~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ninad Mohite
Student ID: x18203591

School of Computing
National College of Ireland

Supervisor: Dr. Manaz Kaleel

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ninad Mohite
Student ID: x18203591
Programme: Data Analytics
Year: 2020
Module: MSc Research Project
Supervisor: Dr. Manaz Kaleel
Submission Due Date: 17/08,/2020
Project Title: Configuration Manual
Word Count: 723
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th August 2020

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ninad Mohite
x18203591

1 Introduction

This configuration manual presents a step by step guide to implement Vertebra Segment-
ation from CT images using Volumetric Network which is presented in the report. The
main aim of this manual is to assist in reproducing the results which are presented in
the report. The project is developed using various technologies, high-end hardware and
cloud systems.

1.1 Project Overview

The goal of the project is to implement vertebra segmentation using the volumetric net-
work. Segmentation helps surgeons to detect problems related to the spine and vertebra
at the early stage. The results obtained from the model can be used to develop a system
that can be deployed to segment vertebra automatically.

2 Pre-requisites

The pre-requirements to execute the project are as follows. The hardware and software
mentioned below were used during the implementation and are subject to change as per
the availability. The GPU is a must for the training of the model.

2.1 Hardware Requirements

e Processor Required: 2.3 GHz Dual-Core Intel Core i5

e RAM: 8 GB 2133 MHz LPDDR3

e GPU: Nvidia Tesla K80 (Google Colab)

e Memory: Minimum 100GB on local system as well as on Google Drive

e Operating System: macOS Catalina

2.2 Software Requirements
e Programming Language: Python
e Development Tool and IDE: Jupyter Notebook, PyCharm, Google Colab
e Other Software: I'TKSnap

3 Software Installation Guide

Following are the installation steps for the software mentioned in section 2.

3.1 Anaconda Navigator and PyCharm for anaconda

e Download Anaconda Nevigator graphical Installer

To start the installation double click on the installer.

Address the prompts on the screens for Introduction, Read Me and License.

Click install button and start installation in /opt directory or install it at the
preferred location and on the screen click on install for me.

Select pycharm for anaconda and click continue.

Follow the installation guide for graphical assistanceﬂ

3.2 Installation of ITKSnap

ITK-SNAP is a software framework for segmenting medical image structures in 3D format.
Following are the steps to install ITKSnap:

e Download the installer from the official website Pl

e Start the installation by double clicking on the icon.

e Accept License

e Drag the icon to applications folder or double click on it.

e Select the Applications folder and move the ITK-SNAP.app button onto the dock
to attach the ITK-SNAP application to the Desktop.

e To launch program click on ITK-SNAP icon.

Follow the installation guide for graphical assistance [}

ITK-SNAP is freely available software used to open .mhd files. It requires both
.mhd and .raw files to open and image. To open a 3D scan, select open workspace and
the browse to scan and select the scan. Detail information can be found in the official
documentation E] Below snapshot in figure 1 shows the ITK-SNAP project work-space
when a scan is loaded.

'https://docs.anaconda.com/anaconda/install/mac-os/
Zhttp://wuw.itksnap.org/pmwiki/pmwiki.php?n=Downloads .SNAP3
3http://www.itksnap.org/pmwiki/pmwiki.php?n=Documentation.TutorialSectionInstallation
‘http://www.itksnap.org/pmwiki/pmwiki.php?n=Documentation.SNAP3

https://docs.anaconda.com/anaconda/install/mac-os/
http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3
http://www.itksnap.org/pmwiki/pmwiki.php?n=Documentation.TutorialSectionInstallation
http://www.itksnap.org/pmwiki/pmwiki.php?n=Documentation.SNAP3

® image001.mhd - New Segmentation - ITK-SNAP
ITK-SNAP Toolbox image001 image001

Main Toolbar
wPHs L
“r s Be
Cursor Inspector

L E Y

Cursor position (xy,z):
495 562 101

Intensity under cursor:

Layer Intensity
image001 | 1046

zoom to fit 101 of 200

Label under cursor:
0 Clear Label

Segmentation Labels
Active label:
B Label 1 v

Paint over:
[Al labels v

Overall label opacity:

50 —

3D Toolbar

FHS S

update O v zoomtofit | 562 of 1024

Figure 1: Screenshot of ITK-SNAP

4 Project Implementation Guide

This section talks about the implementation of the entire project. To install python

>

packages use the command " pip install 'package name’ 7.

