home, therefore the power consumption
during weekend and weekdays is similar.

6 Conclusion and Future Work

The first part of the conclusion aims to answer the following research question: Q1. What
are the most adapted techniques in regression for short-term and mid-term electrical fore-
casting?
The study done in this paper has shown that Generalized Additive Models (GAM) and AR-
IMA regression models can both be used to accurately forecast electrical consumption over
short-term time periods whilst GAM models are better suited for medium-term forecasts.
In one day ahead forecasts, GAM models achieved a 2.24% MAPE slightly outperforming
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the ARIMA regression of 2.92%. However, it was shown for both models that calendar
dates with extreme changes in electricity demand were not accurately forecasted on days
such as New Year Day. The short-term analysis also provided interesting information on
auto-correlation and showed good results for regression models with moderately correlated
errors.
Temperature is widely considered to be the most important predictor in electrical consump-
tion. However, it has been shown that the addition of lagged temperature variables models
thermal inertia and increases the prediction accuracy. This analysis also highlighted the
importance of lagged electrical demand predictors in reducing auto-correlation and increas-
ing final accuracy. Interaction terms were considered as well as non-linear trend model to
accurately represent real-world situation. One notable limitation stems from the absence of
economical and industrial predictors which can impact the prediction over longer periods of
prediction.
The mid-term analysis (over 3 months) highlighted the weakness of GAM models, in terms
of computational burden with longer model training times compared to ARIMA regression.
However, on the 3-months prediction the GAM model significantly outperformed the AR-
IMA regression model with respective MAPEs of 2.31% and 4.08%. These results have
shown that GAM models are adapted for both short-term and mid-term forecasting.

The second part of the conclusion aims to answer the following research question: Q2.
What is the impact of the COVID-19 pandemic on electrical consumption?
After studying graphs 9 and 10 we conclude that the power consumption during lockdown
phase is significantly lower during weekdays. This difference is less noticeable during week-
end days although still present. There is a general shift of human activities towards later
hours of the day specially in morning and mid-day activities during week days. We also
note that the power consumption is gradually returning to normal values during the last
two months of lockdown.
Finally, we note that during lockdown the power consumption statistic between weekend
and week days are very similar.
One limitation comes from the fact that the original dataset combines all power usage types,
therefore is it sometimes difficult to interpret exactly the reasons of the changes in electricity
consumption.

6.1 Future Work

For future work, this study could be segregated in power usage types, such as residential,
commercial or industrial. Each of these industries have been impacted differently by the
lockdown and could benefit from further analysis.
We also note higher MAPE values for specials days, in future work this could be remedied
by adding variables to represent special days or build separate models for said days. The
weather variables could be improved by importing weather information for multiple locations
across the Ile-De-France region and combining them by their population weighted statistic
for a more accurate representation of their effect on electrical consumption. Additionally,
the incorporation of economic variables is an important factor that should be considered for
future studies.
Finally, an extension of Generalized Additive Models for time series data with auto-correlation,
is Generalized Additive Mixed Models (GAMM) and allows to model the non-random be-
haviour of the errors through smooth functions control. This method could be considered
for future studies, although it is known to be computationally heavy.
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Appendix A MAPE Tables

Table 4: MAPE and DW statistics for October 1st, GAM, ARIMA and reference models
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Appendix B MAPE Lineplot

Figure 11: GAM and ARIMA models MAPE values
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Appendix C Literature Review Summary Table
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