4.1 Data Understanding and Preprocessing
4.1.1 Data Understanding and Generating Ground Truth

The most important part of any deep learning project is to understand the data you are
working with. For exploratory data analysis and generation of masks (ground truth) run
GenerateMask.ipynb. Run each cell in the notebook. Below figure shows the snapshot of
the code.

Import Packages

In [1]: smatplotlib inline

import pydicom
import os

6 import SimpleITK as sitk

import matplotlib.pyplot as plt

8 from glob import glob

9 from mpl_toolkits.mplot3d.art3d impert Poly3DCollection

10 import scipy.ndimage

11 from skimage import morphology

from skimage import measure

13 from skimage.transform import resize

14 from sklearn.cluster import KMeans

15 from sklearn.cluster import DBSCAN

16 from plotly import _ version__

17 from plotly.offline import download plotlyjs, init_notebook mode, plot, iplot

18 from plotly.tools import FigureFactory as FF

19 from plotly.graph objs import *

20 init_notebook_mode(connected=True)

21 import seaborn as sns

1
2
3 import numpy as np
4
5

In [2]: 1 data path = '/Volumes/Samsung_T5/Vert/xVertSeg-1.vl/Data2/images/image025.mhd"
2 output_path = working_path = "/Users/ninadmohite/Desktop/Output/"

Helper Functions
Here we make two helper functions.

* load_itk will load .mhd images from a folder.
* The voxel values in the images are raw. get_pixels_hu converts raw values into Houndsfeld units
* The transformation is linear. Therefore, so long as we have a slope and an intercept, we can rescale a voxel value to HU.

Both the rescale intercept and rescale slope are stored in the header at the time of image acquisition (these values are scanner-dependent, so you will need
external information).

In [9]: 1 import SimpleITK as sitk
import numpy as np

3
4 This funciton reads a '.mhd' file using SimpleITK and return the image array, origin and spacing of the image.
5
6

def load_itk(filename):

8 # Reads the image using SimpleITK

9 itkimage = sitk.ReadImage (filename)

10

11 # Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x
12 ct_scan = sitk.GetArrayFromImage (itkimage)

13

14 # Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa.
15 origin = np.array(list(reversed(itkimage.GetOrigin())))

16

17 # Read the spacing along each dimension

18 spacing = np.array(list(reversed(itkimage.GetSpacing())))

19

20 return ct_scan, origin, spacing

21

Figure 2: Screenshot of GenerateMask.ipynb

4.1.2 Extract 2D slices from each 3D Scan

2D slices of each scans are saved as .bmp file, these are used to generate 3D patches of
shape (128%128*128). To save slices from each scan run get2DScans.py

__future__ print_function, division
0s
SimpleITK sitk
cv2

numpy np

getRangImageDepth(image) :

fistflag =
startposition =
endposition =
z (image.shape[0]) :
notzeroflag = np.max(image[z])
notzeroflag fistflag:
startposition = z
fistflag =
notzeroflag:
endposition = z
startposition, endposition

resize_image_itk(itkimage, newSpacing, resamplemethod=sitk.sitkNearestNeighbor)

newSpacing = np.array(newSpacing)
originSpcaing = itkimage.GetSpacing()

resampler = sitk.ResampleImageFilter()
originSize = itkimage.GetSize()

factor = newSpacing / originSpcaing

newSize = originSize / factor

newSize = newSize.astype(np.int)
resampler.SetReferenceImage(itkimage)
resampler.SetOutputSpacing(newSpacing.tolist())
resampler.SetSize(newSize.tolist())
resampler.SetTransform(sitk.Transform(3, sitk.sitkIdentity))

Figure 3: Screenshot of get2DScans.py

4.2 Generate 3D patches from the slices using

It is not possible to practically put entire 3D scan in a neural network for training. Hence,
3D patches are generated. To get 3D patches run prep_patches.py The 2D scans extracted
using get2DScans.py is input to prep_patches.py.

_ future__ print_function, division
numpy np
cv2
o0s

getRangImageDepth(image src, fixedvalue=255):

image = image_src.copy()
image[image_src == fixedvaluel
image[image_src != fixedvaluel
fistflag =
startposition =
endposition =
z (image.shape[@]):
notzeroflag = np.max(image [z
notzeroflag fistflag:
startposition = z
fistflag =
notzeroflag:
endposition = z
startposition, endposition

subimage_generator(image, mask, patch_block_size, numberxy, numberz):

width = np.shape(image) [1]

height = np.shape(image) [2]

imagez = np.shape(image) [0]

block_width = np.array(patch_block_size) [1]
block_height = np.array(patch_block_size)[2]
blockz p.array(patch_block_size) [@]

—e LA A e b R R

preparetraindata()

Figure 4: Screenshot of prep_patches.py

After generating patches run saveDetailsToCSV.py to save details of each patch in csv
file. Upload the file and data in google drive a for training the V-Net model on google
colab.

0s

file_name_path(file dir, dir=

(file_dir)

root, dirs, files os.walk(file_dir)
files.pop(0)
(root)
(dirs)
(dirs) dir:
(dirs)
dirs
(files) file:
((files))
files

save_file2csv(file_dir, file_name):

out = (file_name
image =
mask =
file_image_dir = file_dir + + image
file_mask dir = file_dir + + mask
file_paths = file_name_path(file_image_dir
out.writelines(+)
(file_paths)
index (len(file_paths)):
out_file_image_path = file_image_dir + + file_paths[index]
out_file_mask_path = file_mask_dir + + file_paths [index]
out.writelines(out_file_image_path + + out_file_mask_path +

save_file2csv(

Figure 5: Screenshot of saveDetailsToCSV.py

4.3 Training the Model and Generating the results

Run VNet.py to train the model and generate a the results.

import keras

import os

import h5py

from keras import backend as K

from keras.engine import Input, Model
from keras.layers import Conv3D, MaxPooling3D, UpSampling3D, Activation, BatchNormalization, PReLU, Conv3DTranspose
from keras.optimizers import Adam

from keras.layers.merge import concatenate
import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from functools import partial

the

K. setiimageidataiformat‘i” channels_first" ﬂ

dice_coefficient(y_true, y pred, smooth=1.):

y_true f = K.flatten(y_true)

y_pred f = K.flatten(y_pred)

intersection = K.sum(y_true f * y pred f)

return (2. * intersection + smooth) / (K.sum(y_true f) + K.sum(y_pred f) + smooth)

dice coefficient_loss(y true, y pred):
return 1-dice_coefficient(y_true, y pred)

weighted dice coefficient(y true, y pred, axis= (0), smooth=1):

Weighted dice coefficient. Default s assumes a "channels first" data structure
:param smooth:

iparam y_true:

:param y pred:

:param axis:

Figure 6: Screenshot of V-Net.py

	Introduction
	Project Overview

	Pre-requisites
	Hardware Requirements
	Software Requirements

	Software Installation Guide
	Anaconda Navigator and PyCharm for anaconda
	Installation of ITKSnap

	Project Implementation Guide
	Data Understanding and Preprocessing
	Data Understanding and Generating Ground Truth
	Extract 2D slices from each 3D Scan

	Generate 3D patches from the slices using
	Training the Model and Generating the results

